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Abstract

Understanding inter-character relationships is fundamental
for understanding character intentions and goals in a narra-
tive. This paper addresses unsupervised modeling of relation-
ships between characters. We model relationships as dynamic
phenomenon, represented as evolving sequences of latent
states empirically learned from data. Unlike most previous
work our approach is completely unsupervised. This enables
data-driven inference of inter-character relationship types be-
yond simple sentiment polarities, by incorporating lexical and
semantic representations, and leveraging large quantities of
raw text. We present three models based on rich sets of lin-
guistic features that capture various cues about relationships.
We compare these models with existing techniques and also
demonstrate that relationship categories learned by our model
are semantically coherent.

1 Introduction

Understanding characters in a narrative is essential for Nat-
ural Language Understanding. To this end, the field of com-
putational narratives studies narratives or stories from the
perspective of characters mentioned in them (Elsner 2012).

Recent attempts at character-centric story understanding
model inter-character relationships (Krishnan and Eisenstein
2015; Chaturvedi 2016). Understanding relationships be-
tween characters assists in interpreting and justifying their
actions in a narrative. It is also a step towards human-like
natural language understanding by modeling capabilities of
‘filling-in-the-gaps’ about what is not explicitly stated in the
text, and building expectations of future events in a narra-
tive. Modeling relationships in unstructured texts can also be
used to analyze large collections of texts in journalism, po-
litical science, digital humanities, etc. (Elson, Dames, and
McKeown 2010; Agarwal, Kotalwar, and Rambow 2013).
However, most existing methods for analyzing relationships
are inadequate in three ways: (i) They characterize relation-
ships by coarse sentiment polarities, e.g., friendly vs. adver-
sarial, which conflates distinct semantic categories; (ii) They
require expensive and resource-intensive manual annotation;
(iii) They assume a static relationship between characters
within a narrative, represented by a single variable.

Copyright c© 2017, Association for the Advancement of Artificial
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Figure 1: Left: Excerpts from summary of ‘The House of the
Spirits’. Right: Relationship sequence learned by our model
for Esteban and Ferula. Each colored block represents their
relationship for a short while, with its height proportional to
the duration for which they were in that relationship (rela-
tionship definitions in Table 1).

Shortcomings of such methods are apparent. Fig. 1 shows
excerpts from a novel-summary focusing on Esteban and
Ferula. Their relationship transitions from familial to that of
hostility because of Ferula’s developing intimacy with Este-
ban’s wife. Clearly, their relationship is complex and cannot
be expressed as simply friendly vs. adversarial. Real-world
relationships are nuanced with facets such as family, ro-
mance, formality/informality, etc. and an ideal model would
be able to express these. Also, describing their relationship
by a single category will not explain all of their actions. For
instance, if we assume that they are rivals then we cannot
explain why Ferula initially moves in with Esteban. Thus,
there is a need to model relationships as dynamic variables
that can express these real-world aspects of human relation-
ships and evolve with the progress of the narrative.

In this paper we present a framework for unsupervised
modeling of inter-character relationships from unstruc-
tured text. The input to our models is a narrative summary
and a pair of characters appearing in the narrative. We model
relationships by examining the sequence of sentences that
mention both characters, arranged in order of their appear-
ance in the narrative. Each sentence is represented by a
feature-vector, which captures cues about their relationship
in the sentence. Finally, each vector is associated with a
latent state, representing the relationship between the two
characters at that point in the narrative. The sequence of la-
tent states hence represents their (dynamic) relationship over
the course of the narrative. Treating this as an unsupervised
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structured prediction task, we learn the latent states by mak-
ing Markovian assumptions to capture the ‘flow of informa-
tion’ between individual sentences.

2 Related Work

Srivastava, Chaturvedi, and Mitchell (2016) model inter-
character relationships from narratives. However, they do
not incorporate the dynamic nature of these relationships.
Also, they make a limiting assumption that relationships
are only of two types cooperative or non-cooperative.
Chaturvedi et al. (2016) model the evolution of inter-
personal relationships in novels in a supervised setting, re-
quiring manually annotated data, and like the previous work,
model relationships as binary polarities.

Our setting is most closely related to that of Iyyer et al.
(2016) who also model evolving inter-character relation-
ships. Given a narrative text and a character-pair, their pro-
posed approach, RMN, learns a sequence of discrete states
depicting the relationship between the two characters. RMN,
which is an variation of a deep recurrent autoencoder, is
trained on the raw text of a large collection of novels. De-
spite the differences in problem setting (plot summaries in-
stead of raw text, and fewer relationship types), we compare
our model’s performance to that of the RMN on our dataset
(described later).

Apart from this, previous works construct social networks
of characters depicting limited types of relationships such
as formality (He, Barbosa, and Kondrak 2013; Krishnan
and Eisenstein 2015), volume of interaction (Elson, Dames,
and McKeown 2010), participation in social events (Agar-
wal, Kotalwar, and Rambow 2013; Agarwal et al. 2014;
2013). These methods are different from ours because they
do not necessarily model varied aspects of inter-character re-
lationships, and if they do, they do not model their dynamic
nature.

Other character-centric methods have focused on mod-
eling character personas (Bamman, O’Connor, and Smith
2013; Bamman, Underwood, and Smith 2014). While this
approach might be useful in understanding simple folk-
tales (Valls-Vargas, Zhu, and Ontañón 2014; 2015), a clear
mapping from characters to roles may not be feasible in
complex or real-world narratives. On the other hand, ap-
proaches towards interpersonal relationship modeling cir-
cumvent this mapping process, while still assisting compre-
hension of character behavior.

Previous methods have also analyzed narratives from
the perspective of events occurring in them and include
scripts (Schank and Abelson 1977; Regneri, Koller, and
Pinkal 2010; Orr et al. 2014; Pichotta and Mooney 2016),
plot units (Lehnert 1981; Goyal, Riloff, and Daumé III
2010; Finlayson 2012), temporal event chains (Chambers
and Jurafsky 2008; 2009; Chambers 2013), bags of related
events (Cheung, Poon, and Vanderwende 2013), etc.

3 Feature-vectors Extraction

Given a narrative text and two characters appearing in it,
our goal is to represent their relationship as a sequence of
latent variables. We consider sentences in which the two

Sentence: After confronting Maria, Jim furiously asked her to
end her friendship.
Surrogate Actions: confronting Lexical: furiously asked
Actions: asked Semantic: friendship, ‘personal relationships’

Figure 2: Features for Jim and Maria’s relationship.

characters appear together. These sentences have a natural
order of appearance in the narrative, yielding a sequence,
s = 〈s1, s2 . . . sT 〉. We represent each sentence with a D-
dimensional feature-vector, �ft ∈ R

D, producing the se-
quence: f = 〈�f1, �f2 . . . �fT 〉. We provide this sequence of
feature-vectors as input to our models. The models assign
each feature-vector, �ft, to a discrete latent relationship state,
rt ∈ {1, 2, . . . R}, thus outputting a sequence of latent re-
lationship states, r = 〈r1, r2 . . . rT 〉. In this section, we
describe the process of obtaining the sequence of feature-
vectors from textual sentences.

We preprocessed the narratives using the BookNLP
pipeline (Bamman, Underwood, and Smith 2014) to obtain
POS tags, dependency parses, and co-referent mentions, and
to identify major characters. We also obtained the frame-
semantic parses of sentences (Das et al. 2014). Finally, we
extract the following sets of words from each sentence (our
feature-vector is an averaged embedding of these words):
Actions: Following Propps Structuralist narrative the-
ory (Propp 1968), we represent inter-character relationship
using their actions, especially those done to each other. For
this, we identify verbs, and their agents (using ‘nsubj’ and
‘agent’ dependency relations) and patients (using ‘dobj’ and
‘nsubjpass’ relations). We also consider verbs conjoined
with each other with a ‘conj’ relation. Finally, we extract
the set of verbs, which have one character as an agent, and
the other as a patient. For example in the sample sentence in
Fig. 2, the action word is ‘asked’.
Surrogate Actions: The high-precision action words can
get affected by NLP pipeline’s limitation. E.g. in Fig. 2,
‘Jim’ is the implicit agent of ‘confronting’ ‘Maria’. To in-
clude such cases, we extract another set of verbs, which have
either of the two characters as the agent or patient, provided
the sentence did not contain a mention of another character.
Lexical: This is a bag-of-words set of all words (except stop-
words) that appear between pair of mentions of the two char-
acters (see Fig. 2 for an example).
Frame-semantic: This set makes use of the frame-
sematic parse of the sentence and the frame-polarity lexi-
con (Chaturvedi et al. 2016) which contains a list of frames
indicative of relationships. This set includes all frames (and
the tokens at which they were evoked), appearing in the
above mentioned lexicon, evoked for at least one of the char-
acters as a frame-element. E.g. in Fig. 2, a ‘personal relation-
ships’ frame is evoked at the token ‘friendship’ for Maria.

After extracting these sets of words from individual sen-
tences, we obtain a feature-vector representation, �ft ∈ R

D,
for each sentence, st, by averaging the vector-space em-
beddings of the individual words in the union of these sets
(motivated by the additive model of vector compositional-
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ity (Mitchell and Lapata 2008)). Sec. 5.1 contains more de-
tails of the word embeddings.

4 Learning Relationship Sequences

Given the feature vectors as input, f = 〈�f1, �f2 . . . �fT 〉, we
now describe models that learn the relationship sequence,
r = 〈r1, r2 . . . rT 〉. The first model is GHMM, a non-
Bayesian Hidden Markov Model with Gaussian Emissions.
The hidden states comprise of relationship states and vec-
tor representation of sentences form the observations. We
then describe Penalized HMM, which extends GHMM by
smoothing the relationship sequences and discouraging fre-
quent changes in relationship states within a sequence. Fi-
nally, our last approach, Globally Aware GHMM, attempts
to simulate the intuition of a global belief about the relation-
ship between the characters, while analyzing the individual
sentences of the sequence.

4.1 GHMM

Our first approach is a Hidden Markov Model with Gaussian
Emissions, which generates the feature-vector sequence as:

For every vector, �ft∀t ∈ {1, 2, 3 . . . T}:
1. If t = 1, choose r1 ∼ Multinomial(π)
2. If t > 1, choose rt ∼ Categorical(φrt−1

)

3. Emit vector �ft ∼ N (μrt ,Σrt)

where, π is an R-dimensional probability distribution
indicating start state probabilities. Also, φrt−1

represents
the transition probabilities, i.e. φij is the probability of
transitioning from state i to state j, and

∑R
j=1 φij = 1.

Finally, it is assumed that vectors belonging to a state, r, are
normally distributed with mean, μr , and covariance, Σr .

This model thus defines the joint distribution over a se-
quence of feature-vectors as:

p(f , r) =
T∏

t=1

p(rt|rt−1)p(�ft|rt) (1)

where, p(rt|rt−1) is obtained from φrt−1rt , and p(�ft|rt) ∼
N (μrt ,Σrt). We use Baum-Welch algorithm to fit the var-
ious parameters of this model.

4.2 Penalized GHMM

In practice GHMM resulted in highly fluctuating relation-
ship sequences. While this might be a good feature for tra-
ditional sequence modeling tasks like POS tagging, real-
world relationship sequences tend to remain consistent over
long parts of a narrative. We, therefore, propose a more
domain-specific model, Penalized GHMM, which is similar
to GHMM, except that in the generative process, every time
the model makes a transition from state i to state j, it incurs
a penalty, ρij , which takes the value of 1 whenever i = j and
ε otherwise. This model defines the joint distribution over a
sequence of feature-vectors as:

p(f , r) =
T∏

t=1

p(rt|rt−1)ρrt−1,rtp(
�ft|rt) (2)

The parameter estimation process for this model is similar
to that of GHMM.

rt rt+1

ct ct+1

�ft �ft+1

w

�F

γ φ

�μ Σ

R

R×R

R

L

�F = Global feature-vector
of the sequence
�ft = Feature-vector for in-
dividual sentences
rt = relationship states for
sentences
ct = global versus local
choice
γ = model’s preference to-
wards the local component
�w = weights of the global
component
φ = transition probabilities
for the local component
�μ, Σ = parameters of Nor-
mal distribution
L = number of sequences
in the dataset
R = number of relation-
ship states

Figure 3: Diagram for the Globally Aware GHMM

4.3 Globally Aware GHMM

The above models are local in nature, as at any point in the
sequence, t, the relationship state, rt, depends only on the
previous state, rt−1, and the emitted features, �ft. However,
it may be argued that judging the relationship at any junc-
ture needs consideration of not only the current sentence,
but also a global perspective of the overall nature of the re-
lationship between the characters. E.g., in ‘Harry Potter and
the Half Blood Price’, Harry, the protagonist, ‘learns more’
about the villain, Voldemort. While ‘learning more’ does not
tell us much about their relationship, knowing that they are
enemies in general, indicates that the relationship is that of
animosity and Harry is learning more about Voldemort to
fight him better.

To incorporate this behavior, we propose another model,
Globally Aware GHMM. This model makes a decision about
the current relationship state, rt, after weighing in informa-
tion from a local component and a global component using
a choice variable, ct ∈ {0, 1}. The local component uses
the Penalized GHMM style transitions to determine the cur-
rent relationship state. Whereas, the global component (rep-
resented by θ) uses a logistic regression model based on a
global feature-set, �F , extracted from the whole sequence,
s = 〈s1, s2 . . . sT 〉. This model defines the joint distribution
over a sequence as:

(3)p(f , r) =
T∏

t=1

[γ · p(rt|rt−1) · ρrt−1,rt + (1− γ)

· θ(rt|�F )] · p(�ft|rt)
Here γ is the model’s preference towards the local model
(γ = p(c = 1)) and the global component, θ, is modeled as:

θ(r|�F ) =
exp( �wr · �F )

∑R
r′=1 exp( �wr′ · �F )

(4)
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where, �wr are the weights corresponding to the relationship
state r that are learned during training.

Figure 3 pictorially describes our model and its generative
story can be described as follows:

For every vector, �ft∀t ∈ {1, 2, 3 . . . T}:
1. Toss a choice variable, ct ∼ Bernoulli(γ).
2. If ct = 0, choose rt ∼ θ(r|�F )
3. If ct = 1 & t = 1, then r1 ∼ Categorical(π)
4. If ct = 1 & t > 1, then rt ∼ Categorical(φrt−1

) · ρrt−1rt

5. Emit vector �ft ∼ N (μrt ,Σrt)

Training: The model parameters, λ = (π,φ,μ,Σ,w,γ)
are learned using EM. In each EM iteration, let λ and λ′
represent the current and candidate models respectively. We
want pλ′(f) > pλ(f). It can be shown that this is equivalent
to maximizing the following:

Q(λ, λ′) =
∑

l

∑

r

∑

c

pλ(r
l, cl|f l) log pλ′(rl, cl, f l)

where, l is the index over various sequences in the dataset
(L in number) and xl represents the variable, x, for the lth

sequence. In the above equation, p(r, c, f) for a sequence is
modeled as:

(5)p(c, f , r) =
T∏

t=1

[{γ · p(rt|rt−1) · ρrt−1,rt}δ1(ct)

+ {(1− γ) · θ(rt|�F )}δ0(ct)] · p(�ft|rt)
where, δa(x) is the Kronecker delta function which takes
the value of 1 whenever x = a and 0 otherwise. In the E-
step, we use scaled forward-backward algorithm to compute
forward and backward probabilities for a sequence. In the
M-step we update all the parameters. In this step, we also
learn weights, �wr, of the global component (Eqn. 4) by max-
imizing the following objective function using a subspace
trust-region method based on the interior-reflective Newton
method (Coleman and Li 1994; 1996):

L∑

l

R∑

r

exp( �wr · �F l)
∑R

r′=1 exp( �wr′ · �F l)

T l∑

t=2

βl
r(t) · αl

r0(t) (6)

5 Empirical Evaluation

Evaluating these models is difficult for several reasons.
Not only is manually designing a taxonomy of relation-
ship types challenging, judging the quality of a learned re-
lationship sequence is also subjective. Therefore, we first
use a manually annotated dataset (assuming binary rela-
tionship types) to compare the performance of the various
models (Sec.5.2). We then evaluate how our model’s per-
formance compares with human judgment in characteriz-
ing relationships (Sec.5.3). We also evaluate if the learned
relationship categories are semantically coherent (Sec.5.4).
Lastly, we compare our model with a previously proposed
approach (Iyyer et al. 2016) (Sec. 5.5) 1.

1Supplementary material is available on the first author’s web-
page.

5.1 Dataset and Implementation Details

We use a dataset of 300 English novel-summaries 2, released
by Chaturvedi et al. (2016). We identified major characters
in these summaries, and pairs of characters that appeared
together in more that 5 sentences were considered for anal-
ysis. This threshold was used to obtain character-pairs that
interacted long enough to demonstrate the dynamic nature of
their relationships but also resulted in a sizeable dataset. The
final dataset contained 634 such sequences, with an average
length of 8.2 sentences per sequence. The vocabulary size
of the input sentences was 10K, and that of the feature-sets
extracted from them was 4.2K.

To obtain word-embeddings (Sec. 3), we used the skip-
gram model (Mikolov et al. 2013) trained with D = 200 on
a collection of novels 3 from Project Gutenberg 4.

Globally Aware GHMM uses the average of feature-
vectors of all sentences in a sequence as its global feature
vector (i.e. �F = mean(�f1, �f2 . . . �fT )). We used ε = 0.8
(selected using cross-validation). Estimating the covariance
matrix Σ degraded performance, which might be due to
overfitting (Shinozaki and Kawahara 2007). Hence, we only
show results for estimating �μr, and we use a fixed diagonal
matrix as Σ (with each diagonal entry being 0.01), following
previous approaches (Lin et al. 2015).

5.2 Supervised Evaluation

We begin with indirectly evaluating the models on a su-
pervised task by heuristically aligning learnt latent states
against label categories. For this purpose, we use the manu-
ally annotated sequences of the data provided by Chaturvedi
et al. (2016). It consists of about 50 sequences in which each
sentence is labeled with a binary relationship state, coop-
erative or non-cooperative, which we refer to as the gold-
classes. Relationship states changed in around 30% of the
sequences. However, our unsupervised models assign each
sentence to a relationship state/cluster but do not provide a
label to the states. For this evaluation we heuristically assign
each of the learned states, j, a cooperative/non-cooperative

label as argmaxi∈{coop,non−coop}{mj
i

Ni
}. Where, mj

i is the
number of sentences belonging to the learned state j with
gold-class i, and Ni is the total number of sentences in the
gold-class i. We did not simply label each state with the
most-frequent gold-class because of the class skew (= 0.78)
in the annotated data. Like Chaturvedi et al. (2016), we re-
port averaged F-measures of the two gold-classes. They ob-
tained an F-measure of 76.76. It should be noted that a direct
comparison is to them is unfair because our method solves
a related but different problem and loses valuable informa-
tion in mapping states to binary labels. Also, their super-
vised task requires manual annotations and so has access to
a clearer definition of label-space.

Fig. 4 compares the performance of various models for
different values of the user-provided input R – the number of
relationship states. Since training depends on initializations,

2SparkNotes: http://www.sparknotes.com/
3pre-processed to remove punctuation and capitalization
4https://www.gutenberg.org/
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State Most Frequent words MP
Familial kinship, relationship, personal, father, son, mother, family, marry, wife, brother, friend, love, daughter 1.00
Desire love, want, realize, fear, declare, desiring, hope, family, kinship, vow, believe, confess, desire, feel, depend 0.33
Active meet, go, come, take, leave, find, together, tell, return, kill, attack, get, try, run, protect, back, kinship 1.00
Communicative tell, ask, say, want, leave, find, go, see, know, come, decide, tells, desiring, make, learn, marry, meet, try 0.83
Hostile kill, killing, die, try, cause harm, destroy, revenge, stab, hurt, decide, fight, leave, murder, kinship, killed 1.00

Table 1: Representative words for relationship states learned by the Globally Aware GHMM, and their Model Precisions (MP)

Figure 4: Performance comparison of various models.

Figure 5: Global preference learned by our model with and
without penalty. Without penalty, the model has weaker
‘global’ preference, resulting in lower accuracy due to fre-
quent shifts in relationship states within a sequence.

we report average values for 50 runs for each model. We can
see that, all the models significantly outperform the base-
line, which always predicts the majority (cooperative) class.
The figure shows that Globally Aware GHMM, in general,
performs better than the Penalized GHMM and the base-
line GHMM. It also outperforms the Global Model, which
is an unstructured baseline that clusters the sentences inde-
pendently (corresponds to the global only component of the
Globally Aware GHMM). This indicates that for this task, it
is important to have a global as well as local perspective of
characters’ interactions.

The performance of Penalized GHMM is comparable to
that of GHMM, which hints that the penalty term might
not be contributing significantly to the model’s performance.
To investigate this further, we introduce ‘Globally Aware
GHMM w/o penalty’– a modified Globally Aware GHMM
without the penalty term. We can see that its performance
is much worse than that of Globally Aware GHMM. This
suggests that while the penalty term is not very useful for
a local model like GHMM, it is indeed valuable for mod-

Figure 6: Screenshot from the relationship analogy task

els like Globally Aware GHMM, which have an ability to
switch between local and global components. This is be-
cause frequent switching between the two components can
result in frequent shifting between relationship states within
a sequence. This frequent shifting is unnatural for the given
task because the states represent inter-personal relationships,
which are usually stable and evolve smoothly with the nar-
rative. Therefore, such a model benefits from a penalty term,
which smoothens the relationship trajectories and makes
them more consistent with human judgment. This can also
be observed in Fig. 5. The Globally Aware GHMM has
much stronger preference for one of the components (global)
than Globally Aware GHMM w/o penalty. The preference
learned for the latter model is closer to 0.5 which would re-
sult in frequent shifts between the two components.

5.3 Relation Analogy Task

We now evaluate our model against human judgment with-
out any restrictive assumptions on the types of relationships.
We evaluate the model on an objective task involving hu-
man subjects to answer questions based on semantics of
inter-character relationships. Specifically, given a pair (P )
of characters in a text, we asked subjects to pick a pair that
reflects a similar relationship from two choices of pairs of
characters, O1 and O2. Subjects were asked to consider not
just the nature but also the trajectories of relationships while
judging similarity. Fig. 6 shows an example question. The
pairs were chosen from different books of the ‘Harry Potter’
series. This made the task easier for humans but not for the
model (since it can’t access character names). The two op-
tions were selected from pool of pairs similar (or dissimilar)
to the given pair, P , as determined by our model. We use an
edit-distance based measure to compute similarity between
(normalized) relationships sequences of any two given pairs.

Subjects, who self-reported that they had previously read
the books, were required to read their summaries before an-
swering questions, and had access to these during the task.
An illustrative sample question and answer was initially pro-
vided to explain the task. For each question, the subjects
could choose one of the two candidates character-pairs, or a
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don’t know option. To reduce annotator fatigue, each annota-
tor was asked questions about characters mentioned in only
three books and could not answer more than 10 questions per
session. Overall, we collected answers for about 100 such
questions, each answered by at least 3 annotators. The raw
inter-annotator agreement was 0.73 (Fleiss’ κ = 0.46).

Treating the human provided answers (except the 4.8%
‘don’t know’ options) as gold standard, our model’s ac-
curacy on this task was 66.0% (accuracy of a random
baseline=50.0%). Considering that this is a difficult task
even for humans, we can conclude that the model learns
sequences that correlate significantly with human judgment
(p < 10−3), and can be used to address semantically com-
plicated questions.

5.4 Coherence of Relationship States

Table 1 presents a visualization of the relationship states
learned by the Globally Aware GHMM (with R = 5). For
each state, we report the most frequent words from the union
of the feature-sets extracted for all the sentences assigned to
that state. We can see that the first state corresponds to famil-
ial relationships. The second state corresponds to a desire to
initiate romantic relationships (indicated by words like love,
desiring, vow, confess, etc.). The third state consists of sen-
tences in which the characters participate in physical action
like go, meet, etc. The last two states represent communica-
tive and hostile relationship respectively.
Word-intrusion Detection Task: This task further in-
vestigates the semantic coherence of the states. In this
task (Chang et al. 2009), a human subject is presented with
6 randomly ordered words. 5 of them are high frequency
words from one of our learned relationship states, and one,
the ‘intruder’, belongs to a different (randomly chosen) state.
Humans subjects are then asked to identify the intruder
word. The subjects were graduate students from varying
disciplines and were comfortable with English. Each sub-
ject was shown at-least 5 sets of words, and no subject was
shown more than 10 sets. We collected judgments for at least
8 sets per state and used them to calculate the ‘Model Pre-
cision (MP)’ for each state, which is the fraction of times a
subject accurately identified the intruder. The last column of
Table 1 shows the results of this experiment. We can see that
the subjects successfully identified the intruder with high
precision in all cases (p < 10−3) except the ‘desire’ state
(p ∼ 0.3), indicating their semantic coherence.

5.5 Comparison to RMN

We now compare our model with another unsupervised ap-
proach, RMN (Iyyer et al. 2016) (described in Sec.2).
Which model produces better relationship sequences?
We first compare the relationship sequences learned by our
Globally Aware GHMM with those learned by RMN on our
data. For this experiment, human subjects (on CrowdFlower)
were presented with a novel summary and a pair of charac-
ters appearing in it. They were also shown the outputs of the
two models for the given character-pair (represented using
the visualization shown in Fig. 1). The subjects then chose
which model’s output best represented the characters’ rela-
tionship (binary judgment). Both models were run on our

dataset with R = 5, and the states learned by them were
manually named by the first authors of the respective pa-
pers. However, an attempt was made to assign same names
for states that looked very similar for the two models.

In order to avoid subject fatigue, we filtered out sum-
maries with more than 1000 tokens. We also required the
subjects to demonstrate proficiency on a set of 5 test-
questions. We collected judgments on 133 character-pairs,
each of which was annotated by at least 3 subjects. The sub-
jects chose our model over RMN for 66.2% of the character-
pairs (p < 10−4 and inter-annotator agreement = 0.65).
Do the states represent relationships? The above experi-
ment compares the relationship sequences learned by Glob-
ally Aware GHMM with those learned by RMN. We now
evaluate if the individual states learned by the two models
are indeed representing an aspect of inter-personal relation-
ship. For this experiment, we ran the two models on our
dataset using varying values of R ∈ {2, 3...10}, resulting
in a total of 54 states for each model. We then presented
human-subjects with a word-cloud based visualization of in-
dividual states (generated using Wordle(wordle.net)) repre-
sented by their 20 most frequent words. We then asked them
to judge if the words in the state represent a human relation-
ship (one binary judgment per state). To keep the evaluation
fair, the subjects were unaware of the underlying models or
their goals. Each state was judged by 3 subjects, resulting
in 324 judgments. We employed 9 graduate students as sub-
jects who self-reported that they were proficient in English.

The subjects judged 66.0% of the states learned by Glob-
ally Aware GHMM to be representing an inter-personal rela-
tionship, while only 50.0% of RMN’s states were judged to
be representing relationships (inter-annotator agreement of
0.72). Also, out of those states judged as representing rela-
tionships, there was a unanimous agreement between all the
subjects for 62.7% of Globally Aware GHMM’s states but
only 33.3% of RMN’s states. This indicates that Globally
Aware GHMM learns states that are more representative of
inter-personal relationships as compared to RMN.

6 Conclusion

This paper addressed the problem of learning evolving inter-
character relationships from novel summaries. Treating this
as an unsupervised structured prediction problem we present
three models that incorporate linguistic as well as contex-
tual information. We empirically demonstrate that for solv-
ing this problem, it is not sufficient to simply look at local
cues about the relationships between the two characters of
interest from a small part of text. Instead, it is important to
maintain a global perspective of the overall nature of rela-
tionships. Future work could focus on making the relation-
ship states non-overlapping and more diverse. Other direc-
tions may study usefulness of varying text modes (genre,
number of characters, time-period of novels, etc.); or min-
ing ‘relationship patterns’ from such texts.
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