
A Dynamic Window Neural Network for CCG Supertagging

Huijia Wu,1,3 Jiajun Zhang,1,3 Chengqing Zong∗1,2,3

1National Laboratory of Pattern Recognition, Institute of Automation, CAS
2CAS Center for Excellence in Brain Science and Intelligence Technology

3University of Chinese Academy of Sciences
{huijia.wu,jjzhang,cqzong}@nlpr.ia.ac.cn

Abstract

Combinatory Category Grammar (CCG) supertagging is a
task to assign lexical categories to each word in a sentence.
Almost all previous methods use fixed context window sizes
to encode input tokens. However, it is obvious that different
tags usually rely on different context window sizes. This mo-
tivates us to build a supertagger with a dynamic window ap-
proach, which can be treated as an attention mechanism on
the local contexts. We find that applying dropout on the dy-
namic filters is superior to the regular dropout on word em-
beddings. We use this approach to demonstrate the state-of-
the-art CCG supertagging performance on the standard test
set.

Introduction

Combinatory Category Grammar (CCG) provides a connec-
tion between syntax and semantics of natural language. The
syntax can be specified by derivations of the lexicon based
on the combinatory rules, and the semantics can be recov-
ered from a set of predicate-argument relations. CCG pro-
vides an elegant solution for a wide range of semantic analy-
sis, such as semantic parsing (Zettlemoyer and Collins 2007;
Kwiatkowski et al. 2010; 2011; Artzi, Lee, and Zettlemoyer
2015), semantic representations (Bos et al. 2004; Bos 2005;
2008; Lewis and Steedman 2013), and semantic composi-
tions, all of which heavily depend on the supertagging and
parsing performance. All these motivate us to build a more
accurate CCG supertagger.

CCG supertagging is the task to predict the lexical cate-
gories for each word in a sentence. Existing algorithms on
CCG supertagging range from point estimation (Clark and
Curran 2007; Lewis and Steedman 2014) to sequential esti-
mation (Xu, Auli, and Clark 2015; Lewis, Lee, and Zettle-
moyer 2016; Vaswani et al. 2016), which predict the most
probable supertag of the current word according to the con-
text in a fixed size window. This fixed size window assump-
tion is too strong to generalize. We argue this from two per-
spectives.

One perspective comes from the inputs. For a particular
word, the number of its categories may vary from 1 to 130
in CCGBank 02-21 (Hockenmaier and Steedman 2007). We

∗Corresponding author.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on a warm autumn day

...

...

...

...

...

...

...

...

...

...

...

...... ...

... softmax

tanh

filters

P(c|L(warm))

L(warm)

word indices

L(warm)

Figure 1: A dynamic window approach for supertagging us-
ing a multilayer perceptron. We add “filters” to each token
in the context window. If one filter is closed to 0, then the
corresponding token will be blocked, otherwise it will be
passed as a normal input.

need to choose different context window sizes to meet differ-
ent ambiguity levels. The other perspective is for the targets.
There are about 21000 different words together with 31 dif-
ferent Part-Of-Speech(POS) tags which have the same cat-
egory N/N . Using the same context window size for each
word is obviously inappropriate.

To overcome these problems, we notice that Xu et al.
(2015) use dropout in the embedding layer to make the input
contexts sparse. This method motivates us to get rid of the
unnecessary information in the contexts automatically rather
than use a pre-specified prior. Then we observe that the gat-
ing mechanism of long short-term memory (LSTM) blocks,
especially the input gate, can determine when to enter into
the block. All these inspire us to add a gate to each item in
the context windows to make them sparse but informative.

This method can be interpreted as the attention mecha-
nism (Bahdanau, Cho, and Bengio 2014), which focuses on
parts of the memories when making decisions. From this
perspective, the contexts of the current word are the mem-
ories, and the dynamic window is the attention. We focus on
the contexts extracted from the attended windows to predict

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3337

the corresponding lexical categories.
Figure 1 visualize this method. We add one logistic gate

to each item in the local context. If the gate is close to zero,
the corresponding features in the window will be ignored
during forward pass. Moreover, we add a dropout mask on
the gates to further improve its sparsity. Combining attention
and dropout lead a significant performance improvement.

We evaluated our approach on multilayer perceptrons
(MLPs) and and recurrent neural networks (RNNs), includ-
ing vanilla forms (standard RNNs) and gated RNNs. The ex-
periments show that the performance of these networks can
obtain improvements using our method.

Background

Category Notation

CCG uses a set of lexical categories to represent constituents
(Steedman 2000). In particular, a fixed finite set is used as a
basis for constructing other categories, which is described in
Table 1.

Category Description
N noun

NP noun phrase
PP prepositional phrase
S sentence

Table 1: The description of basic categories used in CCG

The basic categories could be used to generate an infinite
set C of functional categories by applying the following re-
cursive definition:

• N,NP, PP, S ∈ C

• X/Y,X\Y ∈ C if X,Y ∈ C

Each functional category specifies some arguments. Com-
bining the arguments can form a new category according to
the orders (Steedman and Baldridge 2011). The argument
could be either basic or functional, and the orders are de-
termined by the forward slash / and the backward slash \.
A category X/Y is a forward functor which could accept
an argument Y to the right and get X , while the backward
functor X\Y should accept its argument Y to the left.

Neuron Based Supertaggers

CCG supertagging is an approach for assigning lexical cate-
gories for each word in a sentence. The problem can be for-
mulated by P (c|w;θθθ), where w = [w1, . . . , wT] indicates
the T words in a sentence, and c = [c1, . . . , cT] indicates
the corresponding lexical categories. Notice that the length
of the words and categories are the same. We denote vectors
with bolded font and matrices with capital letters. Bias terms
in neural networks are omitted for readability.

Network Inputs. Network inputs are the representation of
each token in a sequence. Our inputs include the concatena-
tion of word representations, character representations, and
capitalization representations. To reduce sparsity, all words

are lower-cased, together with capitalization and character
representations as inputs.

Formally, we can represent the distributed word feature
fwt

using a concatenation of these embeddings:

fwt = [Lw(wt);La(at);Lc(cw)] (1)

where wt, at represent the current word and its capitaliza-
tion. cw := [c1, c2, . . . , cTw], where Tw is the length of the
word and ci, i ∈ {1, . . . , Tw} is the i-th character for the
particular word. Lw(·) ∈ R

|Vw|×n, La(·) ∈ R
|Va|×m and

Lc(·) ∈ R
|Vc|×r are the look-up tables for the words, capi-

talization and characters, respectively. fwt
∈ R

n+m+r rep-
resents the distributed feature of wt. A context window of
size d surrounding the current word is used as an input:

xt = [fwt−�d/2� ; . . . ; fwt+�d/2�] (2)

where xt ∈ R
(n+m+r)×d is the concatenation of the context

features. We use it as the input of the network.

Network Outputs.

Since our goal is to assign CCG categories to each word, we
use a softmax activation function g(·) in the output layer:

yt = g(Whyht) (3)

where yt ∈ R
K is a probability distribution over all possible

categories. yk(t) =
exp(hk)∑
k′ exp(hk′)

is the k-th dimension of yt,
which corresponds to the k-th lexical category in the lexicon.
ht ∈ R

H is the output of the hidden layer at time t. Why ∈
R

K×H is the hidden-to-output weight.

Inputs to Outputs Mappings. Neuron based supertaggers
model the inputs to outputs mappings using neural networks.
Since CCG supertagging can either be treated as a point or
a sequential estimation problem, which correspond to two
kinds of neural networks: MLPs and RNNs, respectively.
For simplicity, we will talk about gated RNNs only, which
are special kinds of RNNs with logistic gates in the hidden
units to control information flow. There are many kinds of
gated RNNs, such as long short-term memory, (Hochreiter
and Schmidhuber 1997) and gated recurrent unit (Cho et al.
2014). We focus on LSTMs only in this work.

LSTMs replace the hidden units in vanilla RNNs with
complicated blocks, which are designed as:

c̃t = σ(Wxcxt +Whcht−1) (4)
ct = ft � ct−1 + it � c̃t (5)
ht = ot � f(ct) (6)

where xt and ht are the input and the output of the block.
it ∈ R

H , ft ∈ R
H and ot ∈ R

H denote the input gate, forget
gate and output gate, respectively, which are logistic units to
filter the information. Wxc ∈ R

H×I is the weight storing
the input. Whc ∈ R

H×H is the recurrent weight connecting
the previous block outputs to the cells. ct ∈ R

H is the short-
term memory state, which is used to store the history infor-
mation. Based on the three gates, the information flow in ct
can be kept for a long time. f(·) is the non-linear mapping,
here we use the hyperbolic tangent function f(z) = ez−e−z

ez+e−z .

3338

A Dynamic Window Approach

In this section we will introduce a dynamic window ap-
proach for supertagging. Specifically, we add logistic gates
to each token in the context window to filter the unnecessary
information. We can modify the Eq. (2) to:

x̃t = rt ⊗ xt (7)
:= [rt−�d/2�fwt−�d/2� ; . . . ; rt+�d/2�fwt+�d/2�] (8)

Here ⊗ denote an element-wise scalar-vector product.
rt := [rt−�d/2�, . . . , rt+�d/2�] ∈ R

d is a logistic gate to filter
the unnecessary contexts. ri and fi, i ∈ {t− �d/2�, . . . , t+
�d/2�} is a scalar and a vector, respectively. Their product
is defined as:

rf := [rf1, . . . , rfn]

One perspective for the filter gate is an attention model
focusing on the necessary contexts. This effect can be visu-
alized in Figure 1: If one component of r, say ri is 0, the
corresponding word feature fwi

will be removed or deacti-
vated from the input.

Design of the Gates

We use a feed-forward neural network to learn rt:

rt = σ(Wxrxt) (9)

where σ(·) is the sigmoid function defined as σ(z) =
1

1+e−z . This function is to make sure the values of rt are
between 0 and 1. xt is network input, as defined in Eq. (2).
rt ∈ R

d is the output of the dynamic window model, where
d is the window size. Wxr ∈ R

d×I is the weight to be
learned.

One disadvantage of the sigmoid function is when a neu-
ron is nearly saturated, its derivative becomes small, which
makes the connecting weights change very slowly. If some
neurons in rt are saturated, which states will be stable and
may not generalize well. To further improve the sparsity in
the context window, we add a dropout mask (Srivastava et
al. 2014) on rt:

li(t) ∼ Bernouli(p) (10)
r̃t = lt � rt (11)

where lt is a vector of independent Bernouli random vari-
ables li(t), which has probability p of being 1. Since r̃t acts
on each word feature in the context window, this dropout
can be viewed as drop on words directly (Dai and Le 2015;
Iyyer, Manjunatha, and Boyd-Graber 2015). One minor dif-
ference is they use word dropout at the sentence level, and
we use it at the dynamic window level.

To further explain it, let’s consider a trivial case when all
items in rt are set to 1:

rt = [1, . . . , 1] (12)

Adding a dropout mask on such a rt is equivalent to drop
the words in the contexts randomly, which can be seen as a
window approach with a random size.

Embedded into MLPs

For MLPs with this approach, we can use the filtered context
as an input:

ht = f(Wxhx̃t) (13)

yt = g(Whyht) (14)

where x̃t is defined in Eq. (7). We use the filtered context
as an input to the hidden layer. Wxh ∈ R

H×I and Why ∈
R

K×H is the weight parameters of MLP.

Embedded into Vanilla RNNs

The similar approach can be applied to RNNs with slight
modifications. For each hidden state we have two types of
inputs: one is from the input layer, the other is from the hid-
den (Elman 1990) or the output layer (Jordan 1986). The re-
current weight may vanish or explode if its eigenvalues are
deviated from 1. To avoid these problems, we add one gate
to the recurrent input to reset it:

r̃t = σ(Wxrxt) (15)
st = σ(Wxsxt) (16)

where st ∈ R is a scalar between 0 and 1, which is used to
reset the recurrent input. Wxs ∈ R

1×I is the corresponding
hidden-to-output weight. Intuitively, if st is close to zero, the
recurrent input Wycyt−1 will be disappeared, which degen-
erates to a MLP.

Taken a Jordan-type RNN as an example, we have:

h̃t = f(Wxhx̃t + stW
yhyt−1) (17)

yt = g(Whyh̃t) (18)

where h̃t ∈ R
H is the output of the hidden layer. x̃t is the

current input. yt−1 ∈ R
K is the previous output of the out-

put layer. Wyh ∈ R
H×K is the recurrent weight from the

previous output layer to the current hidden layer.

Embedded into Gated RNNs

For gated RNNs, we use a two-stacked bidirectional LSTM
(Bi-LSTM) to model the task. The architecture can be de-
fined as follows:

−→
ht = LSTM(−→xt,

−−→
ht−1,

−−→ct−1) (19)
←−
ht = LSTM(←−xt,

←−−
ht−1,

←−−ct−1) (20)

yt = g(
−→
ht,

←−
ht) (21)

where LSTM(·) is the LSTM computation. −→xt and ←−xt are the
forward and the backward input sequence, respectively. The
output of the two hidden layers

−→
ht and

←−
ht in a birectional

LSTM are stacked on top of each other:

hl
t = f l(hl−1

t ,hl
t−1) (22)

where hl
t is the t-th hidden state of the l-th layer.

3339

Discussion

The main idea of the attention mechanism is to focus on
parts of the memories, which are used to store the informa-
tion for prediction, such as the inputs or the hidden units.
From this perspective, our dynamic window method can be
seen as an attention-based system. Moreover, supertagging
is a special kind of sequence-to-sequence problem, in which
the input and the output sequence has the same length. Thus,
we do not need to use an encoder to memorize the input and
use another decoder to generate the output.

The difference between the two attention mechanisms lies
in the type of memories. In the encoder-decoder architecture,
the attention model is considered through a weighted aver-
age of the output of the encoder. The reason is that they use a
encoder and a decoder to model the variable-length outputs,
and the memories are the encoder hidden states, while in the
supertagging problem, we only use a encoder to do the task,
our memories are just the inputs.

Experiments

We divide our experiments into two steps: First we make
comparisons with the existing approaches to test the per-
formance of our models. The comparisons do not include
any externally labeled data or POS labels. Then we describe
quantitative results which validate the effectiveness of our
dynamic window approach.

Dataset and Pre-Processing

Our experiments are performed on CCGBank (Hockenmaier
and Steedman 2007), which is a translation from Penn Tree-
bank (Marcus, Marcinkiewicz, and Santorini 1993) to CCG
with a coverage 99.4%. We follow the standard splits, using
sections 02-21 for training, section 00 for development and
section 23 for the test. We use a full category set containing
1285 tags. All digits are mapped into the same digit ‘9’, and
all words are lowercased.

Network Configuration

Initialization.

There are two types of weights in our experiments: recur-
rent and non-recurrent weights. For non-recurrent weights,
we initialize word embeddings with the pre-trained 200-
dimensional GolVe vectors (Pennington, Socher, and Man-
ning 2014). Other weights are initialized with the Gaussian
distribution N (0, 1√

fan-in
) scaled by a factor of 0.1, where

fan-in is the number of units in the input layer. For recurrent
weight matrices, we initialize with random orthogonal ma-
trices through SVD (Saxe, McClelland, and Ganguli 2013)to
avoid unstable gradients. Orthogonal initialization for recur-
rent weights is important in our experiments, which takes
about 2% relative performance gain than other methods such
as Xavier initialization (Glorot and Bengio 2010).

Hyperparameters.

For MLPs, we use a window size of 9. For vanilla RNNs
and gated RNNs, a window size of 3 is enough to capture
the local contexts. The dimension of the word embeddings

is 200. The size of character embedding and capitalization
embeddings are set to 5. We set the maximum number of a
word’s characters to 5 to eliminate complexity, which means
we concatenate the leftmost 5 characters to the rightmost 5
characters as character representations. The number of cells
of the stacked Bi-LSTM is set to 512. We also tried 400
cells or 600 cells and found this number did not impact per-
formance so much. All stacked hidden layers have the same
number of cells. The output layer has 1286 neurons, which
equals to the number of tags in the training set with a RARE
symbol.

Training.

We train the networks using the back-propagation algorithm,
using stochastic gradient descent (SGD) algorithm with an
fixed learning rate 0.02 for all layers. We also tried other
optimization methods, such as momentum (Plaut and others
1986), Adadelta (Zeiler 2012), or Adam (Kingma and Ba
2014), but none of them perform as well as SGD. Gradient
clipping is not used. We use on-line learning in our experi-
ments, which means the parameters will be updated on every
training sequences, one at a time.

We use a negative log-likelihood cost to evaluate the per-
formance. Given a training set {(xn, tn)Nn=1}, the objective
function can be written as:

C = − 1

N

N∑

n=1

logytn (23)

where tn ∈ N is the true target for sample n, and ytn is the
t-th output in the softmax layer given the inputs xn.

Figure 2: Comparison between dropout on the dynamic filter
and dropout on word embeddings using a stacked Bi-LSTM
on the development set. “Bi-LSTM, drop on filter” means
the Bi-LSTM with dropout on the dynamic filter.

Regularization.

Dropout is the only regularizer in our model to avoid over-
fitting. We add a dropout mask to our filter gate rt with a
drop rate 0.5, which is helpful to improve the performance.

3340

Figure 2 shows such the comparison of the filter dropout and
the embedding dropout. Here the embedding dropout refers
to dropout on xt. We can see that the filter dropout could im-
prove the 1-best accuracy by about 0.3% than the embedding
dropout. We also apply dropout to the output of the hidden
layer with a 0.5 drop rate. At test time, weights are scaled
with a factor 1− p.

Results on Supertagging Accuracy

We report the highest 1-best supertagging accuracy on the
development set for final testing. Table 2 shows the com-
parisons of accuracy on CCGBank. We notice that stacked
Bi-LSTM (with depth 2) performs the best than other neural
based models, which are introduced in the previous section.
For example, the Jordan-type RNN in Table 2 are described
in Eq (17). Our dynamic window approach provides about
8% relative performance improvement. The character-level
information (+ 4% relative accuracy) are helpful to improve
the performance.

Model Dev Test
Clark and Curran (2007) 91.5 92.0
Lewis et al. (2014) 91.3 91.6
Lewis et al. (2016) 94.1 94.3
Xu et al. (2015) 93.1 93.0
Xu et al. (2016) 93.49 93.52
Vaswani et al. (2016) 94.24 94.5
MLP 92.06 92.28
Elman RNN 92.74 92.89
Jordan RNN 92.61 92.75
forward LSTM 93.39 93.51
Bi-LSTM 94.35 94.57
stacked Bi-LSTM (depth 2) 94.5 94.71
stacked Bi-LSTM (no dyn) 94.17 94.30
stacked Bi-LSTM (no char) 94.16 94.46

Table 2: 1-best supertagging accuracy on CCGbank. “no
dyn” refers to the models that do not use the filter gates to
concatenate the tokens in a context window, “no char” refers
to the models that do not use the character-level information,
“drop emb” refers to dropout on word embeddings rather
than on dynamic filters.

On the Usage of Dynamic Filters

We discuss other types of the dynamic filters. One is to use
a element-wise operation on xt. In this case, rt is a matrix,
and the operation in Eq. (8) becomes:

x̃t = rt � xt (24)
:= [rt−�d/2� � fwt−�d/2� ; . . . ; rt+�d/2� � fwt+�d/2�] (25)

Here � denote an element-wise product. The performance
is 94.25% (Table 3, line 2), which shows that the gate is
preferred to operate on words directly, rather than on word
embeddings.

We can also use a MLP instead of a one-layer network to

Filters Accuracy Remark
one layer (origin) 94.7 rt ∈ R

d, x̃t = rt ⊗ xt

one layer (CNN) 94.25 rt ∈ R
I , x̃t = rt � xt

two layer(MLP) 94.43 Eq. (26)
weighted average 94.15 x̃t =

∑d
i=1 rifi

Table 3: Comparisons of different dynamic filters using a
stacked Bi-LSTM model. “two layer” refers to using a two
layer feed-forward neural network to learn dynamic filters.
rt � xt is a element-wise product.

learn the dynamic filters:

ut = σ(Wxuxt)

rt = σ(Wurut) (26)

where we add a hidden layer ut ∈ R
u to learn rt. But the

performance is not good (94.43%, Table 3, line 3) with an
extra computational cost.

The weighted average on the inputs
∑d

i=1 rifi is a stan-
dard method for attention, which leads to a poor result of
94.15% (Table 3, line 4). This shows the gated concatenation
is superior to the weighted average for sequence tagging.

Effects of the Dynamic Window Approach

Figure 3 shows the effectiveness of our dynamic window ap-
proach on a stacked Bi-LSTM model. We can observe at first
10 epochs the Bi-LSTM + dyn performs worse than the orig-
inal Bi-LSTM model due to filtered inputs, but after that the
performance of the Bi-LSTM + dyn improves about 0.3%.

Figure 3: Comparison of a stacked Bi-LSTM with and with-
out the dynamic window approach on the development set.
“Bi-LSTM+dyn” denotes the stacked Bi-LSTM with the dy-
namic window approach.

Visualizations

Our model uses filter gates to dynamically choose the
needed contexts. To understand this mechanism, we ran-

3341

(a) C(make) (b) C(series) (c) C(chance)

(d) C(the) (e) C(review) (f) C(he)

Figure 4: Examples of the activations of filter gates for different contexts. (red indicates filters saturated near 1, white indicates
filters unsaturated near 0), C(·) refers to the fixed context surrounding the center word.

domly choose some words to visualize the dynamic activ-
ities during training. All the visualizations are done using an
MLP on CCGBank Section 02-21.

Figure 4 shows the different dynamic activities for the
words. Each sub-figure has 9 blocks (a window size of 9),
each of which shows an activation of one filter li(t), i ∈
{1, . . . , 9}. After training to convergence, the items far away
from the middle words are gradually removed from the con-
texts, while the attentions are gradually focused on the items
nearby the central words. We can observe that for different
words, their dynamic activities are different.

Related Work

Clark and Curran (2007) use a log-linear model to build the
supertagger, using discrete feature functions for the targets
based on the words and POS tags. The discrete property
of the model makes the features independent of each other.
Lewis and Steedman (2014) propose a semi-supervised su-
pertagging model using a multi-layer perceptron (MLP)
based on Collobert (2011) and conditional random field
(CRF) proposed by Turian et al. (2010). Without using POS
tags, they use the per-trained word embeddings with 2-
character suffix and capitalization as features to represent
the word. This distributed embedding encodes the word sim-
ilarities and provides a better representation than log-linear
models. However, MLP based supertagger ignores the se-
quential information, and their CRF based model can cap-
ture this but takes far more computational complexity than
the MLP model due to the huge number of supertags.

The supertaggers based on log-linear and MLP are all
point estimators, while CCG supertagging is more suitable
to be treated as a sequential estimation problem due to long-
range dependencies of the predicate-argument relations con-
tained in lexical categories. Recently, Xu et al. (2015) design
an Elman-type RNN to capture these dependencies, and use
a fixed size window for each word as MLPs. The recurrent
matrix in RNN can restore the historical information, which
makes it outperform the MLP based model. But RNNs may
suffer from the gradient vanishing/exploding problems and
are not good at capturing long-range dependencies in prac-
tice. Vaswani et al. (2016) and Lewis et al. (2016) shows
the effectiveness of Bi-LSTMs in supertagging, but they do
not use a context window for the inputs. We only get 93.9%
performance on the development set without using context
windows. We find that a window size of 3 is needed in the
stacked Bi-LSTM to get a better performance.

Our model can be treated as a marriage between attention
mechanism and dropout. The most relevant attention-based
models relating to our work is Wang et al. (2015), in which

they use an attention model to find the relevant words within
the context for predicting the center word. Their attention
mechanism is similar to Bahdanau et al. (2014), while ours
was not originally designed as a weighted average but a
gated concatenation. Dropout on the dynamic window is
similar to (Dai and Le 2015), which randomly drop words in
the input sentences. Gal (2015) also use dropout on words,
but using a fixed mask rather a random one.

Conclusion

We presented a dynamic window approach for CCG su-
pertagging. Our model uses logistic gates to filter the context
window surrounding the center word. This attention mech-
anism shows effectiveness on both MLPs and RNNs. We
observed that using dropout on the dynamic window will
greatly improve the generalization performance. We further
visualized the activation of the filters, which is useful to help
us understanding the dynamic activities. Although our work
mainly focus on the CCG supertagging, this method can be
easily applied to other sequence tagging tasks, such as POS
tagging and named entity recognition (NER).

Acknowledgments

The research work has been funded by the Natural Sci-
ence Foundation of China under Grant No. 61333018 No.
91520204 and supported by the Strategic Priority Research
Program of the CAS under Grant No. XDB02070007. We
thank the anonymous reviewers for their useful comments
that greatly improved the manuscript.

References

Artzi, Y.; Lee, K.; and Zettlemoyer, L. 2015. Broad-
coverage CCG semantic parsing with amr. In Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, 1699–1710. Association for Compu-
tational Linguistics.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Bos, J.; Clark, S.; Steedman, M.; Curran, J. R.; and Hock-
enmaier, J. 2004. Wide-coverage semantic representations
from a CCG parser. In Proceedings of the 20th international
conference on Computational Linguistics, 1240. Associa-
tion for Computational Linguistics.
Bos, J. 2005. Towards wide-coverage semantic interpre-
tation. In Proceedings of Sixth International Workshop on
Computational Semantics IWCS, volume 6, 42–53.

3342

Bos, J. 2008. Wide-coverage semantic analysis with boxer.
In Proceedings of the 2008 Conference on Semantics in Text
Processing, 277–286. Association for Computational Lin-
guistics.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.
Clark, S., and Curran, J. R. 2007. Wide-coverage efficient
statistical parsing with ccg and log-linear models. Compu-
tational Linguistics 33(4):493–552.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. The Journal of Machine
Learning Research 12:2493–2537.
Dai, A. M., and Le, Q. V. 2015. Semi-supervised sequence
learning. In Advances in Neural Information Processing
Systems, 3061–3069.
Elman, J. L. 1990. Finding structure in time. Cognitive
science 14(2):179–211.
Gal, Y. 2015. A theoretically grounded application
of dropout in recurrent neural networks. arXiv preprint
arXiv:1512.05287.
Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Ais-
tats, volume 9, 249–256.
Hochreiter, S., and Schmidhuber, J. 1997. Lstm can solve
hard long time lag problems. Advances in neural informa-
tion processing systems 473–479.
Hockenmaier, J., and Steedman, M. 2007. Ccgbank: a
corpus of CCG derivations and dependency structures ex-
tracted from the penn treebank. Computational Linguistics
33(3):355–396.
Iyyer, M.; Manjunatha, V.; and Boyd-Graber, J. 2015.
Deep unordered composition rivals syntactic methods for
text classification.
Jordan, M. I. 1986. Attractor dynamics and parallellism in
a connectionist sequential machine.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2010. Inducing probabilistic CCG grammars from
logical form with higher-order unification. In Proceedings
of the 2010 conference on empirical methods in natural lan-
guage processing, 1223–1233. Association for Computa-
tional Linguistics.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2011. Lexical generalization in CCG grammar in-
duction for semantic parsing. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Process-
ing, 1512–1523. Association for Computational Linguistics.
Lewis, M., and Steedman, M. 2013. Combining distribu-
tional and logical semantics. Transactions of the Association
for Computational Linguistics 1:179–192.

Lewis, M., and Steedman, M. 2014. Improved CCG pars-
ing with semi-supervised supertagging. Transactions of the
Association for Computational Linguistics 2:327–338.
Lewis, M.; Lee, K.; and Zettlemoyer, L. 2016. Lstm ccg
parsing. In Proceedings of the 15th Annual Conference of
the North American Chapter of the Association for Compu-
tational Linguistics.
Ling, W.; Chu-Cheng, L.; Tsvetkov, Y.; Amir, S.; Astudillo,
R. F.; Dyer, C.; Black, A. W.; and Trancoso, I. 2015. Not all
contexts are created equal: Better word representations with
variable attention. EMNLP.
Marcus, M. P.; Marcinkiewicz, M. A.; and Santorini, B.
1993. Building a large annotated corpus of english: The
penn treebank. Computational linguistics 19(2):313–330.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, vol-
ume 14, 1532–43.
Plaut, D. C., et al. 1986. Experiments on learning by back
propagation.
Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2013. Ex-
act solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Steedman, M., and Baldridge, J. 2011. Combinatory cate-
gorial grammar. Non-Transformational Syntax: Formal and
Explicit Models of Grammar. Wiley-Blackwell.
Steedman, M. 2000. The syntactic process, volume 24. MIT
Press.
Turian, J.; Ratinov, L.; and Bengio, Y. 2010. Word repre-
sentations: a simple and general method for semi-supervised
learning. In Proceedings of the 48th annual meeting of the
association for computational linguistics, 384–394. Associ-
ation for Computational Linguistics.
Vaswani, A.; Bisk, Y.; Sagae, K.; and Musa, R. 2016. Su-
pertagging with lstms. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL.
Xu, W.; Auli, M.; and Clark, S. 2015. CCG supertagging
with a recurrent neural network. Volume 2: Short Papers
250.
Xu, W.; Auli, M.; and Clark, S. 2016. Expected f-measure
training for shift-reduce parsing with recurrent neural net-
works. In Proceedings of NAACL-HLT, 210–220.
Zeiler, M. D. 2012. Adadelta: An adaptive learning rate
method. arXiv preprint arXiv:1212.5701.
Zettlemoyer, L. S., and Collins, M. 2007. Online learning
of relaxed CCG grammars for parsing to logical form. In
EMNLP-CoNLL, 678–687.

3343

