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Abstract

Unsupervised word representations have demonstrated im-
provements in predictive generalization on various NLP
tasks. Most of the existing models are in fact good at cap-
turing the relatedness among words rather than their “gen-
uine” similarity because the context representations are often
represented by a sum (or an average) of the neighbor’s em-
beddings, which simplifies the computation but ignores an
important fact that the meaning of a word is determined by
its context, reflecting not only the surrounding words but also
the rules used to combine them (i.e. compositionality). On the
other hand, much effort has been devoted to learning a single-
prototype representation per word, which is problematic be-
cause many words are polysemous, and a single-prototype
model is incapable of capturing phenomena of homonymy
and polysemy. We present a neural network architecture to
jointly learn word embeddings and context representations
from large data sets. The explicitly produced context repre-
sentations are further used to learn context-specific and multi-
prototype word embeddings. Our embeddings were evaluated
on several NLP tasks, and the experimental results demon-
strated the proposed model outperformed other competitors
and is applicable to intrinsically “character-based” languages.

Introduction and Motivation

Much recent research has been devoted to deep learning al-
gorithms which achieved impressive results on various nat-
ural language processing (NLP) tasks. The best results ob-
tained on supervised learning tasks involve an unsupervised
learning phase, usually in an unsupervised pre-training step
to learn distributed word representations (also known as
word embeddings). Such semi-supervised learning strategy
has been empirically proven to be successful by using un-
labeled data to supplement the supervised models for bet-
ter generalization (Collobert et al. 2011; Socher et al. 2011;
dos Santos and Zadrozny 2014; Zheng, Chen, and Xu 2013;
Pei, Ge, and Chang 2014).

Due to the importance of unsupervised pre-training in
deep neural network methods, many models have been pro-
posed to learn word embeddings. The two main model fam-
ilies are: (a) predicting or scoring the target word based on
its local context, such as the neural probabilistic language
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model (NNLM) (Bengio et al. 2003), C&W (Collobert et al.
2011), and continuous bag-of-words (CBOW) (Mikolov et
al. 2013a); (b) using a word to predict its surrounding words,
such as the Skip-gram (Mikolov et al. 2013a) as well as
its extensions, multi-sense Skip-gram (MSSG) (Neelakantan
et al. 2014) and proximity-ambiguity sensitive (PAS) Skip-
gram (Qiu et al. 2014). However, they suffer one or both of
the following significant drawbacks.

First, the context is often represented by a sum (or an av-
erage) of the surrounding words’ feature vectors. Those con-
text representations may not represent word meanings well
because the meaning of a word is affected by its adjacent
words and the rules to combine them. Each context word in
general does not contribute equally to the meaning of the tar-
get word, and thus the simple sum or average operation can
not capture this compositionality.

Second, most of the existing methods create a single-
prototype embedding for each word. This single-prototype
representation is problematic because many words are in-
trinsically polysemous, and a single-prototype model is in-
capable of capturing phenomena of homonymy and poly-
semy. It is also important to be reminded that languages dif-
fer in the degree of polysemy they exhibit. For example, Chi-
nese with its (almost) complete lack of morphological mark-
ing for parts of speech certainly exhibits a higher degree of
polysemy than English (Packard 2004).

Recent models on learning multiple representations per
word (Reisinger and Mooney 2010; Huang et al. 2012) gen-
erally work as follows: for each word, first cluster its con-
texts into a set of clusters, and then derive multiple represen-
tations (each for a cluster) of the word from the clusters of
similar contexts. In these models, each context is represented
by a vector composed of the occurrences of its neighbor-
ing words or a weighted average of the surrounding words’
vector. Such context definitions neglect the relative order of
words in the context window, which impairs the quality of
the multi-prototype representations derived by the clustering
based on such context representations. In fact, the order of
words does matter to the meaning of those they form. Be-
sides, those models set the equal number of prototypes for
each word, although different numbers were tested to deter-
mine the optimal number of prototypes.

We argue that the degree of polysemy in polysemous
words depends on the number of distinct contexts in which
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they occur, especially for the “character-based” languages
(e.g. Chinese and Japanese). When a word appears in more
different linguistic contexts, it may carry more meanings,
and greater number of prototypes should be created for that
word. It is unnecessary for rare words to learn several pro-
totypes, whereas for most common words, if the number of
word senses is greater than that of prototypes, certain proto-
type could be affected by the contexts associated with differ-
ent meanings, and the learned prototype might not represent
any one of the meanings well as it is influenced by several
(and different) meanings of that word.

We present a novel neural network architecture to learn
multi-prototype word/character embeddings from large data
sets, in which the context representations are produced by
a convolutional layer, designed to capture the composition-
ality of context words or characters. This architecture al-
lows us to take advantage of the better trained context repre-
sentations and to learn multi-prototype word/character em-
beddings accordingly. The number of prototypes for each
word/character can be different and selected automatically.
Experimental results show that the embeddings learned by
our model outperform competitors on the several NLP tasks
across different languages by transferring the unsupervised
representations into the supervised models.

Context-Specific Vector Model

Many methods were proposed to learn distributed word rep-
resentations from large unlabeled texts, but the questions
still remain as to how meaning is produced by such unsu-
pervised methods, and how the resulting word vectors rep-
resent that meaning. We describe here a neural network-
based model, named CSV (Context-Specific Vector), which
can generate the context representation of a word/character,
and learn the word/character vector carrying the meaning in-
ferred by that context. The proposed network architecture
contains a convolutional layer that is designed to produce
the refined context representations reflecting the order of
their constituents and the rules to combine them. The better
generated context representations are used to learn context-
specific multi-prototype word/character embeddings by the
sense induction with a simple “winner-takes-all” strategy.

The Neural Network Architecture

The network architecture is shown in Figure 1. From now
on, a term “type” is used to refer to word or character, de-
pending on which language is considered (e.g. word in En-
glish or character in Chinese). Each type is associated with
a global vector and multiple sense vectors. The input to the
network is a type’s context window, and the convolutional
layer produces the representation (or vector) for that con-
text. One of the type’s sense vectors is chosen by how well
the sense fits into the context, and the network is trained to
differentiate the selected sense vector from others.

We use a window approach that assumes the meaning of a
type depends mainly on its surrounding types. The types (ex-
cept the target) in the window of size w (a hyper parameter)
are fed into the network as indices that are used by a lookup
operation to transform types into their global vectors. We

consider a fixed-sized type dictionary D. The type’s global
vectors are stored in a matrix M ∈ R

d×|D|, where d is the
dimensionality of the vector space (a hyper-parameter to be
chosen) and |D| is the size of the dictionary.

Convolution

• • •g(t−w/2) • • •

Word/Character Context

Window Size

1
2
3

d 1
d

...

Context Representation

. . .

Word/Character Sense Vectors

Sense prediction by 
win-takes-all strategy

s1(t0)

g(t−1) g(t+1) g(t+w/2)

sk(t0)s2(t0)
G

lobal Vectors

Lookup 
Table

Figure 1: The neural network architecture.

The context feature window produced by the first lookup
table is a matrix H ∈ R

d×w, where each column of the ma-
trix H is the global vector of the type in the window. A one-
dimensional convolution is used to yield another feature vec-
tor by taking the dot product of filter vectors with the rows of
the matrix H at the same dimension. After each row of H is
convolved with the corresponding column of a filter matrix
W , the context features are extracted as follows.

F = H�W (1)

where the weights in the matrix W ∈ R
w×d are the param-

eters to be trained, and F ∈ R
d is a vector. The trained

weights in W can be viewed as a linguistic feature detector
that learns to recognize a specific class of n-gram (Kalch-
brenner, Grefenstette, and Blunsom 2014). The context fea-
ture vectors from a window of text can be computed effi-
ciently thanks to one-dimensional convolution.

Training

We start with the description of learning in single-prototype
case (i.e. each type has a unique sense vector), and then ex-
tend it to multi-prototype situation. Once the context rep-
resentation is generated, we use that representation to dis-
criminate the target type from the others. Like (Mikolov et
al. 2013b), a negative sampling method is applied to approx-
imately maximize the probability of the target type given its
context. The neural networks are trained by maximizing the
conditional likelihood of the target types given their con-
texts using the gradient ascent algorithm. The log-likelihood
function we consider takes the following form:

l(θ) =
∑
t∈D

∑
c∈Ct

log pθ(t|c) (2)

where D is the dictionary of types, Ct is the set of all pos-
sible context windows the type t occurs (the target type is
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removed), and θ are the parameters needed to be trained.
The distribution pθ(t|c) can be factorized with respect to the
type t itself (positive) and its negative samples using logistic
regression as follows.

pθ(t|c) =
∏

x∈{t}∪neg(t)

pθ(x|c)

pθ(x|c) =
{

φ(s(x)�v(c)), if x = t;
1− φ(s(x)�v(c)), if x ∈ neg(t).

(3)

where v(c) is t’s context vector representation produced
by the convolutional layer, s(·) is the type’s sense vector,
neg(t) is a set of negative samples drawn for each occur-
rence of the type t, and φ(·) is a sigmoidal function. These
lead us to maximize the following objective function:

l(θ) =
∑
t∈D

∑
c∈Ct

{log[φ(s(t)�v(c))]+∑
x∈neg(t)

log[1− φ(s(x)�v(c))]} (4)

When maximizing this log-likelihood, the error will back-
propagate and update both the network parameters and
type’s vectors.

Multi-Prototype CSV Model

In order to learn multiple prototypes, each type could be as-
sociated with more than one sense vector. We need to choose
a sense vector that most fits into the current context. The
“winner-takes-all” principle is used to make this choice, and
the sense vector with the highest similarity to the context
representation vector is selected to be updated according to
the equation (3). More formally,

rtc = argmax
i=1,2,...,kt

sim(si(t), v(c)) (5)

where c ∈ Ct, and the type t has kt sense vectors
{s1(t), s2(t), ..., skt

(t)}. The selected rtc is the sense of type
t when observed in the context c. For the sim function, we
use cosine similarity as a measure of similarity between two
vectors.

The last question is how many prototypes (or sense vec-
tors) need to be created for each type. We are aware that
languages differ in the degree of polysemy they exhibit. For
example, Chinese exhibits a higher degree of polysemy than
English (Packard 2004). On the other hand, it is necessary to
individually determine how many prototypes need to be cre-
ated for each type. We assume that the degree of polysemy
in polysemous types depends on the number of distinct con-
texts in which they occur, where the context is defined as
the combination of neighboring words in a given window.
When a type appears in more different linguistic contexts, it
may carry more meanings, and greater number of prototypes
should be created for that type.

For a given corpus, the appropriate number of prototypes
for a type is strongly related to the quantity of different
contexts in which it occurs, and thus that number should
be determined accordingly. Because the appropriate num-
ber of sense vectors (to be created) for a type can not be
well decided in advance, we try to learn that number dur-
ing the training in a dynamic way. A new sense vector will

be added online during training when the type is observed
with a context that the cosine similarity between the context
feature vector with every existing sense vector is less than a
threshold δ (a hyper-parameter). Ideally, the context vectors
should be generated by using the sense vectors. We choose
to use the global vectors of the context types instead of their
sense vectors to avoid the high computational cost caused by
the sense disambiguation for the context types.

Inputs:
R: a training corpus.
K: a specified number of negative samples.
N : a specified number of iterations.

Initialization: the parameters of the network, a global vector g(t)
and a sense vector s(t) for each type t ∈ D are initialized with
small random values.
Output: the trained network parameters θ, a global vector g(t)
and one or more sense vectors si(t) for each type t ∈ D, i =
1, 2, ..., kt.
Algorithm:

for STAGE = 1 to 3
do

for each context window c in the corpus R.
compute the context feature vector v(c) by the neural network
using the equation (1).
rtc = argmaxi sim(si(t), v(c)) for the target type t as the
equation (5).
if (STAGE = 1 or STAGE = 3)

draw a set of K negative samples neg(t) randomly for the
target type t.
update the network parameters θ, the global vectors of types
in the context window, and the rtc sense vector of the type t
by the gradients with respect to the objective function (4).

else if (STAGE = 2)
if (sim(srtc(t), v(c)) < δ)

create a new sense vector for the type t, which is initialized
by the context vector v(c).

else

update the sense vector srtc(t) to reflect the influence of the
current context feature vector v(c).

until the number of iterations N is reached (N = 1 if STAGE 2).
end for

Figure 2: The training algorithm of CSV model.

The training process is divided into three stages. At first,
we expect to learn robust context vector representations. A
global vector and a sense vector will be created with ran-
dom initialization for each type, and the network is in fact
trained by single-prototype CSV model. Then, the new sense
vectors can be added gradually when necessary. If the co-
sine similarity between the current context vector and the
type’s every existing sense vector is less than a given δ,
a new sense vector will be created and initialized with the
context vector; otherwise, the sense vector with the highest
similarity will be updated with the centroid of the seen con-
text vectors belonging to this sense vector, like the spherical
k-mean algorithm. This procedure is closely related to the
EM (Expectation-Maximization) algorithm. The E-step of
the EM algorithm assigns “responsibilities” for each context
vector based in its relative similarity to sense vectors, while
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the M-step recomputes the selected sense vector representa-
tion based on the current responsibilities. Finally, the num-
ber of sense vectors is fixed for every type, and the new sense
vectors are not allowed to be created. At the final stage, we
focus on training the context-specific multi-sense vectors.
The whole training algorithm is shown in Figure 2.

Experiments

We conducted three sets of experiments. The goal of the
first one is to test several variants of the single-prototype
CSV model to gain some understanding of how the choices
of hyper-parameters impacts the performance on the word
and character similarity tasks, by comparing with the well-
established single-prototype embedding learning methods.
In the second experiment, we compare our multi-sense vari-
ant with state-of-the-art multi-prototype word representation
models on a data set where each word pair is presented with
context. The third one is to see how well the learned embed-
dings to enhance the supervised learning on four standard
NLP tasks (POS tagging, chunking for English, and word
segmentation, named entity recognition for Chinese), and
whether the performance can be further improved by their
multi-prototype variants.

Comparing with Single-prototype Models

English and Chinese Wikipedia documents1 were used as
the unlabeled corpora by all the models compared to train
the embeddings because of their wide range of topics and
usages. We compared the performance of ours against three
state-of-the-art models: GloVe (Pennington, Socher, and
Manning 2014), CBOW and SKIP (Mikolov et al. 2013a).
All the results reported have been averaged over five runs.

For English, a popular data set for evaluating vector-space
models is the WordSim-353 (Finkelstein et al. 2001), which
has 353 pairs of nouns. Each pair is presented without con-
text and associated with 13 to 16 human judgments on sim-
ilarity and relatedness by a scale from 0 to 10. Observing
that the scores shown in the WordSim-353 data set do not re-
flect the “genuine” similarity2, Hill et al (2014) presented the
SimLex-999 that explicitly quantifies similarity rather than
relatedness or association so that pairs that are related but
not actually similar are rated with low scores.

For Chinese character similarity task, to the best of our
knowledge, there is no such data set available. Following the
guidance of (Hill, reichart, and Korhonen 2014), we con-
structed a CharSim-200 data set, which contains two hun-
dred Chinese character pairs. Each pair is assigned the sim-
ilarity score by twelve native speakers according to their
similarity, and the average of those human judgements was
taken as the final score. The scores range from 0 to 10, and
the higher the score, the more similar the two characters will
be. An average Spearman’s rank correlation coefficient (or

1https://www.wikipedia.org/ (March 2015 snapshot)
2In the WordSim-353, “coffee” and “cup” are rated as more

similar than pairs such as “car” and “train”. Although the former
are very much related, the relationship between those two words
is considered as association in the psychological literature, which
contrasts with similarity, the relation connecting “cup” and “mug”.

0.7

0.6

0.5

0.4
3 5 7 9 11

(a)Window Size

Sp
ea
rm
an
's
ρ

0.8

Dimension: 300

0.7

0.6

0.5

0.4
100 200 300 400 500

(b) Dimension

Sp
ea
rm
an
's
ρ

0.8

Window Size: 11

GloVe

CSV-S
CBOW
SKIP

GloVe

CSV-S
CBOW
SKIP

Figure 3: Spearman’s ρ on the WordSim-353. (a) Average
Spearman’s ρ versus window size with dimension fixed to
300. (b) Average Spearman’s ρ versus dimension with win-
dow size fixed to 11.

Spearman’s ρ) achieved by human annotators is 0.879, and
the highest score is 0.922.
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Figure 4: Spearman’s ρ on the SimLex-999. (a) Average
Spearman’s ρ versus window size with dimension fixed to
300. (b) Average Spearman’s ρ versus dimension with win-
dow size fixed to 11.

We report in Figure 3, 4, and 5 the Spearman’s ρ ver-
sus window size and versus vector size for our model and
other competitors on the WordSim-353, SimLex999, and
CharSim-200 data sets respectively. The proposed single-
prototype context-specific vector model is denoted as CSV-
S. It can be seen from the figures that generally, the larger
the dimension, the higher the Spearman’s ρ we will have. We
also observed diminishing returns for type vectors with their
dimension larger than about 300 both for the WordSim-353
and CharSim-200. The CSV-S achieved steady high perfor-
mance across the three data sets, while others gave inconsis-
tent performances on the different data sets.

As shown in Figure 3, the CSV-S performs comparatively
well to the SKIP that achieved the highest Spearman’s ρ of
0.713 (just 0.03 difference to the CSV-S) when the window
size was set to 11 and the dimension to 500. It can be seen
from Figure 5 that the CSV-S performs similar to the GloVe,
and achieved state-of-the-art Spearman’s ρ of 0.805 on the
CharSim-200 when the window size was set to 11 and the
dimension to 400. For the SimLex999 data set, the CSV-S
outperforms the three competitors with a large margin (see
Figure 4), and achieved the highest Spearman’s ρ of 0.481.
The SimLex999 explicitly quantifies similarity rather than
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Figure 5: Spearman’s ρ on the CharSim-200. (a) Average
Spearman’s ρ versus window size with dimension fixed to
300. (b) Average Spearman’s ρ versus dimension with win-
dow size fixed to 11.

relatedness, and it was constructed to provide a gold stan-
dard resource for evaluating distributional semantic models.
The CSV was designed to capture the complicated, but crit-
ical semantic “compositionality” of the context windows by
using a convolutional layer to learn the refined context rep-
resentations. The experimental results on the SimLex-999
show that the CSV captures the similarity well, and the per-
formances of other models suffer from their oversimplified
context representations.

Comparing with Multi-prototype Models

The only one we could find is the Stanford Contextual Word
Similarity (SCWS) data set (Huang et al. 2012) that can be
used to evaluate multi-prototype models. The data set con-
sists of 2,003 pairs of words and the contexts in which they
occur, which makes it possible to select the most appro-
priate sense for each ambiguous word by its contextual in-
formation. We report in Table 1 the Spearman’s ρ between
the embedding similarities and human judgments, where our
multi-prototype context-specific models (CSV-M) is com-
pared against five recently proposed models.

Table 1: Spearman’s ρ performance of the multi-prototype
models on the SCWS data set.

Model Spearman’s ρ
Huang et al (2012) 0.657
Chen et al (2014) 0.689
Neelakantan et al (2014) 0.691
Cheng and Kartsaklis (2015) 0.585
Iacobacci et al (2015) 0.624
CSV-M 0.699

The CSV-M achieved the best Spearman’s ρ of 0.699 on
the SCWS, which was calculated by the similarity between
each pair of sense vectors, selected independently based on
their contexts. The values of hyperparameters were chosen
by a small amount of manual exploration on a validation set.
The network was trained by setting the windows size to 11,
the dimension to 300, and δ to 0.15. It is worth noting that
the comparison is indirect because many other models often
use some external sources or weighted average methods to

improve their performances. For example, the sense vectors
of (Chen, Liu, and Sun 2014) were generated with the help
of the WordNet (Miller 1995). A state-of-the-art word sense
disambiguation tool was applied by Iacobacci et al (2015) to
generate the sense-annotated corpora that were used to train
multi-sense embeddings. The best performances reported in
both (Huang et al. 2012) and (Neelakantan et al. 2014) were
all achieved by weighting the similarity between each pair
of sense vectors by how well does each sense fit the context.
The performance of (Neelakantan et al. 2014) drops to 0.598
if the similarity between two words was computed by select-
ing a single sense for each word based on its context like the
CSV-M did. In comparison, the results were obtained by the
CSV-M without using any extra information.

Results on four NLP Tasks

This section describes four downstream NLP tasks on which
different models are evaluated: POS-tagging, chunking, Chi-
nese word segmentation (CWS) and named entity recogni-
tion (NER). For the English POS-tagging, the performance
is reported in per-word accuracy. The other three tasks are
evaluated by computing the standard F1-score, which is the
harmonic mean of precision and recall.

We assume that one can take an existing, close to state-
of-the-art, supervised NLP system, and its performance can
be further improved by transferring the unsupervised em-
beddings into the system. We implemented the neural net-
work of (Collobert et al. 2011) as such supervised compo-
nent, which was designed to perform the sequence labeling
tasks. The network will output the scores for all the possible
labels for the task of interest. The POS-tagging task consists
of marking up the syntactic role for each word. For the re-
maining three tasks, we use the most expressive “IOBES”
tagging scheme.
• Part-of-speech tagging aims at marking up a word in a sentence

with a unique label that indicates its syntactic role, such as noun,
verb, adjective, etc. We used a benchmark setup described by
Toutanova et al (2003).

• Chunking (also known as shallow parsing) is an analysis of a
sentence which identifies syntactic constituents such as noun
or verb phrases. Chunking is often evaluated using the CoNLL
2000 shared task.

• Word segmentation is to reconstruct the word boundaries of
texts in those languages that are written without using whites-
pace to delimit words. We picked Penn Chinese Treebank from
Bakeoff-3 as our data set (Levow 2006).

• Named entity recognition seeks to locate and classify elements
in the sentence into pre-defined categories such as the names
of persons, organizations, locations, etc. For the NER task, we
choose MSRA data set from Bakeoff-3 with standard train-test
splits (Levow 2006).

For the CSV-M, each type in the training and testing cor-
pora was relabeled with its corresponding sense, and the
combination of type and sense label is considered as one
type. Generally, word sense disambiguation is a computa-
tionally expensive step because the algorithms have to con-
sider all possible combinations of occurring senses on a sen-
tence (up to kn sense sequences for a sequence of n words
when each has up to k sense). However, the CSV-M chooses
the intended meaning of a word in context independently of

3397



the sense labels of its surrounding words, and thus the rela-
beling step runs in linear time. Because there is no direct way
to obtain the sense labels from other multi-prototype mod-
els, we just compared the existing single-prototype models
against ours. For the models to be evaluated here, the dimen-
sion was set to 300, and the window size to 11.

Table 2: Comparison with the previous embedding learning
models.

Model POS CHUNK CWS NER
(PWA) (F1) (F1) (F1)

Baseline 95.40 89.10 92.15 82.03
CBOW 95.50 89.37 92.55 82.53
SKIP 96.06 89.77 92.83 84.02
GloVe 95.86 89.18 92.99 82.56
CSV-S 96.26 91.49 93.26 85.31
CSV-M 97.15 92.12 94.03 85.59

The results shown in Table 2 suggest that unsupervised
pre-training gives consistently better generalization compar-
ing to the baseline started with randomly initialization (with-
out pre-training embeddings), and the CSV-S boosts the per-
formances of all the tasks by a fairly significant margin,
particularly for the chunking (1.72% in average) and NER
(1.29% in average). The results also show that its multi-
prototype enhancements, CSV-M, can further improve the
performances. The results for four benchmark data sets show
that our models achieved consistently higher performance
over the three competitors.

Related Work
Over the last decade, there has been increasing interest in
learning word representations from a large collection of un-
labeled data, and using these word representations as a fea-
ture set to augment the supervised learners. Generally, re-
lated work on learning word representations can be divided
into three categories: clustering-based (Brown et al. 1992;
Li and McCallum 2005), distributional (Teh et al. 2006;
R̆ehůr̆ek and Sojka 2010), and distributed representations
(Bengio et al. 2003; Collobert and Weston 2008).

In this paper, we focus on the distributed representa-
tion models. Distributed word representations are also called
word embeddings, each dimension of which represents latent
feature about word syntactic and semantic information. The
goal of (Bengio et al. 2003) is to estimate the probability of a
word given the previous words in a sentence using the cross-
entropy criterion. Because the size of dictionary is usually
large, the computation of exponentiation and normalization
can be extremely demanding, and sophisticated approxima-
tions are required. Many approaches have been proposed to
eliminate the linear dependency on the dictionary size. The
model of (Mnih and Hinton 2007) learns a linear model
to predict the embedding of the last word given the con-
catenation of the embeddings of previous words. Collobert
and Weston (2008) introduced a neural language model that
evaluates the acceptability of a piece of text.

The related studies closest to ours in term of handling
multi-prototype word representations are (Reisinger and

Mooney 2010; Huang et al. 2012; Qiu et al. 2014; Neelakan-
tan et al. 2014). Reisinger and Mooney (2010) introduced a
multi-prototype vector-space model, where multiple proto-
types for each word are generated by clustering contexts of
the word occurrence and collecting the resulting cluster cen-
troids. The dimensionality of their word vectors is normally
large, which corresponds to the size of vocabulary.

Huang et al (2012) presented a neural language model
that learns the word embeddings by incorporating both lo-
cal (previous words) and topic (document vectors) informa-
tion. The single-prototype embeddings learned in advance
are used to represent the word context, and these context
representations are then clustered by spherical k-means us-
ing cosine distance. Multiple prototypes of a word are in-
duced from its associated clusters. For multi-prototype vari-
ants, they fix the number of prototypes to be ten. It shows
that the performance is sensitive to the number of proto-
types, and the number of prototypes created for each word
should be determined individually.

Qiu et al (2014) addressed the word-sense discrimination
problem by creating multiple representations per word, each
for a POS type. However, many words may still carry more
than one meaning even though they are constrained to a cer-
tain POS type. A POS tagger can effectively process the
texts from the same domain as the training texts, but the
performance may deteriorate significantly when the tagger
is used to the large texts from others, which is not conducive
to the word-sense discrimination. They used a weighted av-
erage of the context word vectors to represent the context.
In comparison, we model the refined contexts by a convolu-
tional layer, particularly to capture the their semantic inter-
pretations and compositions of the context words.

Neelakantan et al (2014) extended the Skip-gram model
to learn multi-prototype word embeddings from large un-
labeled texts by adding a word-sense disambiguation layer
to the network. The sense disambiguation works by main-
taining multiple sense vectors per word and identifying the
sense whose vector is the closest to the current context. The
word sense vectors are initialized randomly and updated to-
gether with the word embeddings during the training. Their
model follows the philosophy behind the Skip-gram, using
the target word to predicting its context words, while our
word embeddings are learned by making them well suited
for the co-trained context representations. In addition, the
word context is represented as an average of its surround-
ing word’s vectors in their model, which might not be well
enough to represent the meaning (i.e. compositionality) of
the context words and would lead to poor clustering results.

Conclusion
Word or character embeddings can be learned in advance in
an unsupervised manner. These embeddings, once learned,
are easily disseminated with other researchers, and easily
integrated into existing supervised NLP systems. We pre-
sented a novel neural network architecture as well as a
context-specific vector model that can learn multi-prototype
word/character representations, which are capable of cap-
turing word’s or character’s syntactic and semantic infor-
mation, particularly their polysemous variants. Our model
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differs from recent related work by jointly learning the con-
text representations and embeddings, and by estimating the
number of senses per word/character type. Experiment re-
sults with different datasets showed that the proposed model
outperformed the existing state-of-the-art embedding learn-
ing methods on several NLP tasks across two languages.
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