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Abstract

Distributed representations of words have been shown to cap-
ture lexical semantics, as demonstrated by their effectiveness
in word similarity and analogical relation tasks. But, these
tasks only evaluate lexical semantics indirectly. In this paper,
we study whether it is possible to utilize distributed represen-
tations to generate dictionary definitions of words, as a more
direct and transparent representation of the embeddings’ se-
mantics. We introduce definition modeling, the task of gen-
erating a definition for a given word and its embedding. We
present several definition model architectures based on recur-
rent neural networks, and experiment with the models over
multiple data sets. Our results show that a model that controls
dependencies between the word being defined and the defini-
tion words performs significantly better, and that a character-
level convolution layer designed to leverage morphology can
complement word-level embeddings. Finally, an error analy-
sis suggests that the errors made by a definition model may
provide insight into the shortcomings of word embeddings.

1 Introduction

Distributed representations of words, or word embeddings,
are a key component in many natural language processing
(NLP) models (Turian, Ratinov, and Bengio 2010; Huang
et al. 2014). Recently, several neural network techniques
have been introduced to learn high-quality word embed-
dings from unlabeled textual data (Mikolov et al. 2013a;
Pennington, Socher, and Manning 2014; Yogatama et al.
2015). Embeddings have been shown to capture lexical
syntax and semantics. For example, it is well-known that
nearby embeddings are more likely to represent synony-
mous words (Landauer and Dumais 1997) or words in the
same class (Downey, Schoenmackers, and Etzioni 2007).
More recently, the vector offsets between embeddings have
been shown to reflect analogical relations (Mikolov, Yih, and
Zweig 2013). However, tasks such as word similarity and
analogy only evaluate an embedding’s lexical information
indirectly.

In this work, we study whether word embeddings can be
used to generate natural language definitions of their corre-
sponding words. Dictionary definitions serve as direct and
explicit statements of word meaning. Thus, compared to the
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Word Generated definition
brawler a person who fights
butterfish a marine fish of the atlantic coast
continually in a constant manner
creek a narrow stream of water
feminine having the character of a woman
juvenility the quality of being childish
mathematical of or pertaining to the science of

mathematics
negotiate to make a contract or agreement
prance to walk in a lofty manner
resent to have a feeling of anger or dislike
similar having the same qualities
valueless not useful

Table 1: Selected examples of generated definitions. The
model has been trained on occurrences of each example
word in running text, but not on the definitions.

word similarity and analogical relation tasks, definition gen-
eration can be considered a more transparent view of the
syntax and semantics captured by an embedding. We intro-
duce definition modeling: the task of estimating the prob-
ability of a textual definition, given a word being defined
and its embedding. Specifically, for a given set of word em-
beddings, a definition model is trained on a corpus of word
and definition pairs. The models are then tested on how well
they model definitions for words not seen during the train-
ing, based on each word’s embedding.

The definition models studied in this paper are based
on recurrent neural network (RNN) models (Elman 1990;
Hochreiter and Schmidhuber 1997). RNN models have es-
tablished a new state-of-the-art performance on many se-
quence prediction and natural language generation tasks
(Cho et al. 2014; Sutskever, Vinyals, and Le 2014; Karpathy
and Fei-Fei 2014; Wen et al. 2015a). An important charac-
teristic of dictionary definitions is that only a subset of the
words in the definition depend strongly on the word being
defined. For example, the word “woman” in the definition
of “feminine” in Table 1 depends on the word being defined
than the rest. To capture the varying degree of dependency,
we introduce a gated update function that is trained to con-
trol information of the word being defined used for generat-
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ing each definition word. Furthermore, since the morphemes
of the word being defined plays a vital role in the definition,
we experiment with a character-level convolutional neural
network (CNN) to test whether it can provide complemen-
tary information to the word embeddings. Our best model
can generate fluent and accurate definitions as shown in Ta-
ble 1. We note that none of the definitions in the table exactly
match any definition seen during training.

Our contributions are as follows: (1) We introduce the
definition modeling task, and present a probabilistic model
for the task based on RNN language models. (2) In experi-
ments with different model architectures and word features,
we show that the gate function improves the perplexity of a
RNN language model on definition modeling task by ∼10%,
and the character-level CNN further improves the perplexity
by ∼5%. (3) We also show that the definition models can be
use to perform the reverse dictionary task studied in previ-
ous work, in which the goal is to match a given definition to
its corresponding word. Our model achieves an 11.8% abso-
lute gain in accuracy compared to previous state-of-the-art
by Hill et al. (2016). (4) Finally, our error analysis shows
that a well-trained set of word embeddings pays significant
role in the quality of the generated definitions, and some of
error types suggest shortcomings of the information encoded
in the word embeddings.

2 Previous Work
Our goal is to investigate RNN models that learns to de-
fine word embeddings by training on examples of dictionary
definitions. While dictionary corpora have been utilized ex-
tensively in NLP, to the best of our knowledge none of the
previous work has attempted create a generative model of
definitions. Early work focused on extracting semantic in-
formation from definitions. For example, Chodorow (1985),
and Klavans and Whitman (2001) constructed a taxonomy
of words from dictionaries. Dolan et al. (1993) and Vander-
wende et al. (2005) extracting semantic representations from
definitions, to populate a lexical knowledge base.

In distributed semantics, words are represented by a dense
vector of real numbers, rather than semantic predicates.
Recently, dictionary definitions have been used to learn
such embeddings. For example, Wang et al. (2015) used
words in definition text as a form of “context” words for
the Word2Vec algorithm (Mikolov et al. 2013b). Hill et al.
(2016) use dictionary definitions to model compositional-
ity, and evaluate the models with the reverse dictionary task.
While these works learn word or phrase embeddings from
definitions, we only focus on generating definitions from ex-
isting (fixed) embeddings. Our experiments show that our
models outperform those of Hill et al. (2016) on the reverse
dictionary task.

Our work employs embedding models for natural lan-
guage generation. A similar approach has been taken in a
variety of recent work on tasks distinct from ours. Dinu and
Baroni (2014) present a method that uses embeddings to
map individual words to longer phrases denoting the same
meaning. Likewise, Li et al. (2015) study how to encode a
paragraph or document as an embedding, and reconstruct the
original text from the encoding. Other recent work such as

the image caption generation (Karpathy and Fei-Fei 2014)
and spoken dialog generation (Wen et al. 2015a) are also
related to our work, in that a sequence of words is gener-
ated from a single input vector. Our model architectures are
inspired by sequence-to-sequence models (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014), but definition modeling is
distinct, as it is a word-to-sequence task.

3 Dictionary Definitions

In this section, we first investigate definition content and
structure through a study of existing dictionaries. We then
describe our new data set, and define our tasks and metrics.

3.1 Definition Content and Structure

In existing dictionaries, individual definitions are often com-
prised of genus and differentiae (Chodorow, Byrd, and Hei-
dorn 1985; Montemagni and Vanderwende 1992). The genus
is a generalized class of the word being defined, and the dif-
ferentiae is what makes the word distinct from others in the
same class. For instance,

Phosphorescent: emitting light without appreciable
heat as by slow oxidation of phosphorous

“emitting light” is a genus, and “without applicable heat
...” is a differntiae. Furthermore, definitions tend to include
common patterns such as “the act of ...” or “one who has
...” (Markowitz, Ahlswede, and Evens 1986). However, the
patterns and styles are often unique to each dictionary.

The genus + differentiae (G+D) structure is not the only
pattern for definitions. For example, the entry below exhibits
distinct structures.

Eradication: the act of plucking up by the roots; a root-
ing out; extirpation; utter destruction

This set of definitions includes a synonym (“extirpation”),
a reverse of the G+D structure (“utter destruction”), and an
uncategorized structure (“a rooting out”).

3.2 Corpus: Preprocessing and Analysis

Dictionary corpora are available in a digital format, but are
designed for human consumption and require preprocessing
before they can be utilized for machine learning. Dictionar-
ies contain non-definitional text to aid human readers, e.g.
the entry for “gradient” in Wordnik1 contains fields (“Math-
ematics”) and example usage (“as, the gradient line of a rail-
road.”). Further, many entries contain multiple definitions,
usually (but not always) separated by “;”.

We desire a corpus in which each entry contains only
a word being defined and a single definition. We parse
dictionary entries from GCIDE2 and preprocess Word-
Net’s glosses, and the fields and usage are removed.
The parsers and preprocessing scripts can be found at
https://github.com/northanapon/dict-definition.

To create a corpus of reasonable size for machine learn-
ing experiments, we sample around 20k words from the 50k
most frequent words in the Google Web 1T corpus (Brants

1https://www.wordnik.com/words/gradient
2http://gcide.gnu.org.ua/
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Split train valid test
#Words 20,298 1,127 1,129
#Entries 146,486 8,087 8,352
#Tokens 1,406,440 77,948 79,699

Avg length 6.60 6.64 6.54

Table 2: Basic statistics of the common word definitions cor-
pus. Splits are mutually exclusive in the words being de-
fined.

Label WN GC Example
G+D 85% 50% to divide into thin plates
D+G 7% 9% a young deer

Syn 1% 32% energy
Misc. 4% 8% in a diagonal direction
Error 3% 1% used as intensifiers
Total 256 424

Table 3: The number of manually labeled structures of dic-
tionary definitions in WordNet (WN) and GCIDE (GC).
G+D is genus followed by differentiae, and D+G is the re-
verse. Syn is a synonym. The words defined in the exam-
ple column are “laminate”, “fawn”, “activity”, “diagonally”,
and “absolutely”.

and Franz 2006), removing function words. In addition, we
limit the number of entries for each word in a dictionary to
three before the splitting by “;” (so that each word being de-
fined may repeat multiple times in our corpus). After clean-
ing and pruning, the corpus has a vocabulary size of 29k.
Other corpus statistics are shown in Table 2.

We analyze the underlying structure of the definitions in
the corpus by manually labeling each definition with one of
four structures: G+D, D+G, Syn (synonym), and Misc. In
total, we examine 680 definitions from 100 randomly se-
lected words. The results are shown in Table 3. We reaffirm
earlier studies showing that the G+D structure dominates in
both dictionaries. However, other structures are also present,
highlighting the challenge inherent in the dictionary model-
ing task. Further, we observe that the genus term is some-
times general (e.g., “one” or “that”), and other times specific
(e.g. “an advocate”).

3.3 Dictionary Definition Tasks

In the definition modeling (DM) task, we are given an input
word w∗, and output the likelihood of any given text D being
a definition of the input word. In other words, we estimate
P (D|w∗). We assume our definition model has access to a
set of word embeddings, estimated from some corpus other
than the definition corpus used to train the definition model.

DM is a special case of language modeling, and as in lan-
guage modeling the performance of a definition model can
be measured by using the perplexity of a test corpus. Lower
perplexity suggests that the model is more accurate at cap-
turing the definition structures and the semantics of the word
being defined.

Besides perplexity measurement, there are other tasks that
we can use to further evaluate a dictionary definition model

including definition generation, and the reverse and forward
dictionary tasks. In definition generation, the model pro-
duces a definition of a test word. In our experiments, we
evaluate generated definitions using both manual examina-
tion and BLEU score, an automated metric for generated
text. The reverse and forward dictionary tasks are ranking
tasks, in which the definition model ranks a set of test words
based on how likely they are to correspond to a given defi-
nition (the reverse dictionary task) or ranks a set of test def-
initions for a given word (the forward dictionary task) (Hill
et al. 2016). A dictionary definition model achieves this by
using the predicted likelihood P (D|w∗) as a ranking score.

4 Models

The goal of a definition model is to predict the probability of
a definition (D = [w1, ..., wT ]) given a word being defined
w∗. Our model assumes that the probability of generating the
tth word wt of a definition text depends on both the previous
words and the word being defined (Eq 1). The probability
distribution is usually approximated by a softmax function
(Eq 2)

p(D|w∗) =
T∏

t=1

p(wt|w1, .., wt−1, w
∗) (1)

p(wt = j|w1, .., wt−1, w
∗) ∝ eWjht/τ (2)

where Wj is a matrix of parameters associated with word j,
ht is a vector summarizing inputs so far at token t, and τ is
a hyper-parameter for temperature, set to be 1 unless spec-
ified. Note that in our expression, the word being defined
w∗ is present at all time steps as an additional conditioning
variable.

The definition models explored in this paper are based
on a recurrent neural network language model (RNNLM)
(Mikolov et al. 2010). An RNNLM is comprised of RNN
units, where each unit reads one word wt at every time step
t and outputs a hidden representation ht for Eq 2.

ht = g(vt−1, ht−1, v
∗) (3)

where g is a recurrent nonlinear function, vt denotes the em-
bedding (vector representation) of the word wt, and v∗ is
likewise the embedding of the word being defined.

4.1 Model Architectures

A natural method to condition an RNN language model is
to provide the network with the word being defined at the
first step, as a form of “seed” information. The seed ap-
proach has been shown to be effective in RNNs for other
tasks (Kalchbrenner and Blunsom 2013; Karpathy and Fei-
Fei 2014). Here, we follow the simple method of Sutskever
et al., (2011), in which the seed is added at the beginning
of the text. In our case, the word being defined is added to
the beginning of the definition. Note that we ignore the pre-
dicted probability distribution of the seed itself at test time.

Section 3 shows that definitions exhibit common patterns.
We hypothesize that the word being defined should be given
relatively more important for portions of the definition that
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carry semantic information, and less so for patterns or struc-
tures comprised of function and stop words. Further, Wen et
al. (2015b) show that providing constant seed input at each
time step can worsen the overall performance of spoken di-
alog generators.

Thus, inspired by the GRU update gate (Cho et al. 2014),
we update the output of the recurrent unit with GRU-like
update function as:

zt = σ(Wz[v
∗;ht] + bz) (4)

rt = σ(Wr[v
∗;ht] + br) (5)

h̃t = tanh(Wh[(rt � v∗);ht] + bh) (6)

ht = (1− zt)� ht + zt � h̃t (7)

where σ is the sigmoid function, [a; b] denotes vector con-
catenation, and � denotes element-wise multiplication. ht

from Eq 3 is updated as given in Eq 7. At each time step,
zt is an update gate controlling how much the output from
RNN unit changes, and rt is a reset gate controlling how
much information from the word being defined is allowed.
We name this model Gated (G).

In the rest of this subsection, we present three baseline
model architectures that remove portions of Gated. In our
experiments, we will compare the performance of Gated
against the baselines in order to measure the contribution of
each portion of our architecture. First, we reduce the model
into a standard RNNLM, where

ht = g(vt−1, ht−1) (8)

The standard model only receives information about w∗ at
the first step (from the seed). We refer to this baseline as
Seed (S).

A straightforward way to incorporate the word being de-
fined throughout the definition is simply to provide its em-
bedding v∗ as a constant input at every time step. We refer
to this model as Input (I):

ht = g([v∗; vt−1], ht−1) (9)

(Mikolov and Zweig 2012). Alternatively, the model could
utilize v∗ to update the hidden representation from the RNN
unit, named Hidden (H). The update function for Hidden is:

ht = tanh(Wh[v
∗;ht] + bh) (10)

where Wh is a weight matrix, and bh is the bias. In Hidden
we update ht from Eq 3 using Eq 10. This is similar to the
GRU-like architecture in Eq 7 without the gates (i.e. rt and
zt are always vectors of 1s).

4.2 Other Features

In addition to model architectures, we explore whether other
word features derived from the word being defined can pro-
vide complementary information to the word embeddings.
We focus on two different features: affixes, and hypernym
embeddings. To add these features within DM, we simply
concatenate the embedding v∗ with the additional feature
vectors.

Affixes Many words in English and other languages con-
sist of composed morphemes. For example, a word “cap-
italist” contains a root word “capital” and a suffix “-ist”.
A model that knows the semantics of a given root word,
along with knowledge of how affixes modify meaning, could
accurately define any morphological variants of the root
word. However, automatically decomposing words into mor-
phemes and deducing the semantics of affixes is not trivial.

We attempt to capture prefixes and suffixes in a word by
using character-level information. We employ a character-
level convolution network to detect affixes (LeCun et al.
1990). Specifically, w∗ is represented as a sequence of char-
acters with one-hot encoding. A padding character is added
to the left and the right to indicate the start and end of the
word. We then apply multiple kernels of varied lengths on
the character sequence, and use max pooling to create the fi-
nal features (Kim et al. 2016). We hypothesize that the con-
volution input, denoted as CH, will allow the model to iden-
tify regularities in how affixes alter the meanings of words.

Hypernym Embeddings As we discuss in Section 3, dic-
tionary definitions often follow a structure of genus + dif-
ferentia. We attempt to exploit this structure by providing
the model with knowledge of the proper genus, drawn from
a database of hypernym relations. In particular, we obtain
the hypernyms from WebIsA database (Seitner et al. 2016)
which employs Hearst-like patterns (Hearst 1992) to extract
hypernym relations from the Web. We then provide an ad-
ditional input vector, referred to as HE, to the model that is
equal to the weighted sum of the top k hypernyms in the
database for the word being defined. In our experiments k =
5 and the weight is linearly proportional to the frequency
in the resource. For example, the top 5 hypernyms and fre-
quencies for “fawn” are “color”:149, “deer”:135, “animal”:
132.0, “wildlife”:82.0, “young”: 68.0.

5 Experiments and Results

We now present our experiments evaluating our definition
models. We train multiple model architectures using the
train set and evaluate the model using the test set on all of
the three tasks described in Section 3.3. We use the valid set
to search for the learning hyper-parameters. Note that the
words being defined are mutually exclusive across the three
sets, and thus our experiments evaluate how well the models
generalize to new words, rather than to additional definitions
or senses of the same words.

All of the models utilize the same set of fixed, pre-trained
word embeddings from the Word2Vec project,3 and a 2-
layer LSTM network as an RNN component (Hochreiter and
Schmidhuber 1997). The embedding and LSTM hidden lay-
ers have 300 units each. For the affix detector, the character-
level CNN has kernels of length 2-6 and size {10, 30, 40,
40, 40} with a stride of 1. During training, we maximize the
log-likelihood objective using Adam, a variation of stochas-
tic gradient decent (Kingma and Ba 2014). The learning rate
is 0.001, and the training stops after 4 consecutive epochs of
no significant improvement in the validation performance.

3https://code.google.com/archive/p/word2vec/
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Model #Params Perplexity
Seed 10.2m 56.350
S+I 10.6m 57.372
S+H 10.4m 58.147
S+G 10.8m 50.949
S+G+CH 11.1m 48.566
S+G+CH+HE 11.7m 48.168

Table 4: Perplexity evaluated on dictionary entries in the test
set (lower is better).

The source code and dataset for our experiment can be found
at https://github.com/websail-nu/torch-defseq.

5.1 Definition Modeling

First, we compare our different methods for utilizing the
word being defined within the models. The results are shown
in the first section of Table 4. We see that the gated update
(S+G) improves the performance of the Seed, while the other
architectures (S+I and S+H) do not. The results are consis-
tent with our hypothesis that the word being defined is more
relevant to some words in the definition than to others, and
the gate update can identify this. We explore the behavior of
the gate further in Section 6.

Next, we evaluate the contribution of the linguistic
features. We see that the affixes (S+G+CH) further im-
proves the model, suggesting that character-level infor-
mation can complement word embeddings learned from
context. Perhaps surprisingly, the hypernym embeddings
(S+G+CH+HE) have an unclear contribution to the perfor-
mance. We suspect that the average of multiple embeddings
of the hypernym words may be a poor representation the
genus in a definition. More sophisticated methods for har-
nessing hypernyms are an item of future work.

5.2 Definition Generation

In this experiment, we evaluate the quality of the definitions
generated by our models. We compute BLEU score between
the output definitions and the dictionary definitions to mea-
sure the quality of the generation. The decoding algorithm
is simply sampling a token at a time from the model’s pre-
dicted probability distribution of words. We sample 40 def-
initions for each word being defined, using a temperature
(τ in Eq 2) that is close to a greedy algorithm (0.05 or 0.1,
selected from the valid set) and report the average BLEU
score. For help in interpreting the BLEU scores, we also re-
port the scores for three baseline methods that output defini-
tions found in the training or test set. The first baseline, In-
ter, returns the definition of the test set word from the other
dictionary. Its score thus reflects that of a definition that is
semantically correct, but differs stylistically from the target
dictionary. The other baselines (NE-WN and NE-GC) return
the definition from the training set for the embedding nearest
to that of the word being defined. In case of a word having
multiple definitions, we micro-average BLEU scores before
averaging an overall score.

Table 5 shows the BLEU scores of the generated defini-
tions given different reference dictionaries. AVG and Merge

Model GC WN Avg Merged
Inter 27.90 21.15 - -
NE 29.56 21.42 25.49 34.51
NE-WN 22.70 27.42 25.06 32.16
NE-GC 33.22 17.77 25.49 35.45
Seed 26.69 22.46 24.58 30.46
S+I 28.44 21.77 25.10 31.58
S+H 27.43 18.82 23.13 29.66
S+G 30.86 23.15 27.01 34.72
S+G+CH 31.12 24.11 27.62 35.78
S+G+CH+HE 31.10 23.81 27.46 35.28
Additional experiments
Seed* 27.24 22.78 25.01 31.15
S+G+CH+HE* 33.39 25.91 29.65 38.35
Random Emb 22.09 20.05 21.07 24.77

Table 5: Equally-weighted BLEU scores for up to 4-grams,
on definitions evaluated using different reference dictionar-
ies (results are not comparable between columns).

in the table are two ways of aggregating the BLEU score.
AVG averages the BLEU scores by using each dictionary
as the ground truth. The Merge computes score by using
union of the two dictionaries. First, we can see that the base-
lines have low BLEU scores when evaluated on definitions
from the other dictionary (Inter and NE-). This shows that
different dictionaries use different styles. However, despite
the fact that our best model S+G+CH is unaware of which
dictionary it is evaluated against, it generates definitions
that strike a balance between both dictionaries, and achieves
higher BLEU scores overall. As in the earlier experiments,
the Gated model improves the most over the Seed model. In
addition, the affixes further improves the performance while
the contribution of the hypernym embeddings is unclear on
this task.

It is worth noting that many generated definitions con-
tain a repeating pattern (i.e. “a metal, or other materials,
or other materials”). We take the definitions from the lan-
guage model (Seed) and our full system (S+G+CH+HE),
and clean the definitions by retaining only one copy of the
repeated phrases. We also only output the most likely defini-
tion for each word. The BLEU score increases by 2 (Seed*
and S+G+CH+HE*). We discuss about further analysis and
common error types in Section 6.

5.3 Reverse and Forward Dictionary

In the dictionary tasks, the models are evaluated by how well
they rank words for given definitions (RVD) or definitions
for words (FWD). We compare against models from previ-
ous work on the reverse dictionary task (Hill et al. 2016).
The previous models read a definition and output an embed-
ding, then use cosine similarity between the output embed-
ding and the word embedding as a ranking score. There are
two ways to compose the output embedding: BOW w2v co-
sine uses vector addition and linear projection, and RNN w2v
cosine uses a single-layer LSTM with 512 hidden units. We
use two standard metrics for ranked results, accuracy at top
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Figure 1: Average gate activations for tokens of two definitions (omitting seed). The model utilizes the word being defined more
for predicting content words than for function words.

Model #Params RVD FWD
@1 @10 R-Prec

BOW w2v cosine 0.09m 0.106 0.316 -
RNN w2v cosine 1.82m 0.190 0.452 -
Seed 10.2m 0.175 0.465 0.163
S+I 10.6m 0.187 0.492 0.169
S+H 10.4m 0.286 0.573 0.282
S+G 10.8m 0.293 0.581 0.282
S+G+CH 11.1m 0.307 0.600 0.298
S+G+CH+HE 11.7m 0.308 0.608 0.304

Table 6: Model performance on Reverse (RVD) and Forward
(FWD) Dictionary tasks

k and R-Precision (i.e. precision of the top R where R is the
number of correct definitions for the test word).

Table 6 shows that our models perform well on the dic-
tionary tasks, even though they are trained to optimize a dis-
tinct objective (definition likelihood). However, we note that
our models have more parameters than those from previous
work. Furthermore, we find that RNN w2v cosine performs
better than BOW w2v cosine, which differs from the previ-
ous work. The differences may arise from our distinct pre-
processing described in Section 3, i.e. redundant definitions
are split into multiple definitions. We omit the information
retrieval approach baseline because it is not obvious how to
search for unseen words in the test set.

6 Discussion

In this section, we discuss our analysis of the generated defi-
nitions. We first present a qualitative evaluation, followed by
an analysis on how the models behave. Finally, we discuss
error types of the generated definitions and how it might re-
flect information captured in the word embeddings.

6.1 Qualitative Evaluation and Analysis

First, we perform a qualitative evaluation of the models’
output by asking 6 participants to rank a set of defini-
tions of 50 words sampled from the test set. For each
word w, we provide in random order: a ground-truth def-
inition for w (Dictionary), a ground-truth definition of the
word w′ whose embedding is nearest to that of w (NE),
the standard language model (Seed*), and our full system
(S+G+CH+HE*). Inter-annotator agreement was strong (al-

Choices @1 @2 @3 @4 Avg
Dictionary 58.3 21.9 7.72 10.1 1.64
NE 16.3 22.8 27.85 37.0 2.75
Seed* 6.8 23.5 35.23 35.1 2.92
S+G+CH+HE* 18.7 31.8 29.19 17.8 2.41

Table 7: Percentage of times a definition is manually ranked
in each position (@k), and average rank (Avg).

most all inter-annotator correlations were above 0.6). Ta-
ble 7 shows that definitions from the S+G+CH+HE* are
ranked second after the dictionary definitions, on average.
The advantage of S+G+CH+HE* over Seed* is statisti-
cally significant (p < 0.002, t-test), and the difference be-
tween S+G+CH+HE* is and NE is borderline significant
(p < 0.06, t-test).

All of our results suggest that the gate-based models are
more effective. We investigate this advantage by plotting the
average gate activation (z and r in Eq 4 and 5) in Figure 1.
The r gate is split into 3 parts corresponding to the embed-
ding, character information, and the hypernym embedding.
The figure shows that the gate makes the output distribution
more dependent on the word being defined when predicting
content words, and less so for function words. The hyper-
nym embedding does not contribute to the performance and
its gate activation is relatively constant. Additional examples
can be found in the supplementary material.

Finally, we present a comparison of definitions generated
from different models to gain a better understanding of the
models. Table 8 shows the definitions of three words from
Table 1. The Random Embedding method does not generate
good definitions. The nearest embedding method NE returns
a similar definition, but often makes important errors (e.g.,
“feminine” vs “masculine”). The models using the gated up-
date function generate better definitions, and the character-
level information is often informative for selecting content
words (e.g. “mathematics” in “mathematical”).

6.2 Error Analysis

In our manual error analysis of 200 labeled definitions. We
find that 140 of them contain some degree of error. Table 9
shows the primary error types, with examples. Types (1) to
(3) are fluency problems, and likely stem from the definition
model, rather than shortcomings in the embeddings.

We believe the other error types stem more from se-
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Model creek feminine mathematical
Random Emb to make a loud noise to make a mess of of or pertaining to the middle
NE any of numerous bright

translucent organic pig-
ments

a gender that refers chiefly but
not exclusively to males or to ob-
jects classified as male

of or pertaining to algebra

Seed a small stream of water of or pertaining to the fox of or pertaining to the science of algebra
S+I a small stream of water of or pertaining to the human

body
of or relating to or based in a system

S+H a stream of water of or relating to or characteristic
of the nature of the body

of or relating to or characteristic of the
science

S+G a narrow stream of water having the nature of a woman of or pertaining to the science
S+G+CH a narrow stream of water having the qualities of a woman of or relating to the science of mathemat-

ics
S+G+CH+HE a narrow stream of water having the character of a woman of or pertaining to the science of mathe-

matics

Table 8: Selected examples of generated definitions from different models. We sample 40 definitions for each word and rank
them by the predicted likelihood. Only the top-ranked definitions are shown in this table.

mantic gaps in the embeddings than from limitations in
the definition model. Our reasons for placing the blame on
the embeddings rather than the definition model itself are
twofold. First, we perform an ablation study in which we
train S+G+CH using randomized embeddings, rather than
the learned Word2Vec ones. The performance of the model
is significantly worsened (the test perplexity is 100.43, and
the BLEU scores are shown in Table 5), which shows that
the good performance of our definition models is in signif-
icant measure due to the embeddings. Secondly, the error
types (4) - (6) are plausible shortcomings of embeddings,
some of which have been reported in the literature. These
erroneous definitions are partially correct (often the correct
part of speech), but are missing details that may not appear
in contexts of the word due to reporting bias (Gordon and
Van Durme 2013). For example, the word “captain” often
appears near the word “ship”, but the role (as a leader) is
frequently implicit. Likewise, embeddings are well-known
to struggle in capturing antonym relations (Argerich, Torré
Zaffaroni, and Cano 2016), which helps explain the opposite
definitions output by our model.

7 Conclusion

In this work, we introduce the definition modeling task, and
investigate whether word embeddings can be used to gen-
erate definitions of the corresponding words. We evaluate
different architectures based on a RNN language model on
definition generation and the reverse and forward dictionary
tasks. We find the gated update function that controls the in-
fluence of the word being defined on the model at each time
step improves accuracy, and that a character-level convolu-
tional layer further improves performance. Our error analy-
sis shows a well-trained set of word embeddings is crucial
to the models, and that some failure modes of the gener-
ated definitions may provide insight into shortcomings of
the word embeddings. In future work, we plan to investigate
whether definition models can be utilized to improve word
embeddings or standard language models.

Word Definition
(1) Redundancy and overusing common phrases: 4.28%
propane a volatile flammable gas that is used to

burn gas
(2) Self-reference: 7.14%
precise to make a precise effort
(3) Wrong part-of-speech: 4.29%
accused to make a false or unethical declaration of
(4) Under-specified: 30.00%
captain a person who is a member of a ship
(5) Opposite: 8.57%
inward not directed to the center
(6) Close semantics: 22.86%
adorable having the qualities of a child
(7) Incorrect: 32.14%
incase to make a sudden or imperfect sound

Table 9: Error types and examples.
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