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Abstract

The sequence-to-sequence model is proven to be extremely
successful in constituent parsing. It relies on one key tech-
nique, the probabilistic attention mechanism, to automatically
select the context for prediction. Despite its successes, the
probabilistic attention model does not always select the most
important context. For example, the headword and boundary
words of a subtree have been shown to be critical when pre-
dicting the constituent label of the subtree, but this contex-
tual information becomes increasingly difficult to learn as the
length of the sequence increases. In this study, we proposed
a deterministic attention mechanism that deterministically se-
lects the important context and is not affected by the sequence
length. We implemented two different instances of this frame-
work. When combined with a novel bottom-up linearization
method, our parser demonstrated better performance than that
achieved by the sequence-to-sequence parser with probabilis-
tic attention mechanism.

1 Introduction

The sequence-to-sequence model, based on recurrent neu-
ral networks (RNNs) (Cho et al. 2014; Sutskever, Vinyals,
and Le 2014), provides a unified solution for a number of
sequence-to-sequence transformation tasks, including ma-
chine translation (Bahdanau, Cho, and Bengio 2014), image
captioning (Xu et al. 2015), and grapheme-to-phoneme con-
version (Liu et al. 2016a). In particular, Vinyals et al. (2015)
applied the sequence-to-sequence model to constituent pars-
ing after linearizing the parse tree as a sequence in a top-
down manner (see the first row of Table 1) and viewing it as
a specific instance of the sequence-to-sequence transforma-
tion task.

The sequence-to-sequence model has notable advantages
over task-specific RNN parsing models (Watanabe and
Sumita 2015; Dyer et al. 2016), whose architectures are
specifically designed for the parsing task. On one hand, the
sequence-to-sequence architecture is so general that any im-
provements made in other sequence-to-sequence tasks can
be simultaneously transferred to constituent parsing. On the
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Table 1: A constituent tree and its linearization. TD = top-
down, BU = bottom-up.

other hand, it is easy to implement, and even off-the-shelf
toolkits can be used with minor modifications, to create a
competitive constituent parsing system.

The key technique in the sequence-to-sequence con-
stituent parsing is the probabilistic attention mechanism
(Bahdanau, Cho, and Bengio 2014; Luong, Pham, and Man-
ning 2015), which can automatically select a context rele-
vant to each time step to yield an accurate prediction. While
this has been successful, we argue that this general proba-
bilistic attention mechanism ignores the inherent character-
istics of constituent parsing: the boundary and head infor-
mation that has proven to be critical when identifying phrase
structure and predicting its label. There is no guarantee that
the probabilistic attention mechanism can select these crit-
ical words and use them as the context, which is discussed
by Liu et al. (2016b) and Mi, Wang, and Ittycheriah (2016)
in the task of machine translation. Consequently, this limits
the accuracy of sequence-to-sequence constituent parsing.

Figure 1 illustrates an example of this. When predicting
the token “)NP ” of the noun phrase structure “the fiscal year
just ended”, the attention mechanism mainly focuses on the
verb “ended” and pays almost no attention to the bound-
ary word (symbol) “,” and the headword “year”. However,
these words are very informative in determining the phrase
structure: “,” indicates that a phrase precedes it, and “year”
shows that this phrase should be labeled “NP”. The failure
to take account of these clues leads to a parsing error. This
“pay-attention-to-one-word” phenomenon is quite common.
A statistical analysis of the parsing results of Vinyals et al.
(2015) on the development set of the Wall Street Journal
(WSJ) part of the Penn Treebank (Marcus, Marcinkiewicz,
and Santorini 1993) showed that for 91.46% of the sen-
tences, more than 90% of the parser’s attention was given
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Figure 1: A sentence that the parser of Vinyals et al. (2015) is unable to parse correctly. The parser should predict an “)NP ”,
suggesting that the construction of the circled NP structure has been finished and the entire string should be attached to the root
“S” node, whereas the parser actually predicts an “XX”, causing these words be attached to the circled “NP” node. Because
the probabilistic attention model pays too much attention to the verb “ended”, the termination of the “NP” cannot be predicted.
In contrast, the deterministic attention model takes account of the comma in the queue and the word “year” in the generated
tree, which together suggests the endpoint of the “NP”. The intensity attributed to a cell in the attention matrix represents the
probability that the corresponding word and transition action should be aligned. This disordered attention matrix shows the
weakness of the probabilistic attention mechanism when handling long sequences.

to one specific source-side word in more than 80% of the
parsing time steps. This unbalance probability indicates that
boundary words are not given sufficient attention. Further-
more, as the input sequence becomes longer, the probabilis-
tic attention mechanism finds it increasingly difficult to se-
lect the most informative words. This is illustrated by the at-
tention matrix shown in Figure 1, where the selected words
are disordered, and the last word is never selected.

To address this issue, we proposed a deterministic atten-
tion mechanism that is able to select informative words such
as boundary words to establish the context, whatever the
length of the input sequence. We implemented two different
instances of the proposed deterministic attention framework.

However, applying our deterministic attention mechanism
directly to the top-down linearized sequence remains chal-
lenging. As shown in the target-side sequence of Figure 1,
when predicting an “(NP”, even if it is established that the
left boundary of an NP structure lies between “in” and “the”,
the right boundary remains unknown since the full NP struc-
ture is unavailable during decoding, which makes the parser
difficult to determine what words should be paid attention
to. To make our deterministic attention mechanism practi-
cal, therefore, we utilized a bottom-up linearization method.
This is shown in the second row of Table 1 and discussed in
more details in Section 3.1. This makes the boundary infor-
mation available in the course of incremental decoding.

This paper makes the following contributions:

• It proposes a deterministic-attention-based sequence-to-

sequence model for constituent parsing, which is imple-
mented on top of a new linearization method. The pro-
posed model guarantees that the selected contexts are in-
formative, while retaining the advantages of the sequence-
to-sequence model.

• When tested on the standard WSJ treebank, the determin-
istic attention model produced significant improvements
over probabilistic attention models, delivering a 90.6 F-
score on the test set, using ensembling but without requir-
ing pre-training, tri-training, or POS-tagging.

• As a by-product, it is shown that the sequence-to-
sequence model can learn the POS-tag information from
an analysis of word embeddings. This helps explain why
sequence-to-sequence constituent parsing can achieve
competitive parsing accuracy without using POS-tag in-
formation. This was reported by Vinyals et al. (2015), but
without explanation.

Our deterministic attention model is quite general in the
sense that it has a range of implementations and can be ap-
plied to any bottom-up linearization method, although in this
study we only present its two implementations and applied
it on top of one specific bottom-up linearization method.

2 Background

The sequence-to-sequence architecture was proposed by
Cho et al. (2014) and almost simultaneously by Sutskever,
Vinyals, and Le (2014). Given a source sequence
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(x0, . . . , xT ), to find a target sequence (y0, . . . , yT ′) that
maximizes the conditional probability p(y0, . . . , yT ′ |
x0, . . . , xT ), the sequence-to-sequence model uses one
RNN to encode the source sequence into a fixed-length con-
text vector c and a second RNN to decode this vector and
generate the target sequence. Formally, the probability of the
target sequence can be calculated as follows:

p(y0, . . . , yT ′ | x0, . . . , xT ) =

T ′∏

t=0

p(yt | c, y0, . . . , yt−1),

(1)
where each conditional probability can be calculated using
a target-side RNN:

p(yt | c, y0, . . . , yt−1) = g(yt−1, st, c). (2)
Here, g is a nonlinear function and st is the hidden state
of the target-side RNN, which can be calculated as st =
f(st−1, yt−1, c), where f is also a nonlinear function. The
context vector c is also calculated using a source-side RNN:

c = q(h0, . . . , hT ), (3)
where q is a nonlinear function and the hidden state of the
source-side RNN is ht = f(xt, ht−1).

As shown by Cho et al. (2014), the performance deterio-
rates rapidly as the length of the source sequence increases,
which makes it inappropriate to encode source sequences
with different lengths into vectors of the same size. To ad-
dress this, Bahdanau, Cho, and Bengio (2014) introduced
an attention mechanism. Instead of encoding the source se-
quence into a fixed vector c, the attention model uses dif-
ferent ci-s when calculating the target-side output yi at time
step i. Formally, the context vector ci is calculated as fol-
lows:

ci =

T∑

j=0

αijhj , (4)

where αij is given by:

αij =
exp(a(si−1, hj))∑T
k=0 exp(a(si−1, hk))

, (5)

The function a(si−1, hj) can be regarded as the soft align-
ment between the target-side RNN hidden state si−1 and the
source-side RNN hidden state hj .

Note that in Equation 5, αij satisfies the Kolmogorov ax-
ioms, indicating that it is a valid probability. Thus ci in Equa-
tion 4 can be regarded as the expectation of hi with respect
to the distribution αij , i.e. Eαij

[hj ]. We therefore named this
a “probabilistic attention” mechanism.

Vinyals et al. (2015) used this architecture to solve the
problem of constituent parsing by linearizing the constituent
tree in a simple way, following a depth-first traversal order.
This is shown in Table 1. This linearization method converts
the constituent tree into a sequence, allowing constituent
parsing to be done using the sequence-to-sequence model.
They demonstrated that the attention mechanism was able
to significantly improve constituent parsing. Using only the
WSJ corpus for training, on the test set of the WSJ Treebank,
they demonstrated an F-score lower than 70 when the atten-
tion mechanism was not used. This increased to 88.3 when
the attention mechanism was added.

3 Methodology

As Vinyals et al. (2015) had already demonstrated the effec-
tiveness of the attention mechanism, it is natural to use our
deterministic attention method on their framework. How-
ever, as noted above, determining what words should be paid
attention to is challenging when using top-down lineariza-
tion. For example, when predicting a label such as “(NP”,
since the entire structure of this “NP” is unavailable, we
cannot determine what the boundary words are, or what the
head word is, or what other informative words should be
taken into consideration. A bottom-up linearization method
avoids this problem, because the tree node is labeled only
after all the child nodes have been generated, clarifying the
alignment. We discuss this in Section 3.1.

In Section 3.2, we present a general description of the de-
terministic attention mechanism. In Section 3.3, we present
two specific implementation schemes for applying the mech-
anism to the constituent parsing task.

However, the top-down linearization method also has cer-
tain advantages. It can encode global information both in
training and decoding using a bidirectional RNN. In con-
trast, bottom-up linearization can encode global information
only in training. Nevertheless, as we were able to show ex-
perimentally, the combination of deterministic attention and
bottom-up linearization was able to achieve results that were
comparable with or superior to those of top-down lineariza-
tion. This suggested that our new attention mechanism was
able to compensate for the inability of the bottom-up lin-
earization method to encode information while decoding.

3.1 Bottom-up Linearization

Currently, the most widely used bottom-up linearization
methods (Sagae and Lavie 2005; Zhang and Clark 2009;
Zhu et al. 2013) require binarized constituent trees. For a
given constituent tree, the lengths of the transition action se-
quences are usually different due to the unary rules, which is
challenging for RNN. Several novel deductive systems have
been proposed to solve this problem (Mi and Huang 2015;
Cross and Huang 2016a; 2016b). We adopted the deductive
system proposed by Cross and Huang (2016b), which does
not have these disadvantages. Table 2 illustrates the parsing
process of the tree from Table 1, showing the stack every
two steps. The label “XX” is a special symbol, represent-
ing a state in which the label of a node has not been de-
termined. Note that this linearization method does the bina-
rization implicitly by using the combination of “comb” and
“nolabel”, and the length of the transition action sequence is
determined by the length of the source-side sequence.

Table 3 gives a formal description of this lineariza-
tion method. The transition state is represented as a tuple
〈z, σ, t〉, where z is the current time step, σ is a stack saving
the subtrees generated, t is the index of the last unprocessed
word. A subtree in the stack is represented as iXj , where
X is the root node of this subtree, and the words in the leaf
nodes are xi, . . . , xj−1 in the source sequence.

This linearization method allows constituent parsing to be
done using the sequence-to-sequence architecture with at-
tention mechanism.
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Steps Action Stack
0 - 1 sh label-NP 0NP1

2 - 3 sh nolabel 0NP1, 1XX2

4 - 5 sh nolabel 0NP1, 1XX2, 2XX3

6 - 7 sh nolabel 0NP1, 1XX2, 2XX3, 3XX4

8 - 9 comb label-NP 0NP1, 1XX2, 2NP4

10 - 11 comb label-V P 0NP1, 1V P4

12 - 13 comb nolabel 0XX4

14 - 15 sh nolabel 0XX4, 4XX5

16 - 17 comb label-S 0S5

Table 2: Parsing of the tree in Table 1 using the bottom-up
linearization method.

input: x0, . . . , xT

axiom: 〈0, [], 0〉
goal: 〈2(2T + 1), [0XT+1], T + 1〉
sh

〈z, σ|iXj , t〉
〈z + 1, σ|iXj |jXXj+1, t+ 1〉 j < T , even z

comb
〈z, σ|iXj |jXk, t〉
〈z + 1, σ|iXXk, t〉 even z

label −X
〈z, σ|iXXj , t〉

〈z + 1, σ|iXj , t〉 odd z

nolabel
〈z, σ|iXXj , t〉

〈z + 1, σ|iXXj , t〉 z < (4T + 3), odd z

Table 3: Formal representation of the bottom-up lineariza-
tion method. σ can be empty. For sh action, iXj may also
be empty, in which case the stack should be 0XX1 after the
sh action is implemented.

3.2 General Description of Deterministic
Attention

To address the problems of the probabilistic attention mech-
anism, we used a novel method to calculate the context vec-
tor:

ci =
∑

j∈Di

Amhj . (6)

Here, Di is a list, saving the indices of the words that should
be paid attention to at time step i while generating the target-
side sequence. Am is a deterministic alignment matrix with
the shape dim(c) × dim(h), where dim(c) and dim(h) are
the dimensions of any ci-s and any hj-s, respectively, and
1 ≤ m ≤ |Di| denoting the index of the parameter.

Compared with the probabilistic attention mechanism,
our deterministic attention mechanism has the following
characteristics:
• Instead of calculating the context vector based on all

source-side words, it deterministically selects a list of in-
dices of words, i.e. Di, where most of the obviously unre-
lated source-side words are filtered. This allows the model
to focus on the most important words, both improving the
decoding accuracy and shortening the decoding time.

• Unlike the αij (scalars) used in the probabilistic attention
model, the parameters Am (matrices) are not valid proba-
bilities, allowing the parameters to be adjusted more flexi-
bly. Also, the use of matrices rather than scalars as the pa-
rameters significantly increases the capacity of the model.

Note that different from the probabilistic attention mech-
anism which selects the context based on a probability dis-
tribution, the proposed framework deterministically spec-
ify Di as the context, which resembles the idea of feature
engineering in feature-rich parsing. In this sense, the pro-
posed method bridges the gap between the new sequence-
to-sequence constituent parsing framework (Vinyals et al.
2015) and the conventional feature-rich parsing framework
(Zhu et al. 2013).

Our deterministic attention mechanism is quite general.
By using different schemes to determine Di, different deter-
ministic attention models can be derived. These can be com-
bined to further improve parsing. Note that this description is
quite general, whereas specific instances of constituent pars-
ing are presented in Section 3.3.

3.3 Different Schemes of Deterministic Attention
for Constituent Parsing

By making different selections of list Di, the deterministic
attention mechanism can be implemented in different ways.
In our experiments, two schemes were implemented.

The first deterministic attention scheme (denoted as “datt-
bound”) followed the intuition that the boundary words of
subtrees located in the top-most and the second top-most po-
sitions in the stack should be useful for constituent parsing.
The first and the last words of the sentence should also be
useful, because they encode the complete sentence in two
different directions by using the bidirectional RNN. There-
fore, Di = (0, r, s, t, T ), where the stack is [σ|rXs|sXt].
For example, at the “4 - 5” time steps in Table 2, Di =
(0, 1, 2, 3, 5).

The second scheme (denoted as “datt-bound-head”) was
inspired by the observation made by Collins (1999) and
many others that headwords are useful for constituent pars-
ing. As well as using the boundary words, we also applied
Collins’ head-finding rules to identify the indices of the
headwords of the subtrees in the stack, adding them to the
list Di, i.e. Di = (0, r, s, t, hrs, hst, T ), where hst and hrs

are the indices of the headwords of the top-two subtrees of
the stack, respectively.

For decoding with both schemes, we not only use a stack-
and-buffer as Cross and Huang (2016b) to calculate Di for
deterministic attention, but also maintain the recurrent hid-
den units for each partial derivations. In addition, for the
second scheme, we heuristically forced the headword to be
identical to the headword of the right-most child. The rea-
son is that after a “comb” action has been implemented, the
constituent label of the partial tree has not been determined
and thus both hrs and hst are unknown.

4 Experiments

4.1 Settings

All experiments were conducted using the WSJ part of the
Penn Treebank. Following previous studies such as that of
Watanabe and Sumita (2015), we used Sections 2-21, 22
and 23 as the training set, development set and testing set,
respectively. We implemented the deterministic attention
mechanism based on an open-source sequence-to-sequence
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Attention Configuration F(dev) F(test)

Probabilistic

top-down(1) 87.18 87.21
top-down(5) 89.85 89.74

bottom-up(1) 86.91 86.52
bottom-up(5) 89.37 89.15

Deterministic

datt-bound(1) 88.99 88.57
datt-bound-head(1) 88.36 88.22

datt-bound(5) 90.53 90.33
datt-bound-head(5) 90.49 90.32

datt-bound(5) 90.83 90.60+datt-bound-head(5)
Vinyals et al. (2015) (single) 88.7 88.3
Vinyals et al. (2015) (ensemble) 90.7 90.5

Table 4: Parsing results (F-score) on the development set and
test set of WSJ corpus.

toolkit nematus1. Both the encoder and the decoder mod-
ules used the gated recurrent unit (GRU) (Cho et al. 2014)
as the hidden unit. We used only one hidden layer with
256 units, set the word embedding dimension as 512, and
used dropout for regularization, following the configuration
of Vinyals et al. (2015). Pre-training was not implemented.
Instead, the word embedding matrix and other network pa-
rameters were initialized randomly. For decoding, we used a
beam search strategy with a fixed beam size of 10.

4.2 Parsing Results

The parsing results are summarized in Table 4. For proba-
bilistic attention, the results of both linearization methods
were reported, whereas for deterministic attention, only the
result of the bottom-up linearization was reported. The num-
ber in the bracket indicates the number of models used. The
models had the same configuration, but different initializa-
tion.

The first two rows show the differences attributed to the
linearization method. As the top-down linearization method
can utilize global information, the F-score was higher than
when bottom-up linearization was used.

Using the bottom-up linearization method, with the help
of deterministic attention mechanism, the F-score on the test
set improves from 86.52 to 88.57, using only one “datt-
bound” model. Combining the five models improved the F-
score further, to 90.33. This is comparable to the ensemble
result reported by Vinyals et al. (2015) (see the last row).

Confounding our expectations, the F-score of “datt-
bound-head” was lower than that of “datt-bound”, even
though the former made use of more information. This sug-
gested that, after implementing a “comb” action, it is inap-
propriate to force the index of the headword to be the same
as the index of the headword of the right-most child. To ver-
ify this, we extracted the indices of the headwords of all
the tree nodes generated by “comb” action in the training
corpus, either using the head-finding rules of Collins, or by
simply choosing the headword of the right-most child. The

1https://github.com/rsennrich/nematus

Euclidean distance cosine distance
Probabilistic Deterministic Probabilistic Deterministic
rumbling tailored rumbling bordering
repaid controlled controlled built
spared scattered streaming tailored
arriving rumbling regarded rumbling
regarded affiliated repaid controlled
affiliated bordering spared completed
trudging tracked abates magnetized
jailed containing affiliated resulting
coupled Made jailed wracked
magnetized tendered arriving associated

Table 5: Top-10 most similar words to the word “listed” in
each attention model.

percentage of coincidence in these two cases is only 77.78%,
confirming our conjecture.

To enlarge the diversity between the models used for en-
sembling, we combined the different deterministic attention
schemes (5 models for each), obtaining another 0.3 point im-
provement, getting the result better than the ensemble result
of Vinyals et al. (2015).

Note that the reported results for the case of probabilistic
attention with top-down linearization are lower than the re-
sults reported by Vinyals et al. (2015), which is listed at the
bottom two rows. The main reason may be that they used
three-layer RNNs with long short-term memory (LSTM)
units. However, with the help of deterministic attention
mechanism, our parser outperforms their parser on both the
single-model case (88.57 vs. 88.3, test set) and the ensem-
ble case (90.60 vs. 90.5). Furthermore, we do not need pre-
training, which is proven to have the potential to increase the
F-score about 0.3 to 0.4 points (Vinyals et al. 2015).

4.3 Case Analysis: Probabilistic Attention vs.
Deterministic Attention

Figure 2(a) and 2(b) show the parsing results of a sentence
from the test set of the WSJ treebank, using the probabilistic
attention model and the deterministic attention model. High-
lighted words/nodes accounted for the difference in pars-
ing results. The parsing result of the deterministic attention
model was identical to the golden tree. Figure 2(c) shows
what happened when the first parsing error occurred. The
probabilistic attention model gave too much attention to the
word “Stock” and almost ignored the next word “listed” (a
verb), so that the parser attached more words to the cur-
rent subtree. In contrast, the deterministic attention model
used the information provided by the verb “listed”, mak-
ing the correct prediction that the “NP” already comprised
enough words. Note that, in both cases, the model had al-
ready learned the POS-tag of the word “listed”, as shown
in Table 5. The top-10 most similar words are all verbs.
If the probabilistic attention model could pay more atten-
tion to the word “listed”, it is quite possible to make a cor-
rect prediction. This analysis also explains why sequence-to-
sequence constituent parsing can achieve competitive pars-
ing accuracy without POS-tag information, which was firstly
observed in Vinyals et al. (2015) but without explanation.
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The American Stock Exchange listed shares of two companies 

. NP PP 

NP 

(a) Result using the probabilistic attention.

The American Stock Exchange listed 

shares of two companies 

. NP 

PP NP 

NP 

VP 

S 

(b) Result using deterministic attention (identical to the golden
tree).

The American Stock Exchange 

XX listed shares ...… 

STACK 

QUEUE 

0.995 1.94×10-3 2.26×10-6 1.11×10-3 3.60×10-5 

nolabel   ( ) 

label-NP   (◯) label

1.11×10-3 3.60×10-5

verb 

(c) Detailed analysis for the first error

Figure 2: Comparison of parsing results and detailed analy-
sis.

Figure 3 shows the attention matrix learned by the prob-
abilistic attention model, with errors marked. The first error
was that analyzed above. In the rectangle area, the align-
ment was quite disordered, preventing the parser from iden-
tifying the correct words to base a prediction on. It can also
be seen that the last item (the period) could not be aligned
with high probability. In fact, this encoded information on
the complete source-side sequence, and was therefore use-
ful for predicting the root node. As a result, the probabilis-
tic attention model predicted that the root node was “NP”,
whereas the deterministic attention model made the correct
prediction that it was “S”, because the deterministic atten-
tion model used the information of the last word.

4.4 Comparison with State-of-the-art Parsers

Table 6 compares the performance of our parser with those
of some state-of-the-art parsers. We can see that our parser
is competitive to the feature-rich parsers, which require te-
dious feature engineering and external toolkits such as a
POS tagger for feature extraction. In addition, although one

Disordered Error Occurred 

Last 
word 
never 
been 
aligned. 

Figure 3: Probabilistic attention matrix. (1) Red line: in the
first parsing error, the probabilistic attention model paid (al-
most) all its attention to the word “Stock” (marked in Figure
2(a)), whereas the deterministic attention model paid atten-
tion to three words (marked in Figure 2(b)). (2) Red rectan-
gle: disordered alignment. (3) Red arrow: the last item (i.e.,
the period, encoding the entire sentence) was not aligned
with high probability, causing the prediction error of the root
node label (marked in Figure 2(a) and 2(b)).

Config. Parser F-score

Feature-rich
parser

Petrov and Klein (2007)‡ 90.1
Zhu et al. (2013)‡ 90.4
Charniak and Johnson (2005)†‡ 91.0
Carreras, Collins, and Koo (2008)‡ 91.1
Zhu et al. (2013)‡∗ 91.3
Huang (2008)†‡ 91.7
Petrov (2010)‡ 91.9

Task-specific
neural
models

Watanabe and Sumita (2015) 90.7
Wang, Mi, and Xue (2015)∗ 90.7
Durrett and Klein (2015)∗ 91.1
Cross and Huang (2016b)‡ 91.4
Dyer et al. (2016) 91.7
Dyer et al. (2016)† 93.3

Task-free
neural
models

Vinyals et al. (2015) 90.5
Vinyals et al. (2015)∗ 92.8
This work 90.6

Table 6: Comparison with other state-of-the-art parsers.
“General purpose” means that the framework can be
used for other tasks without modification. ∗Semi-supervise.
†Reranking. ‡Need POS tagger.

does achieve gains through task-specific neural parsers by
specifically designing neural architectures for parsing such
as Dyer et al. (2016)2, our architecture relies on the gen-
eral sequence-to-sequence framework and thereby it is eas-
ily implemented with minor modifications on off-the-shelf
toolkits. In particular, our parser performs slightly better
than its direct baseline, Vinyals et al. (2015), even if our net-
work is more simple with only one single GRU layer and it
does not use additional data for pre-training. The outstand-
ing performance of Vinyals et al. (2015) with the help of
semi-supervised learning implies the potential of our parser,
which remains as the future work.

5 Conclusions and Future Work

In this study, we proposed a new attention mechanism that
aligns the source-side words and target-side words in a deter-

2These excellent results were updated by Dyer et al. (2016) after
our submission, see https://arxiv.org/pdf/1602.07776v4.pdf.
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ministic way, and applied it to the task of constituent parsing.
Two different schemes were used, and their performance
was compared. We demonstrated experimentally that the de-
terministic attention model was able to outperform conven-
tional probabilistic attention models. When the two atten-
tion schemes were combined, the results were comparable
to those of state-of-the-art neural-network-based constituent
parsers. We also analyzed differences between the determin-
istic attention mechanism and the probabilistic mechanism
using a specific case, demonstrating the advantages of the
deterministic attention model when undertaking constituent
parsing.

In the future work, we will use pre-training and semi-
supervised learning methods to further improve the perfor-
mance of constituent parsing. We will also apply our ap-
proach to dependency parsing, character-based parsing, and
other tasks that can be addressed using the sequence-to-
sequence model.
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