
Neural Models for Sequence Chunking

Feifei Zhai, Saloni Potdar, Bing Xiang, Bowen Zhou
IBM Watson

1101 Kitchawan Road, Yorktown Heights, NY 10598
{fzhai,potdars,bingxia,zhou}@us.ibm.com

Abstract

Many natural language understanding (NLU) tasks, such as
shallow parsing (i.e., text chunking) and semantic slot fill-
ing, require the assignment of representative labels to the
meaningful chunks in a sentence. Most of the current deep
neural network (DNN) based methods consider these tasks
as a sequence labeling problem, in which a word, rather
than a chunk, is treated as the basic unit for labeling. These
chunks are then inferred by the standard IOB (Inside-Outside-
Beginning) labels. In this paper, we propose an alternative ap-
proach by investigating the use of DNN for sequence chunk-
ing, and propose three neural models so that each chunk can
be treated as a complete unit for labeling. Experimental re-
sults show that the proposed neural sequence chunking mod-
els can achieve start-of-the-art performance on both the text
chunking and slot filling tasks.

Introduction

Semantic slot filling and shallow parsing which are stan-
dard NLU tasks fall under the umbrella of natural language
understanding (NLU), which are usually solved by label-
ing meaningful chunks in a sentence. This kind of task is
usually treated as a sequence labeling problem, where ev-
ery word in a sentence is assigned an IOB-based (Inside-
Outside-Beginning) label. For example, in Figure 1, in the
sentence “But it could be much worse” we label “could” as
B-VP, “be” as I-VP, and “it” as B-NP, while “But” belongs
to an artificial class O. This labeling indicates that a chunk
“could be” is a verb phrase (VP) where the label prefix B
means the beginning word of the chunk, while I refers to the
other words within the same semantic chunk; and “it” is a
single-word chunk with NP label.

Such sequence labeling forms the basis for many recent
deep network based approaches, e.g., convolutional neural
networks (CNN), recurrent neural networks (RNN) or its
variation, long short-term memory networks (LSTM). RNN
and LSTM are good at capturing sequential information
(Yao et al. 2013; Huang, Xu, and Yu 2015; Mesnil et al.
2015; Peng and Yao 2015; Yang, Salakhutdinov, and Co-
hen 2016; Kurata et al. 2016; Zhu and Yu 2016), whereas
CNN can extract effective features for classification (Xu and
Sarikaya 2013; Vu 2016).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

But it could

O B-NP B-VP

be

I-VP

much

B-ADJP

worse

I-ADJP

Figure 1: An example of text chunking where each word is
labeled using the IOB scheme. The chunk “could be” is a
verb phrase (VP) and “it” is a single-word chunk with NP
label.

Most of the current DNN based approaches use the IOB
scheme to label chunks. However, this approach of these
labels has a few drawbacks. First, we don’t have an ex-
plicit model to learn and identify the scope of chunks in a
sentence, instead we infer them implicitly (by IOB labels).
Hence the learned model might not be able to fully utilize
the training data which could result in poor performance.
Second, some neural networks like RNN or LSTM have the
ability to encode context information but don’t treat each
chunk as a complete unit. If we can eliminate this draw-
back, it could result in more accurate labeling, especially
for multi-word chunks.

Sequence chunking is a natural solution to overcome the
two drawbacks mentioned before. In sequence chunking, the
original sequence labeling task is divided into two sub-tasks:
(1) Segmentation, to identify scope of the chunks explicitly;
(2) Labeling, to label each chunk as a single unit based on
the segmentation results.

Lample et al. (2016) used a stack-LSTM (Dyer et al.
2015) and a transition-based algorithm for sequence chunk-
ing. In their paper, the segmentation step is based on shift-
reduce parser based actions. In this paper, we propose an
alternative approach by relying only on the neural architec-
tures for NLU. We investigate two different ways for seg-
mentation: (1) using IOB labels; and (2) using pointer net-
works (Vinyals, Fortunato, and Jaitly 2015) and propose
three neural sequence chunking models. Pointer network
performs better than the model using IOB. In addition, it also
achieves state-of-the-art performance on both text chunking
and slot filling tasks.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3365

Basic Neural Networks

Recurrent Neural Network

Recurrent neural network (RNN) is a neural network that is
suitable for modeling sequential information. Although the-
oretically it is able to capture long-distance dependencies,
in practice it suffers from the gradient vanishing/exploding
problems (Bengio, Simard, and Frasconi 1994). Long short-
term memory networks (LSTM) were introduced to cope
with these gradient problems and model long-range de-
pendencies (Hochreiter and Schmidhuber 1997) by using a
memory cell. Given an input sentence x = (x1, x2, ..., xT)
where T is the sentence length, LSTM hidden state at
timestep t is computed by:

it = σ(W ixt + U iht−1 + bi)

ft = σ(W fxt + Ufht−1 + bf)

ot = σ(W oxt + Uoht−1 + bo)

gt = tanh(W gxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where σ(·) and tanh(·) are the element-wise sigmoid and hy-
perbolic tangent functions, � is the element-wise multipli-
cation operator, and it,ft,ot are the input, forget and output
gates. ht−1 and ct−1 are the hidden state and memory cell
of previous timestep respectively. To simplify the notation,
we use xt to denote both the word and its embedding.

The bi-directional LSTM (Bi-LSTM), a modification of
the LSTM, consists of a forward and a backward LSTM. The
forward LSTM reads the input sentence as it is (from x1 to
xT) and computes the forward hidden states (

−→
h1,

−→
h2, ...,

−→
hT),

while the backward LSTM reads the sentence in the reverse
order (from xT to x1), and creates backward hidden states
(
←−
h1,

←−
h1, ...,

←−
hT). Then for each timestep t, the hidden state

of the Bi-LSTM is generated by concatenating
−→
ht and

←−
ht ,←→

ht = [
−→
ht ;

←−
ht] (2)

Convolutional Neural Network

Convolutional Neural Networks (CNN) have been used to
extract features for sentence classification (Kim 2014; Ma
et al. 2015; dos Santos, Xiang, and Zhou 2015). Given a
sentence, a CNN with m filters and a filter size of n extracts
a m-dimension feature vector from every n-gram phrase of
the sentence. A max-over-time pooling (max-pooling) layer
is applied over all extracted feature vectors to create the final
indicative feature vector (m-dimension) for the sentence.

Following this approach, we use CNN and max-pooling
layer to extract features from chunks. For each identified
chunk, we first apply CNN to the embedding of its words
(irrespective of it being a single-word chunk or chunk), and
then use the max-pooling layer on top to get the chunk fea-
ture vector for labeling. We use CNNMax to denote the two
layers hereafter.

Proposed Models
In this section, we introduce the different neural models for
sequence chunking and discuss the final learning objective.

But it could be much worse

O B B I B I

VP ⎧⎨⎩ ADJP ⎧⎨⎩NP {

Figure 2: Model I: Single Bi-LSTM model for both segmen-
tation and labeling subtasks.

Model I

For segmentation, the most straightforward and intuitive
way is to transform it into a sequence labeling problem with
3 classes : I - inside, O - outside, B - beginning; and then un-
derstand the scope of the chunks from these labels. Building
on this, we propose Model I, which is a Bi-LSTM as shown
in Figure 2. In the model, we take the bi-LSTM hidden states
generated by Formula (2) as features for both segmentation
and labeling.

For example, we first classify each word into an IOB label
as shown in (Figure 2). Suppose a chunk begins at word i
with length l (with one B label and followed by (l − 1) I
labels), then we can compute a feature vector for a chunk as
follows:

Chj = Average(
←→
hi ,

←−→
hi+1, ...,

←−−→
hi+l−1) (3)

where j is the chunk index of the sentence, and
Average(·) computes the average of the input vectors. With
Chj , we apply a softmax layer over all chunk labels for la-
beling. For example in Figure 2, “much worse” is identified
as a chunk with length 2; and we apply Formula (3) on its
hidden states, to finally get the “ADJP” label.

Model II

A drawback of Model I is that a single Bi-LSTM may not
perform well on both segmentation and labeling subtasks.
To overcome this we propose Model II, which follows the
encoder-decoder framework (Figure 3) (Sutskever, Vinyals,
and Le 2014; Bahdanau, Cho, and Bengio 2014). Similar to
Model I, we employ a Bi-LSTM for segmentation with IOB
labels1. This Bi-LSTM will also serve as an encoder and
create a sentence representation [

−→
hT ;

←−
h1] (by concatenating

the final hidden state of the forward and backward LSTM)
which is used to initialize the decoder LSTM.

We modify the general encoder-decoder framework and
use chunks as the inputs instead of words. For example,
much worse is a chunk in Figure 3, and we take it as a sin-
gle input to the decoder. The input chunk representation Cj

consists of several parts. We first use the CNNMax layer to
extract important information from words inside the chunk:

Cxj = g(xi, xi+1, ..., xi+l−1) (4)

1Note that in Model I and II, we cannot guarantee that label “O”
is not followed by “I” during segmentation. If so, we just take the
first “I” as “B”. In future work it is advisable to add that as a hard
constraint.

3366

But it could be much worse

O B B I B I

But it could be much worse<s>

Figure 3: Model II: Encoder-decoder framework. The encoder Bi-LSTM is used for segmentation and the decoder LSTM is
used for labeling.

where g(·) is the CNNMax layer. Then we use the context
word embeddings of the chunk to capture context informa-
tion (Yao et al. 2013; Mesnil et al. 2015; Kurata et al. 2016).
The context window size is a hyperparameter to tune. Fi-
nally, we average the hidden states from the encoder Bi-
LSTM by Formula (3). By using these three parts, we extract
different useful information for labeling, and import them
all into the decoder LSTM. Thus, the decoder LSTM hidden
state is updated by:

hj = LSTM(Cxj , Chj , Cwj , hj−1, cj−1) (5)

here Cwj is the concatenation of context word embeddings.
Note that the computation of hidden states here is similar to
Formula (1), the only difference is that here we have three
inputs {Cxj , Chj , Cwj}. The generated hidden states are
finally used for labeling by a softmax layer.

Model III

There are two drawbacks of using IOB labels for segmen-
tation. First, it is hard to use chunk-level features for seg-
mentation, like the length of chunks. Also, using IOB labels
cannot compare different chunks directly. The shift-reduce
algorithm used in (Lample et al. 2016) has the same issue.
They both transform a multi-class classification problem (we
could have a lot of chunk candidates) into a 3-class classifi-
cation problem, in which the chunks are inferred implicitly.

To resolve this problem, we further propose Model III,
which is an encoder-decoder-pointer framework (Figure 4)
(Nallapati et al. 2016). Model III is similar to Model II, the
only difference being the method of identifying chunks.

Model III is a greedy process of segmentation and label-
ing, where we first identify one chunk, and then label it. This
process is repeated until all the words are processed. As all
chunks are adjacent to each other 2, after one chunk is iden-
tified, the beginning point of the next one is also known, and
only its ending point is to be determined. We adopt pointer
network (Vinyals, Fortunato, and Jaitly 2015) to do this. For
a possible chunk beginning at timestep b, we first generate a
feature vector for each possible ending point candidate i:

ui
j = vT1 tanh(W1

←→
hi +W2xi +W3xb +W4dj)

+ vT2 LE(i− b+ 1) i ∈ [b, b+ lm)
(6)

where j is the decoder timestep (i.e., chunk index), lm is
the maximum chunk length. We use the encoder hidden
state

←→
hi , the ending point candidate word embedding xi,

2Here as we don’t know the label of each chunk during segmen-
tation, we need to feed all the chunks to the decoder for labeling.

together with current beginning word embedding xb and de-
coder hidden state dj as features. We also use the chunk
length embedding, LE(i−b+1), as the chunk level feature.
W1,W2,W3,W4,v1,v2 and LE are all learnable parameters.
Then the probability of choosing ending point candidate i is:

p(i) =
exp(ui

j)∑b+lm−1
k=b exp(uk

j)
(7)

We use this probability to identify the scope of chunks. For
example, suppose we just identified word it as a one word
chunk with label NP in Figure 4. Following the line emit-
ted from it, we will need to decide the ending point of the
next chunk (the beginning point is obviously the word could
after it). With the maximum chunk length 2, we have two
choices, one is to stop at word could and gets a one word
chunk could, and the other is to stop at word be and gener-
ates a two word chunk could be. From the figure, we can see
that the model selects the second case (red circle part), and
creates a two word chunk. This chunk will serve as the input
of the next decoder timestep. The decoder hidden states are
updated similar to Model II (Equation 5).

Learning Objective

As we described above, all the aforementioned models solve
two subtasks - segmentation and labeling. We use the cross-
entropy loss function for both the two subtasks, and sum the
two losses to form the the learning objective:

L(θ) = Lsegmentation(θ) + Llabeling(θ) (8)

where θ denotes the learnable parameters. Alternatively, we
could also use weighted sum, or do multi-task learning by
considering segmentation and labeling as the two tasks. We
leave these extensions as future work.

Experiments

Experimental Setup

We conduct experiments on text chunking and semantic slot
filling respectively to test the performance of the neural se-
quence chunking models we propose in this paper. Both
these tasks identify the meaningful chunks in the sentence,
such as the noun phrase (NP), or the verb phrase (VP) for
text chunking in Figure 1, and the “depart city” for slot fill-
ing task in Figure 5.

We use the CoNLL 2000 shared task (Tjong Kim Sang
and Buchholz 2000) dataset for text chunking. It contains
8,936 training and 893 test sentences. There are 12 different
labels (22 with IOB prefix included). Since it doesn’t have a

3367

But it could be

length: 1

length: 1

length: 2

length: 2

<s>

But it could be much worse

much worse

Figure 4: Model III: Encoder-decoder-pointer framework. Segmentation is done by a pointer network and a decoder LSTM is
used for labeling.

flights from San

O O B-depart_city

Diego

I-depart_city

to

O

Boston

B-arrival_city

Figure 5: An example of semantic slot filling using the IOB
scheme. “San Deigo” is a multi-word chunk with label “de-
part city”.

validation set, we hold out 10% of the training data (selected
at random) as the validation set.

To evaluate the effectiveness of our method on the seman-
tic slot filling task, we use two different datasets. The first
one is the ATIS dataset, which consists of reservation re-
quests from the air travel domain. It contains 4,978 training
and 893 testing sentences in total, with a vocabulary size
of 572. There are 84 different slot labels (127 if with IOB
prefix). We randomly selected 80% of the training data for
model training and the rest 20% as the validation set (Mes-
nil et al. 2015). Following the work of (Kurata et al. 2016),
we also use a larger dataset by combining the ATIS corpus
with the MIT Restaurant Corpus and MIT Movie Corpus
(Liu et al. 2013a; 2013b). This dataset has 30,229 training
and 6,810 testing instances. Similar to the previous dataset,
we use 80% of the training instances for training the model,
and treat the rest 20% as a validation set. This dataset has
a vocabulary size of 16,049 and the number of slot labels
is 116 (191 with IOB prefix included). Since this dataset is
considerably larger and includes 3 different domains, we use
“LARGE” to denote it hereafter.

The final performance is measured in terms of F1-score,
computed by the public available script conlleval.pl 3. We
report the F1-score on the test set with parameters that
achieves the best F1-score on the validation set. Towards the
neural sequence chunking models, after we get the label for
each chunk, we will assign each of its word an IOB-based la-
bel accordingly so that the script can do evaluation. We also
report the segmentation F1-score to assess the segmentation
performance of different models. This is also computed by
the conlleval.pl script, but only considers three labels, i.e.
{I,O,B}. To compute the segmetnation F1-score, we delete
the content label for each word, for example, if a word has
a label “B-VP”, we will delete “VP” and the left “B” is used

3http://www.cnts.ua.ac.be/conll2000/chunking/

for segmentation F1-score.
For the two tasks, we use hidden state size as 100 for the

forward and backward LSTM respectively in Bi-LSTM, and
size 200 for the LSTM decoder. We use dropout with rate 0.5
on both the input and output of all LSTMs. The mini-batch
size is set to 1. The number of training epochs are limited
to 200 for text chunking, and 100 for slot filling. 4 For the
CNN used in Model II and III on extracting chunk features,
the filter size is the same as word embedding dimension, and
the filter window size as 2. We adopt SGD to train the model,
and by grid search, we tune the initial learning rate in [0.01,
0.1], learning rate decay in [1e-6, 1e-4], and context window
size {1,3,5}.

For the word embedding, following (Kurata et al. 2016),
we don’t use pre-trained embedding for the slot filling task,
but use a randomly initialized embedding and tune the di-
mension in {30, 50, 75} by grid search. For text chunk-
ing, we concatenate two different embeddings. The first is
SENNA embedding (Collobert et al. 2011) with dimension
50. 5 The other is a word representation generated based on
its composed characters. we adopt a CNN onto the randomly
initialized character embeddings, with 30 filters and filter
window size 3.

Text Chunking Results

Results on the text chunking task are shown in Table 1. In
this, the “baseline (Bi-LSTM)” refers to a Bi-LSTM model
for sequence labeling (use IOB-based labels on words as in
Figure 1). “F1” is the final evaluation metric, and “segment-
F1” refers to the segmentation F1-score. From the table,
we can see that Model I and Model II only have compa-
rable results with the baseline on both evaluation metrics -
segment-F1 and final F1 score. Hence, we infer that using
IOB labels to do segmentation independently might not be a
good choice. However, Model III outperforms the baseline
on both segmentation and labeling.

We further compare our best result with the current pub-
lished results in Table 2. In the table, (Collobert et al. 2011)
is the first work of using neural networks for text chunk-
ing. Huang, Xu, and Yu used a BiLSTM-CRF framework
together with a lot of handcraft features. Yang, Salakhutdi-

4We found that while 100 epochs are enough for slot filling
model to converge, we need 200 for text chunking.

5http://ronan.collobert.com/senna/

3368

F1 Segment-F1
baseline (Bi-LSTM) 94.13 95.28

Model I 94.01 95.09
Model II 94.13 95.22
Model III 94.72 95.75

Table 1: Text chunking results of our neural sequence chunk-
ing models.

nov, and Cohen extend this framework and employ a GRU to
incorporate the character information of words, rather than
using handcrafted features. To our best knowledge, they got
the current best results 94.66 on the text chunking task. 6

Different from previous work, we model the segmentation
part explicitly in our neural models, and without using CRF,
we get a state-of-the-art performance of 94.72.

Methods F1-score
SVM Classifier (Kudoh and Matsumoto 2000) 93.48
SVM Classifier (Kudo and Matsumoto 2001) 93.91

Second order CRF (Sha and Pereira 2003) 94.30
HMM + voting scheme (Shen and Sarkar 2005) 94.01

Conv network tagger (senna) (Collobert et al. 2011) 94.32
BiLSTM-CRF (Huang, Xu, and Yu 2015) 94.46

BiGRU-CRF (Yang, Salakhutdinov, and Cohen 2016)7 94.66
Model III (Ours) 94.72

Table 2: Comparison with published results on the CoNLL
chunking dataset.

Slot Filling Results

ATIS LARGE
F1 Segment-F1 F1 Segment-F1

baseline (Bi-LSTM) 95.23 98.85 75.73 80.79
Model I 95.25 98.92 76.68 79.93
Model II 95.71 98.82 77.26 79.99
Model III 95.86 99.01 78.49 82.44

Table 3: Main results of our neural sequence chunking mod-
els on slot filling task.

Segmentation Results From the Table 3, we can see that
the segment-F1 score on ATIS data is much better than the
one on LARGE data (∼99% vs. ∼80%). This is because
the ATIS data is much easier for segmentation than LARGE
data. As shown in Table 4, more than 97% of the chunks in
ATIS data have only one or two words, while the LARGE
data has much longer chunks. Also, compared to the small
ATIS vocabulary (572 words), it is harder to learn a good
segmentation model with a more complicated vocabulary
(about 16k words) in LARGE data.

Moreover, Model III gets the best segmentation perfor-
mance over all the models (99.01% and 82.44%), confirm-
ing that our pointer network in model III is good at this task.
However, Model I and II are comparable to baseline on the

6They also get a performance of 95.41, but this number is from
joint training, which needs the training data of other tasks.

ATIS LARGE
Train Test Train Test

1 10275 (77.7%) 2096 (73.9%) 28511 (46.8%) 7283 (42.8%)
2 2726 (20.6%) 659 (23.2%) 20679 (34.0%) 6214 (36.5%)

>=3 224 (1.7%) 82 (2.9%) 11694 (19.2%) 3516 (20.7%)

Table 4: Statistics on the length of chunks: The first column
denotes chunk-lengths. For example, first cell indicates that
there are 10275 chunks of length 1, and accounts for 77.7%
of all ATIS chunks.

easy ATIS data, and are about 1% worse on LARGE data.
This further confirms our analysis on text chunking experi-
ments that using IOB labels alone for segmentation, (like in
Model I and II) cannot give us a good result.

ATIS LARGE
1 2 >=3 1 2 >=3

Baseline(Bi-LSTM) 98.90 98.70 98.78 86.25 88.48 54.88
Model I 98.95 98.78 99.39 85.91 87.27 53.30
Model II 98.83 98.78 98.78 86.42 87.29 52.98
Model III 99.00 98.93 100.0 89.01 88.69 56.59

Table 5: Segment-F1 on different chunk-lengths.

We further investigate the segmentation process and show
the segmentation F1-score on different chunk lengths in Ta-
ble 5. The results demonstrate that the poor performance on
LARGE data is mainly due to the bad performance on iden-
tifying long chunks (around 55%). Our Model III improves
this score by 2% over baseline (54.88% vs. 56.59%). As the
absolute performance on this subset is still low, future re-
search efforts should focus on improving this performance.
In addition, Model I and II get comparable segmentation re-
sults with the baseline model on one-words chunks, while
being worse on longer chunks, further supporting this anal-
ysis.

Labeling Results From Table 3, we observe that Model III
has the best F1 score as compared to the baseline and other
neural chunking models. Another observation is that Model
I and II get better improvements over baseline even though
they are poor at segmentation in slot filling task.

ATIS LARGE
1 2 >=3 1 2 >=3

baseline(Bi-LSTM) 95.37 96.03 85.19 79.21 83.56 53.36
Model I 95.23 96.18 88.48 83.10 82.35 51.76
Model II 95.87 96.18 87.80 85.01 82.82 51.15
Model III 95.89 96.19 92.68 84.97 83.89 54.38

Table 6: F1-scores for different chunk-lengths

Table 6 gives some insights on this by showing the F1-
score on different chunk-lengths. Comparing Table 5 and
6, we can see when Model I and II achieve comparable
segment-F1 with baseline, and the F-1 scores are higher. For
slot filling task, the joint learning framework (Formula (8))
helps labeling while harms segmentation on model I and II.
Moreover, the usage of encoder in Model II could also help
labeling in this task (Kurata et al. 2016). Finally, our Model
III could achieve better F1 score on all chunk lengths.

3369

Comparison with Published Results We compare the
ATIS results of our best model (Model III) with current pub-
lished results in Table 7. As shown in the table, many re-
searchers have done a lot of work which uses deep neural
networks for slot filling. Recent work shows the ranking loss
is helpful (Vu et al. 2016), and adding encoder improves the
score to 95.66%. The best published result in the table is
from (Zhu and Yu 2016), which is 95.79%. Compared with
previous results, our Model III gets the state-of-the-art per-
formance 95.86%.

Methods F1-score
RNN (Yao et al. 2013) 94.11

CNN-CRF (Xu and Sarikaya 2013) 94.35
Bi-RNN (Mesnil et al. 2015) 94.73

LSTM (Yao et al. 2014) 94.85
RNN-SOP (Liu and Lane 2015) 94.89
Deep LSTM (Yao et al. 2014) 95.08

RNN-EM (Peng and Yao 2015) 95.25
Bi-RNN with ranking loss (Vu et al. 2016) 95.56

Sequential CNN (Vu 2016) 95.61
Encoder-labeler Deep LSTM (Kurata et al. 2016) 95.66

BiLSTM-LSTM (focus) (Zhu and Yu 2016) 95.79
Model III (Ours) 95.86

Table 7: Comparison with published results on the ATIS data

We compare our approach against the only set of pub-
lished results on the LARGE data from (Kurata et al. 2016),
against which we compare our approach. The reported F1
score on this dataset by their encoder-decoder model is
74.41, and our best model achieves a score of 78.49 which
is significantly higher.

Related Work

In recent years, many deep learning approaches have been
explored for resolving the sequence labeling tasks. (Col-
lobert et al. 2011) proposed an effective window-based ap-
proach, in which they used a feed-forward neural network
to classify each word and conditional random fields (CRF)
to capture the sequential information. CNNs are also widely
used for extracting effective classification features (Xu and
Sarikaya 2013; Vu 2016).

RNNs are a straightforward and better suited choice for
these tasks as they model sequential information. (Huang,
Xu, and Yu 2015) presented a BiLSTM-CRF model, and
achieved state-of-the-art performance on several tasks, like
named entity recognition and text chunking with the help of
handcrafted features. (Chiu and Nichols 2015) used a BiL-
STM for labeling and a CNN to capture character-level in-
formation, like (dos Santos and Gatti 2014) and additionally
used handcrafted features to gain good performance. Many
works have then been investigated to combine the advan-
tages of the above two works and achieved state-of-the-art
performance without handcrafted features. These works usu-
ally use a BiLSTM or BiGRU as the major labeling architec-
ture, and a LSTM or GRU or CNN to capture the character-
level information, and finally a CRF layer to model the la-
bel dependency (Lample et al. 2016; Ma and Hovy 2016;

Yang, Salakhutdinov, and Cohen 2016).
In addition, many similar works have also been explored

for slot filling, like RNN (Yao et al. 2013; Mesnil et al.
2015), LSTM (Yao et al. 2014; Jaech, Heck, and Osten-
dorf 2016), adding external memory (Peng and Yao 2015),
adding encoder (Kurata et al. 2016), using ranking loss (Vu
et al. 2016), adding attention (Zhu and Yu 2016) and so on.

In the other direction, people also developed neural net-
works to help traditional sequence processing methods, like
CRF parsing (Durrett and Klein 2015) and weighted finite-
state transducer (Rastogi, Cotterell, and Eisner 2016).

Conclusion

In this paper, we presented three different models for se-
quence chunking. Our experiments show that the segmen-
tation results of Model I and Model II are comparable to
baseline on text chunking data and ATIS data, and worse
than the baseline on LARGE data, while Model III gains
higher segment-F1 score than baseline, demonstrating that
the use of IOB labels is not suitable for building segmen-
tation models independently. Moreover, Model I and II do
not give consistent improvements on the final F1 score - the
segmentation step improves labeling on slot filling, but not
on the text chunking task. Finally, Model III consistently
performs better than baseline and gets state-of-the-art per-
formance on the two tasks. We also gain insights about the
datasets we use by comparing the segment-F1 scores and F1
scores of model III. For the text chunking data (95.75 vs.
94.72) and LARGE data (82.44 vs. 78.49), the scores are
close to each other, indicating that segmentation is a major
challenge in these two datasets compared to labeling. But
for ATIS data (99.01 vs. 95.86), the segmentation score is
almost 100 percent, so labeling seems like the main chal-
lenge in this dataset. We hope this insight encourages more
research efforts on the similar tasks. Finally, the proposed
neural sequence chunking models achieves state-of-the-art
performance on both text chunking and slot filling.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks 5(2):157–166.
Chiu, J. P., and Nichols, E. 2015. Named entity
recognition with bidirectional lstm-cnns. arXiv preprint
arXiv:1511.08308.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research 12(Aug):2493–2537.
dos Santos, C. N., and Gatti, M. 2014. Deep convolutional
neural networks for sentiment analysis of short texts. In
COLING, 69–78.
dos Santos, C.; Xiang, B.; and Zhou, B. 2015. Classifying
relations by ranking with convolutional neural networks. In

3370

ACL, 626–634. Beijing, China: Association for Computa-
tional Linguistics.
Durrett, G., and Klein, D. 2015. Neural crf parsing. In
Proceedings of ACL 2015, 302–312.
Dyer, C.; Ballesteros, M.; Ling, W.; Matthews, A.; and
Smith, N. A. 2015. Transition-based dependency parsing
with stack long short-term memory. In Proceedings of ACL
2015, 334–343.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991.
Jaech, A.; Heck, L.; and Ostendorf, M. 2016. Domain adap-
tation of recurrent neural networks for natural language un-
derstanding. arXiv preprint arXiv:1604.00117.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Kurata, G.; Xiang, B.; Zhou, B.; and Yu, M. 2016. Leverag-
ing sentence-level information with encoder lstm for seman-
tic slot filling. arXiv preprint arXiv:1601.01530.
Lample, G.; Ballesteros, M.; Kawakami, K.; Subramanian,
S.; and Dyer, C. 2016. Neural architectures for named entity
recognition. In In proceedings of NAACL 2016.
Liu, J.; Pasupat, P.; Cyphers, S.; and Glass, J. 2013a. Asgard:
A portable architecture for multilingual dialogue systems. In
ICASSP. IEEE.
Liu, J.; Pasupat, P.; Wang, Y.; Cyphers, S.; and Glass, J.
2013b. Query understanding enhanced by hierarchical pars-
ing structures. In ASRU, 72–77. IEEE.
Ma, X., and Hovy, E. 2016. End-to-end sequence la-
beling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.
Ma, M.; Huang, L.; Xiang, B.; and Zhou, B. 2015.
Dependency-based convolutional neural networks for sen-
tence embedding. In ACL, volume 2, 174–179.
Mesnil, G.; Dauphin, Y.; Yao, K.; Bengio, Y.; Deng, L.;
Hakkani-Tur, D.; He, X.; Heck, L.; Tur, G.; Yu, D.; et al.
2015. Using recurrent neural networks for slot filling in spo-
ken language understanding. IEEE/ACM Transactions on
Audio, Speech, and Language Processing 23(3):530–539.
Nallapati, R.; Zhou, B.; dos Santos, C.; Gulcehre, C.; and
Xiang, B. 2016. Abstractive text summarization using
sequence-to-sequence rnns and beyond. In Proceedings of
CoNLL.
Peng, B., and Yao, K. 2015. Recurrent neural networks with
external memory for language understanding. arXiv preprint
arXiv:1506.00195.
Rastogi, P.; Cotterell, R.; and Eisner, J. 2016. Weighting
finite-state transductions with neural context. In Proceed-
ings of NAACL 2016, 623–633.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In NIPS, 3104–
3112.

Tjong Kim Sang, E. F., and Buchholz, S. 2000. Introduction
to the conll-2000 shared task: Chunking. In Proceedings of
the 2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning-
Volume 7, 127–132. Association for Computational Linguis-
tics.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. In NIPS, 2692–2700.
Vu, N. T.; Gupta, P.; Adel, H.; Sch, H.; et al. 2016. Bi-
directional recurrent neural network with ranking loss for
spoken language understanding. In ICASSP, 6060–6064.
IEEE.
Vu, N. T. 2016. Sequential convolutional neural networks
for slot filling in spoken language understanding. arXiv
preprint arXiv:1606.07783.
Xu, P., and Sarikaya, R. 2013. Convolutional neural network
based triangular crf for joint intent detection and slot filling.
In Proceedings of ASRU 2013, 78–83. IEEE.
Yang, Z.; Salakhutdinov, R.; and Cohen, W. 2016. Multi-
task cross-lingual sequence tagging from scratch. arXiv
preprint arXiv:1603.06270.
Yao, K.; Zweig, G.; Hwang, M.-Y.; Shi, Y.; and Yu, D. 2013.
Recurrent neural networks for language understanding. In
INTERSPEECH, 2524–2528.
Yao, K.; Peng, B.; Zhang, Y.; Yu, D.; Zweig, G.; and Shi, Y.
2014. Spoken language understanding using long short-term
memory neural networks. In Spoken Language Technology
Workshop (SLT), 2014 IEEE, 189–194. IEEE.
Zhu, S., and Yu, K. 2016. Encoder-decoder with focus-
mechanism for sequence labelling based spoken language
understanding. arXiv preprint arXiv:1608.02097.

3371

