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Abstract

Diagnosis of a clinical condition is a challenging task, which
often requires significant medical investigation. Previous
work related to diagnostic inferencing problems mostly con-
sider multivariate observational data (e.g. physiological sig-
nals, lab tests etc.). In contrast, we explore the problem using
free-text medical notes recorded in an electronic health record
(EHR). Complex tasks like these can benefit from structured
knowledge bases, but those are not scalable. We instead ex-
ploit raw text from Wikipedia as a knowledge source. Mem-
ory networks have been demonstrated to be effective in tasks
which require comprehension of free-form text. They use the
final iteration of the learned representation to predict prob-
able classes. We introduce condensed memory neural net-
works (C-MemNNs), a novel model with iterative condensa-
tion of memory representations that preserves the hierarchy
of features in the memory. Experiments on the MIMIC-III
dataset show that the proposed model outperforms other vari-
ants of memory networks to predict the most probable diag-
noses given a complex clinical scenario.

Introduction

Clinicians perform complex cognitive processes to infer the
probable diagnosis after observing several variables such as
the patient’s past medical history, current condition, and var-
ious clinical measurements. The cognitive burden of dealing
with complex patient situations could be reduced by hav-
ing an automated assistant provide suggestions to physicians
of the most probable diagnostic options for optimal clinical
decision-making.

Some work has been done in building Artificial Intelli-
gence (AI) systems that can support clinical decision mak-
ing (Lipton et al. 2015; Choi, Bahadori, and Sun 2015;
Choi et al. 2016). These works have primarily focused on the
use of various biosignals as features. EHRs typically store
such structured clinical data (e.g. physiological signals, vi-
tal signs, lab tests etc.) about the patients’ clinical encoun-
ters in addition to unstructured textual notes that contain a
complete picture of the associated clinical events. Structured
clinical data generally contain raw signals without much
interpretation, whereas unstructured free-text clinical notes
contain detailed description of the overall clinical scenario.
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In this paper, we explore the discriminatory capability of
the unstructured free-text clinical notes to correctly infer
the most probable diagnoses from a complex clinical sce-
nario. In the Clinical Decision Support track1 of the recent
Text REtrieval Conference (TREC) series, clinical diagnos-
tic inferencing from unstructured free texts has been shown
to play a significant role in improving the accuracy of rel-
evant biomedical article retrieval (Hasan et al. 2014; 2015;
2016). We also explore the use of an external knowledge
source like Wikipedia from which the model can extract rel-
evant information, such as signs and symptoms for various
diseases. Our goal is to combine such an external clinical
knowledge source with the free-text clinical notes and use
the learning capability of memory networks to correctly in-
fer the most probable diagnosis.

Memory Networks (MemNNs) (Sukhbaatar et al. 2015;
Weston, Chopra, and Bordes 2014) are a class of models
which contain an external memory and a controller to read
from and write to the memory. Memory Networks read a
given input source and a knowledge source several times
(hops) while updating an internal memory state. The mem-
ory state is the representation of relevant information from
the knowledge base optimized to solve the given task. This
allows the network to remember useful features. The no-
tion of neural networks with memory was introduced to
solve AI tasks that require complex reasoning and infer-
encing. These models have been successfully applied in
the Question Answering domain on datasets like bAbi (We-
ston et al. 2015), MovieQA (Tapaswi et al. 2015), and Wik-
iQA (Sukhbaatar et al. 2015; Miller et al. 2016). Memory
networks are harder to train than traditional networks and
they do not scale easily to a large memory. End-to-End
Memory Networks (Sukhbaatar et al. 2015) and Key-Value
Memory Networks (KV-MemNNs) (Miller et al. 2016) try to
solve these problems by training multiple hops over memory
and compartmentalizing memory slots into hashes, respec-
tively.

When the memory is large, hashing can be used to selec-
tively retrieve only relevant information from the knowledge
base, however not much work has been done to improve
the information content of the memory state. If the network
were trained for factoid question answering, the memory

1http://www.trec-cds.org/
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state might be trained to represent relevant facts and rela-
tions from the underlying domain. However, for real world
tasks, a large amount of memory is required to achieve state-
of-the-art results. In this paper, we introduce Condensed
Memory Networks (C-MemNNs), an approach to efficiently
store condensed representations in memory, thereby maxi-
mizing the utility of limited memory slots. We show that a
condensed form of memory state which contains some in-
formation from earlier hops learns efficient representation.
We take inspiration from human memory for this model.
Humans can learn new information and yet remember even
very old memories as abstractions. We also experiment with
a simpler form of knowledge retention from previous hops
by taking a weighted average of memory states from all the
hops (A-MemNN). Even this simpler alternative which does
not add any extra parameter is able to outperform standard
memory networks. Empirical results on the MIMIC-III
dataset reveal that C-MemNN improves the accuracy of clin-
ical diagnostic inferencing over other classes of memory net-
works. To the best of our knowledge, this is the first empir-
ical study to classify diagnosis from EHR free-text clinical
notes using memory networks.

Related Work

Memory Networks

Memory Networks (MemNNs) (Weston, Chopra, and Bor-
des 2014) and Neural Turing Machines (NTMs) (Graves,
Wayne, and Danihelka 2014) are the two classes of neu-
ral network models with an external memory component.
MemNN stores all information (e.g. knowledge base, back-
ground context) into the external memory, assigns a rele-
vance probability to each memory slot using content-based
addressing schemes, and reads contents from each mem-
ory slot by taking their weighted sum. End-to-End Memory
Networks introduced multi-hop training (Sukhbaatar et al.
2015) and do not require strong supervision unlike MemNN.
Key-Value Memory Networks (Miller et al. 2016) have a
key-value paired memory and are built upon MemNN. The
key-value paired structure is a generalized way of storing
content in the memory. The contents in the key-memory
are used to calculate the relevance probabilities whereas the
contents in the value-memory are read into the model to help
make the final prediction.

In contrast to MemNN, which uses a content-based mech-
anism to access the external memory, the NTM controller
uses both content- and location-based mechanisms. The fun-
damental difference between these models is that MemNN
does not have a mechanism for the content to be changed
in the memory, while NTM can modify the content in each
episode. This makes MemNN easier to train compared to
NTM.

Recently, there has been an attempt to incorporate longer
contextual memory into the basic Recurrent Neural Net-
works (RNNs) framework. Stack-Augmented RNN (Joulin
and Mikolov 2015) proposes interconnecting RNN mod-
ules using a push-down stack in order to learn long-term
dependencies. They are able to reproduce complicated se-
quence patterns. Chung, Ahn, and Bengio (2016) explore

multi-scale RNN, which is able to learn a latent hierarchical
structure by using temporal representation at different time-
scales. These methods are well-suited for learning long-term
temporal dependencies, but do not scale well to large mem-
ory. Hierarchical Memory Networks (Chandar et al. 2016)
study the use of maximum inner product search (MIPS) to
store memory slots in a hierarchy. Our aim is to improve the
efficiency and knowledge density of the standard memory
slots by exploring a hierarchy of internal memory represen-
tations over multiple hops.

Another related class of models are the attention-based
neural networks. These models are trained to learn an at-
tention mechanism so that they can focus on the important
information on a given input. Applying an attention mech-
anism on the machine reading comprehension task (Her-
mann et al. 2015; Dhingra et al. 2016; Cui et al. 2016;
Sordoni, Bachman, and Bengio 2016) has shown promising
results. In tasks where inferencing is governed by the input
source e.g. sentence-level machine translation (Bahdanau,
Cho, and Bengio 2014), image caption generation (Xu et
al. 2015), and visual question answering (Lu et al. 2016),
the use of attention-based models has proven to be very ef-
fective. As attention is learned by the iterative finding of the
highly-activated input regions, this is not feasible for a large-
scale external memory; however, more research is required
in order to achieve attention over memory.

Neural Networks for Clinical Diagnosis

The application of neural networks to medical tasks dates
back more than twenty years (Baxt 1990). The recent suc-
cess of deep learning has drawn broader interest in build-
ing AI systems to support clinical decision making. Lip-
ton et al. (2015) train Long Short-Term Memory Networks
(LSTMs) to classify 128 diagnoses from 13 frequently but
irregularly sampled clinical measurements extracted from
the EHR. DoctorAI (Choi, Bahadori, and Sun 2015) and
RETAIN (Choi et al. 2016) also use time series data for di-
agnosis classification. Similar to these works, we formulate
the problem as multi-label classification, since each medi-
cal note might be associated with multiple diagnoses. How-
ever, there are two important differences between our work
and the previous work. We only consider discharge notes
for our experiments, which are unstructured free-texts and
do not contain time series data, while they rely on time se-
ries datasets where each time series has a fixed number of
clinical measurements. Moreover, we train our model in an
end-to-end fashion and do not extract any hand-engineered
features from the notes, while they resample all time series
data to an hourly rate and fill in the gaps created by window-
based resampling in clinical measurements. We propose the
use of memory networks instead of LSTMs to classify the
diagnoses since the memory component provides the flexi-
bility to learn from an external knowledge source.

Dataset

MIMIC-III (Multiparameter Intelligent Monitoring in In-
tensive Care) (Johnson et al. 2016) is a large freely-available
clinical database. It contains physiological signals and vari-
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Medical Note (partially shown)

Date of Birth: [**2606–2–28**] Sex: M
Service: Medicine
Chief Complaint:
Admitted from rehabilitation for hypotension (systolic blood
pressure to the 70s) and decreased urine output. History of
present illness:
The patient is a 76-year-old male who had been hospitalized at
the [**Hospital1 3007**] from [**8–29**] through [**9–6**] of 2002 after
undergoing a left femoral-AT bypass graft and was subsequently
discharged to a rehabilitation facility.
On [**2682–9–7**], he presented again to the [**Hospital1 3087**] after
being found to have a systolic blood pressure in the 70s and no
urine output for 17 hours.

Diagnosis

Cardiorespiratory arrest.
Non-Q-wave myocardial infarction.
Acute renal failure.

Table 1: An example MIMIC-III note.

Figure 1: Distribution of number of diagnosis in a note.

ous measurements captured from patient monitors, and com-
prehensive clinical data obtained from hospital medical in-
formation systems for over 58K Intensive Care Unit (ICU)
patients. We use the noteevents table from MIMIC-III:
v1.3, which contains the unstructured free-text clinical notes
for patients. We use ‘discharge summaries’, instead of ‘ad-
mission notes’, as former contains actual ground truth and
free-text. Since discharge summaries are written after diag-
nosisdecision, we sanitize the notes by removing any men-
tion of class-labels in the text.

As shown in Table 1, medical notes contain several details
about the patient but the sections are not uniform. We do not
separate the sections other than the DIAGNOSIS, which is
our label. There are multiple labels (diagnoses) for a given
note, and a note can belong to multiple classes of diagnoses,
thus we formulate our task as a multiclass-multilabel classi-
fication problem. The number of diagnoses per note is also
not consistent and shows a long tail (Figure 1). We have
taken measures to counteract these issues, which are dis-
cussed in the Memory addressing section.

Cardiac arrest

Cardiac arrest is a sudden stop in effective blood circulation due
to the failure of the heart to contract effectively or at all[1]. A
cardiac arrest is different from (but may be caused by) a my-
ocardial infarction (also known as a heart attack), where blood
flow to the muscle of the heart is impaired such that part or all
of the heart tissue dies. . .
Signs and symptoms
Cardiac arrest is sometimes preceded by certain symptoms such
as fainting, fatigue, blackouts, dizziness, chest pain, shortness of
breath, weakness, and vomiting. The arrest may also occur with
no warning . . .

Table 2: Partially shown example of a relevant Wikipedia
page.

Some diagnoses are less frequent in the data set. Without
enough training instances, a model is not able to learn to
recognize these diagnoses. Therefore, we experiment with
a varying number of labels in this work (see details in the
Experiments section).

Knowledge Base

We use Wikipedia pages (see Table 2) corresponding to the
diagnoses in the MIMIC-III notes as our external knowl-
edge source. WikiProject Medicine is dedicated to improv-
ing the quality of medical articles on Wikipedia and the in-
formation presented in these pages are generally shown to
be reliable (Trevena 2011). Since some diagnosis terms from
MIMIC-III don’t always match a Wikipedia title, we use
the Wikipedia API with the diagnoses as the search terms
to find the most relevant Wikipedia pages. In most cases we
find an exact match while in the rest we pick the most rel-
evant page. We use the first paragraph and the paragraphs
corresponding to the Signs and symptoms sections for our
experiments. In cases where such a section is not available,
we use the second and third paragraphs of the page. This
happens for the obscure diseases, which have a limited con-
tent.

Condensed Memory Networks

The basic structure of our model is inspired by MemNN.
Our model tries to learn memory representation from a given
knowledge base. Memory is organized as some number of
slots m1, . . .mt. For the given input text i.e. medical notes
x1, . . . , xn, the external knowledge base (wiki pages, wiki
titles) (k1, v1), (k2, v2), . . . , (km, vm), and the diagnoses of
those notes y, we aim to learn a model F such that

F(xn, (km, vm)) = ŷ → y (1)

We break down this function F , in four parts I, G, O, R
which are the standard components of Memory Networks.

• I: Input memory representation is the transformation of
the input x to some internal representation u using learned
weights B. This is the internal state of the model and is
similar to the hidden state of RNN-based models. In this
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Figure 2: (a) Abstract view of transformation of memory representation over multiple hops. (b) Structural overview of end-to-
end model for condensed memory networks.

paper, we propose the addition of a condensed memory
state ũ, which is obtained via the iterative concatenation
of successively lower dimensional representations of the
input memory state u.

• G: Generalization is the process of updating the memory.
MemNN updates all slots in the memory, but this is not
feasible when the size of the knowledge source is very
large. Therefore, we organize the memory as key-value
pairs as described in Miller et al. (2016). We use hashing
to retrieve a small portion of keys for the given input.

• O: Output memory representation is the transformation
of the knowledge (k, v) to some internal representation
m and c. While End-to-End MemNN uses an embedding
matrix to convert memories to learned feature space, our
model uses a two-step process because we represent wiki-
titles and wikipages as different learned spaces. We learn
matrix A to transform wikipages (keys) and C to trans-
form wiki-titles (values). Our choice of wikipages as keys
and wiki-titles as values is deliberate – the input “med-
ical notes” more closely match the text of the wikipages
and the diagnoses more closely match the wiki-titles. This
allows for a better mapping of features; our empirical re-
sults validate this idea.
Let k represents the hop number. The output memory rep-
resentation is obtained by:

ok =
∑
i

Addressing(uk,mk
i ) · cki (2)

where Addressing is a function which takes the given in-
put memory state u and provides the relevant memory rep-
resentation m.

• R: Response combines the internal state u, internal con-
densed state ũ and the output representation o to provide
the predicted label ŷ. We sum u and o and then take the
dot product with another learned matrix W . We then con-
catenate this value with condensed memory state ũ. This
value is then passed through sigmoid to obtain the likeli-
hood of each class. We use sigmoid instead of softmax in
order to obtain multiple predicted labels, ŷ1, . . . ŷr among
possible R labels. Both the memory states u and ũ are
computed as:

uk+1 = uk + ok (3)

ũk+1 = uk+1 ⊕D1 · ũk (4)

where ⊕ denotes concatenation of vectors.
Our major contribution to memory networks is the use
of condensed memory state ũ in combination with input
memory state u to do the inference. As shown in Figure
2(a), ũ is transformed to include the information of pre-
vious hops, but in lower dimensional feature space. This
leads to a longer term memory representation, which is
better able to represent hierarchy in memory. The class
prediction is obtained using:
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ŷr = argmax
rεR

1

1 + e−1∗(ũk+1·W )
(5)

Network Overview

Figure 2(b) shows the overview of the C-MemNN struc-
ture. The input x is converted to internal state u1 using the
transformation matrix B. This is combined with memory
key slots m1 using matrix A. Memory addressing is used to
retrieve the corresponding memory value c1. This value is
transformed using matrix C to output memory representa-
tion o1. In parallel, memory state u is condensed to half of
its original dimension using the transformation matrix D. If
u is of size 1 × K then D is of size K × K

2 . We call this
reduced representation of u the condensed memory state, ũ.
This is the end of the first hop. This process is then repeated
for a desired number of hops. After each hop, the condensed
memory state ũ becomes the concatenation of its previous
state and its current state, each reduced to half of its original
dimension.

Averaged Memory Networks

In C-MemNN, the transformation of ũ at every hop adds
more parameters to the model, which is not always desirable.
Thus, we also present a simpler alternative model, which we
call A-MemNN, to capture hierarchy in memory represen-
tation without adding any learned parameters. In this alter-
native model, we compute the weighted average of ũ across
multiple hops. Instead of concatenating previous ũ values,
we simply maintain an exponential moving average from
different hops:

ũk+1 = ũk +
ũk−1

2
+

ũk−2

4
+ . . . (6)

where, the starting condensed memory state is same as the
input memory state ũ1 = u1.

Memory Addressing

Key-Value addressing as described in KV-MemNN uses
softmax on the product of question embeddings and re-
trieved keys to learn a relevance probability distribution over
memory slots. The representation obtained is then the sum
of the output memory representation o, weighted by those
probability values. KV-MemNN was designed to pick the
single most relevant answer given a set of candidate answers.
The use of softmax significantly decreases the estimated
relevance of all but the most probable memory slot. This
presents a problem for multi-label classification in which
several memory slots may be relevant for different target la-
bels. We experimented with changing softmax to sigmoid to
alleviate this problem, but this was not sufficient to allow the
incorporation of the condensed form of the internal state u
arising from earlier hops. Thus, we explore a novel alternate
addressing scheme, which we call gated addressing. This ad-
dressing method uses a multi-layer feed-forward neural net-
work (FNN) with a sigmoid output layer to determine the
appropriate weights for each memory slot. The network cal-
culates a weight value between 0 and 1 for each memory

slot, and a weighted sum of memory slots is obtained as be-
fore.

Document Representation

There are a variety of models to represent knowledge in key-
value memories, and the choice of a model can have an im-
pact on the overall performance. We use a simple bag-of-
words (BoW) model which transforms each word wij in the
document di = wi1, wi2, wi3, . . . , win to embeddings, and
sums these together to obtain the vectors Φ(di) =

∑
j Awij ,

with A being the embedding matrix. Medical notes, memory
keys and memory values are all represented in this way.

Experiments

The distribution of diagnoses in our training data has a very
long tail. There are 4,186 unique diagnoses in MIMIC-III
discharge notes. However, many diagnoses (labels) occur in
only a single note. This is not sufficient to efficiently train on
these labels. The 50 most-common labels cover 97% of the
notes and the 100 most-common labels cover 99.97%. Thus,
we frame this task as multi-label classification for top-N la-
bels. We present experiments for both the 50 most-common
and 100-most common labels. For all experiments, we trun-
cate both notes and wiki-pages to 600 words. We reduce
the trained vocabulary to 20K after removing common stop-
words. We use a common dimension of 500 for all embed-
ding matrices. We use a memory slot of dimension 300. A
smaller embedding of dimension 32 is used to represent the
wiki-titles.

We present experiments for end-to-end memory net-
works (Sukhbaatar et al. 2015), Key-Value Memory Net-
works (KV-MemNNs) (Miller et al. 2016) and our models,
Condensed Memory Networks (C-MemNN) and Averaged
Memory Networks (A-MemNN). We separately train mod-
els for three, four and five hops. The strength of our model
is the ability to make effective use of several memory hops,
and so we do not present results for one or two hops. We did
not consider standard text classification models like CNN,
LSTM or Fasttext (Joulin et al. 2016) as they do not allow in-
corporating external memory, which is one of the main goals
of this paper.

Training

We use Adam (Kingma and Ba 2014) stochastic gradient
descent for optimizing the learned parameters. The learning
rate is set to 0.001 and batch size for each iteration to 100
for all models. For the final prediction layer, we use a fully
connected layer on top of the output from equation 5 with
a sigmoid activation function. The loss function is the sum
of cross entropy from prediction labels and prediction mem-
ory slots using addressing schema. Complexity of the model
was penalized by adding L2 regularization to the cross en-
tropy loss function. We use dropout (Srivastava et al. 2014)
with probability 0.5 on the output-to-decision sigmoid layer
and limit the norm of the gradients to be below 20. Models
are trained on 80% of the data and validated on 10%. The
remaining 10% is used as test set which is evaluated only
once across all experiments with different models.
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# classes = 50 # classes = 100

# Hops Model
AUC

(macro)

↑

Average

Precision

@5 ↑

Hamming

Loss

↓

AUC

(macro)

↑

Average

Precision

@5 ↑

Hamming

Loss

↓

3

End-to-End 0.759 0.32 0.06 0.664 0.23 0.15
KV MemNN 0.761 0.36 0.05 0.679 0.24 0.14
A-MemNN 0.762 0.36 0.06 0.675 0.23 0.14
C-MemNN 0.785 0.39 0.05 0.697 0.27 0.12

4

End-to-End 0.760 0.33 0.04 0.672 0.24 0.15
KV MemNN 0.776 0.35 0.04 0.683 0.24 0.13
A-MemNN 0.775 0.37 0.03 0.689 0.23 0.11
C-MemNN 0.795 0.42 0.02 0.705 0.27 0.09

5

End-to-End 0.761 0.34 0.04 0.683 0.25 0.14
KV MemNN 0.775 0.36 0.03 0.697 0.25 0.11
A-MemNN 0.804 0.40 0.02 0.720 0.29 0.11
C-MemNN 0.833 0.42 0.01 0.767 0.32 0.05

Table 3: Evaluation results of various memory networks on MIMIC-III dataset.

Figure 3: Precision@5 plot for various models on validation
data (at 4 hops).

Results and Analysis

We present experiments in which performance is evaluated
using three metrics: the area under the ROC curve (AUC),
the average precision over the top five predictions, and the
hamming loss. The AUC is calculated by taking unweighted
mean of the AUC values for each label - this is also known
as the macro AUC. Average precision over the top five pre-
dictions is reported because it is a relevant metric for real
world applications. Hamming loss is reported instead of ac-
curacy because it is a better measure for multi-label classifi-
cation (Elisseeff and Weston 2001).

As shown in Table 3, C-MemNN is able to exceed the
results of various other memory networks across all experi-
ments. The improvement is more pronounced with a higher
number of memory hops. This is because of the learning

saturation of vanilla memory networks over multiple hops.
While A-MemNN has better results for higher hops it does
not improve upon KV-MemNN at lower hops. The strength
of our model lies at higher hops, as the condensed memory
state ũ after several hops contains more information than the
same size input memory state u. Across all models, results
improve as the number of hops increases, although with di-
minishing returns. The AUC value of C-MemNN with five
memory hops for 100 labels is higher than the AUC value for
End-to-End models trained only for three hops, which shows
efficient training of higher hops produces good results.

Most documents do not have five labels (Figure 1) and
thus precision obtained for five predictions is poor across
all models. Hamming Loss correlates very well with other
metrics along with the cross-entropy loss function, which
was used for training.

Our model has 30% more parameters than standard Mem-
ory Networks (D for every pair of A and C). Figure 3 shows
that adding more memory does not lead to overfitting. Train-
ing time of our model for GPU implementation is same as
other memory networks, as condensed memory state (ũ) is
trained almost in parallel with standard memory state (u) for
every hop.

Conclusion and Future Work
Weston, Chopra, and Bordes (2014) discussed the possibil-
ity of a better memory representation for complex inferenc-
ing tasks. We achieved a better memory representation by
condensing the previous hops in a novel way to obtain a hi-
erarchical representation of the internal memory. We have
shown the efficacy of the proposed memory representation
for clinical diagnostic inferencing from raw textual data.
We discussed the limitations of memory networks for multi-
label classification and explored gated addressing to achieve
a better mapping between the clinical notes and the memory
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slots. We have shown that training multiple hops with con-
densed representation is helpful, but this is still computation-
ally expensive. We plan to investigate asynchronous mem-
ory updating, which will allow for faster training of mem-
ory networks. In the future, we will explore other knowl-
edge sources and the recently proposed word vectors for the
biomedical domain (Chiu et al. 2016).
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