
Semantic Parsing with Neural Hybrid Trees

Raymond Hendy Susanto, Wei Lu
Singapore University of Technology and Design

8 Somapah Road, Singapore 487372
{raymond susanto, luwei}@sutd.edu.sg

Abstract

We propose a neural graphical model for parsing natural lan-
guage sentences into their logical representations. The graph-
ical model is based on hybrid tree structures that jointly rep-
resent both sentences and semantics. Learning and decoding
are done using efficient dynamic programming algorithms.
The model is trained under a discriminative setting, which
allows us to incorporate a rich set of features. Hybrid tree
structures have shown to achieve state-of-the-art results on
standard semantic parsing datasets. In this work, we propose
a novel model that incorporates a rich, nonlinear featurization
by a feedforward neural network. The error signals are com-
puted with respect to the conditional random fields (CRFs)
objective using an inside-outside algorithm, which are then
backpropagated to the neural network. We demonstrate that
by combining the strengths of the exact global inference in
the hybrid tree models and the power of neural networks to
extract high level features, our model is able to achieve new
state-of-the-art results on standard benchmark datasets across
different languages.

Introduction

Semantic parsing refers to the task of parsing natural lan-
guage sentences into their corresponding semantic represen-
tations, such as the first-order logic or lambda calculus. It is
one of the classical problems in natural language process-
ing (NLP) and artificial intelligence. For example, consider
the following natural language sentence paired with its cor-
responding semantic representation:

Which states do not border Texas ?
answer(exclude(state(all), next to(stateid(′tx′))))

It is also possible to represent the above semantics as recur-
sive structures such as trees, which consist of atomic seman-
tic units as its nodes. For example, we can convert the above
semantics into an equivalent tree structure as shown in Fig-
ure 1. Following previous works (Kate and Mooney 2006;
Wong and Mooney 2006), we specifically focus on such
tree-structured semantic representations.

A hybrid tree structure can represent a sentence-semantics
pair as a tree where each node includes both natural lan-
guage words and meaning representation tokens. However,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

QUERY : answer(STATE)

STATE : exclude(STATE, STATE)

STATE : next to(STATE)

STATE : stateid(STATENAME)

STATENAME : (′tx′)

STATE : state(all)

Which states do not border Texas ?

Figure 1: An example tree-structured semantic representa-
tion and its corresponding natural language sentence.

explicit labelings between words and meaning representa-
tion tokens are not available in the training data. This cre-
ates a latent variable learning problem that can be solved ef-
ficiently using an inside-outside algorithm (Lu et al. 2008).
A relaxed hybrid tree (Lu 2014) is a discriminative version
of the original hybrid tree model that is able to incorporate
a wide range of features, some of which are able to capture
long distance dependency. The constrained semantic forest
addresses the under-specificity in the relaxed hybrid tree by
limiting the height of the tree that should be considered (Lu
2015). Both extensions of the hybrid tree achieved state-of-
the-art performance in semantic parsing.

Recently, neural networks have received a significant
amount of interests from the NLP community. Neural ap-
proaches have shown its success in a variety of NLP tasks,
ranging from parsing (Vinyals et al. 2015) to machine trans-
lation (Bahdanau, Cho, and Bengio 2015). One of the main
advantages of using such neural approaches is its ability
to learn a compact representation of its inputs, which of-
ten involves nonlinear interactions. It is common to treat an
NLP task as a sequence-to-sequence problem where predic-
tions are made sequentially using inexact inference, such as
greedy or beam search. For example, the recent semantic
parsing work in (Dong and Lapata 2016; Jia and Liang 2016)
are based on sequential recurrent neural network models.

The idea of combining graphical models and neural net-
works has been explored in the past and started to see
more interest in the recent years. For example, LeCun et al.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3309

(1998) constructed graph transformer networks for recog-
nizing character string, which combined convolutional neu-
ral networks with graph-based stochastic models. Collobert
et al. (2011) proposed a model that optimizes sentence-
level loglikelihood that incorporates neural network scores
together with transition feature scores. Durrett and Klein
(2015) used a neural CRF for constituency parsing based on
the CKY algorithm. Our work integrates a neural network
into a latent-variable model.

In this paper, we propose a neural approach to seman-
tic parsing that takes structural information into account.
Our approach builds upon the hybrid tree framework, where
we use a feedforward neural network as a feature extrac-
tor. Both the hybrid tree model and the neural network are
trained jointly using inside-outside and backpropagation, re-
spectively. We evaluate our approach on multilingual bench-
mark datasets.

Related Work
Several approaches have been proposed to convert natural
language sentences into logical forms. Examples include
generative models (Lu et al. 2008; Jones, Johnson, and
Goldwater 2012), discriminative models (Kate and Mooney
2006; Lu 2014), machine translation (Wong and Mooney
2006), and combinatory categorial grammars (CCG) (Zettle-
moyer and Collins 2005; 2007; Kwiatkowski et al. 2010).
From the literature, we highlight the following works that
used the same evaluation dataset that allows meaningful
comparison to their parsers’ performance. For ease of ref-
erence, we give a name for each system (in bold).

Wong and Mooney (2006) proposed the WASP semantic
parser based on statistical phrase-based machine translation
where the word alignment model was used for lexical acqui-
sition, and the parsing model was trained using the syntax-
based translation model. The UBL-S parser (Kwiatkowski
et al. 2010) used a probabilistic CCG grammar to represent
the meaning of individual words and used higher-order unifi-
cation to combine the meanings into a hypothesis space con-
taining all grammatical structures consistent with the data it
is trained on. Jones, Johnson and Goldwater (2012) intro-
duced a variational Bayesian inference algorithm to build
a generic tree transducer that can generate semantic pars-
ing models, TREETRANS. Closer to our model, the original
hybrid tree framework, HYBRIDTREE+, used a generative
paradigm followed by a discriminative re-ranking stage (Lu
et al. 2008). Thereafter, Lu (2014) proposed a discriminative
version of the original hybrid tree, where some rigid depen-
dency assumptions used in the generative version are now
relaxed. In (Lu 2015), this model was further improved by
introducing constrained semantic forest, DISCHT+.

Different from our model that adds neural features
to a discriminative parsing framework, we highlight two
prominent state-of-the-art neural approaches that used se-
quence generation methods. Dong et al. (2016) recently pro-
posed a sequence-to-tree recurrent neural network (RNN)
parser, SEQ2TREE-DL, and Jia and Liang (2016) trained a
sequence-to-sequence RNN model with attention and copy-
ing mechanism on datapoints induced from an synchronous
context-free grammar, SEQ2SEQ-JL.

Other works on semantic parsing make use of different
semantic representations or perform evaluation under differ-
ent settings. For example, a related work by (Andreas et al.
2016a) proposed a compositional model that learns to as-
semble neural network modules, instead of logical forms,
for semantic parsing. They evaluated their approach on
GeoQA, a geographical question-answering dataset intro-
duced by Krishnamurthy and Kollar (2013), where a ques-
tion is parsed into coarse modules with internal neural net-
work machinery (Andreas et al. 2016b).

Model

We propose a neural hybrid tree model that consists of a
graphical model1 component, i.e., a discriminative hybrid
tree structure, and a multi-layer neural network. Our model
is shown in Figure 2. We describe each component in the
following sections.

Hybrid Trees

The hybrid tree model was first proposed as a generative se-
mantic parsing framework in (Lu et al. 2008). Given a com-
plete natural language sentence n and a complete semantic
representation m, we assume that there exists a complete
latent structure h that jointly represents both m and n. Es-
sentially, this joint representation tells us the correct associ-
ations between words in n and semantics in m.

Given the joint representations, a model can be built either
generatively by modeling the joint probability distribution
over (n,m,h) tuples, or discriminatively by modeling the
conditional probability distribution over (m,h) pairs given
n. In this work, we focus on the latter approach. More for-
mally, our model follows a log-linear approach:

PΛ(m,h|n) = exp(FΛ(n,m,h))∑
m′,h′∈H(n,m′)

exp(FΛ(n,m′,h′))
(1)

FΛ(n,m,h) = Λ · Φ(n,m,h) (2)
where H(n,m) is the set of all possible joint representations
that contain both n and m and F is a linear scoring function
that involves a discrete feature function Φ associated with
a weight vector Λ. In practice, the latent structures are not
observed. Hence, we consider the following marginal prob-
ability:

PΛ(m|n) =
∑

h∈H(n,m)

PΛ(m,h|n)

=

∑
h∈H(n,m)

exp(FΛ(n,m,h))

∑
m′,h′∈H(n,m′)

exp(FΛ(n,m′,h′))
(3)

To limit the search space of the latent structures, we assume
that h must be from a space consisting of hybrid tree struc-
tures with relaxed constraints (Lu 2014), which allow some
long distance dependencies to be captured.

1Strictly speaking, the hybrid trees are parsing models, which
are different from conventional graphical models as they involve
hyperedges. We refer them as graphical models as both share sim-
ilar inference procedures.

3310

ma

w10mb

md

w9

w7 w8mc

w6

w3 w4 w5

w1 w2

ψ(w3, w4, w5,mb)

.
gw3,w4,w5

. . .

ew3 ew4 ew5

w3 w4 w5

Figure 2: A neural hybrid tree

Figure 2 (bottom) shows an example of a hybrid tree en-
coding the sentence w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

and the semantics ma(mb(mc,md)). In the generative hy-
brid tree, each word is strictly associated with a semantic
unit. For example, the word w3 is associated with the se-
mantic unit mb. In contrast, each word in the relaxed hybrid
tree is not only directly associated with a semantic unit m,
but also indirectly associated with all semantic units that are
predecessors of m. Thus, the word w3 is now directly asso-
ciated with mb, but is also indirectly associated with ma.

Word Association Patterns At each level of the latent
structure, we define word association patterns to specify
how the words and child semantic unit are organized. The
set of allowed patterns is: {w, [w]X[w], [w]X[w]Y[w],
[w]Y[w]X[w]}, where [w] denotes an optional sequence
of words. For example, in Figure 2, the word sequence di-
rectly below the semantic unit ma follows the pattern wXw,
where we first have a word sequence that are directly associ-
ated with ma (i.e., w1w2), followed by some words covered
by its first child semantic unit, then another word sequence
directly associated with ma (i.e., w10). One important con-
sideration here is the inclusion of pattern X, which may lead
to possible hybrid tree representations consisting of an infi-
nite number of internal nodes (semantic units). In order to
address such an issue, Lu (2015) added a constraint that lim-
its the height of the semantic representation to a fixed con-
stant c, where c is typically larger than the maximum height
of all the trees appearing in the training set.

Features We define discrete features over the (n,m,h)
tuples, i.e., Φ(n,m,h) returns a vector consisting of dis-
crete counts of features associated with the tuple. These fea-
tures include emission features (concatenation of a semantic

unit and an individual word that appears directly below it
in the hybrid tree), pattern features (concatenation of a se-
mantic unit and the pattern below the unit), and transition
features (concatenation of two semantic units that form a
parent-child relationship). Here in this work, we only used
the above simple features. We will show in the later section
that using these features in conjunction with neural features
can lead to better performance.

Multi-layer Neural Networks

One important component in developing an end-to-end NLP
system is feature engineering. We can enrich this process
by including a neural network that takes raw inputs (e.g.,
characters or words), which requires a little pre-processing
effort. A compact representation of the inputs can be learned
through the multi-layer structure of the network. In this sec-
tion, we discuss the architecture of the neural network that is
used in our semantic parser. Our design is influenced by that
of (Collobert et al. 2011), a feedforward network that works
efficiently in several benchmark NLP tasks, such as named
entity recognition and semantic role labeling. We use a win-
dow approach, where we consider a fixed size J window of
words around the target word that we want to tag.

Input Layer The first layer in the network accepts as in-
put a word sequence w1, w2, . . . , wn. We define a lookup
table layer that maps every word in the vocabulary to a d-
dimensional vector, where d � |V|. More formally, the
word representation of wi is given by E∗,wi

, where E ∈
R

d×|V| is a lookup table and E∗,k corresponds to the k-th
column of E. The representation of a word sequence is a
simple concatenation of the embeddings of each word.

Leveraging the availability of large-scale monolingual
corpora, we can initialize the lookup table with pre-trained
word embeddings such as GloVe (Pennington, Socher, and
Manning 2014) or Polyglot (Al-Rfou, Perozzi, and Skiena
2013). The lookup table can be fine-tuned according to a
specific task during the backpropagation training.

Hidden Layer Given a d-dimensional input embedding e,
each hidden layer l applies an affine transformation:

g(l) = σ(W(l)g(l−1) + b(l)) (4)

where g(0) = e. W(1) ∈ R
h×d, W(l) ∈ R

h×h (l =
2, . . . , L − 1), and b(l) ∈ R

h are weight matrices and bias
vectors. Moreover, we use an element-wise nonlinear acti-
vation σ. Common choices of σ include hyperbolic tangent
(tanh) and rectified linear unit (ReLU).

Output Layer The last layer L does a final affine transfor-
mation without nonlinear activation:

g(L) = W(L)g(L−1) + b(L) (5)

The number of output nodes in this layer is equal to the num-
ber of labels in the task of interest, i.e., W(L) ∈ R

o×h. For
example, o is equal to the number of possible semantic units
in our case. This gives us a vector of scores for each label,
which is then used in the objective function computations

3311

(e.g., softmax, or in this work, the CRFs objective). Essen-
tially, the network learns a function ψ that scores a given
word sequence w1, w2, ..., wn and a semantic unit mj :

ψ(w1, ..., wn,mj) = g
(L)
j (6)

Neural Hybrid Trees

We propose a novel, integrated framework that is a natural
marriage between a nonlinear featurization by using a neu-
ral network and a discriminative, latent-variable model that
relies on hybrid tree structures within an efficient structured
inference framework.

The neural network is utilized as a nonlinear feature ex-
tractor, in addition to the original discrete non-neural feature
function. There are several benefits of using such neural fea-
tures. First, we are able to induce a dense representation of
features that are made of a wider context information, thanks
to the underlying multi-layer architecture of the network. If
these inputs were used as discrete features, it would be prone
to the data sparseness issue which often results in overfitting.
Second, unlike discrete word representations, where each
word is treated independently among each other, our input
layer consists of a low-dimensional lookup table that does
not have such an independence assumption. To some extent,
it improves the robustness of the model.

We combine the hybrid tree structures and multi-layer
neural networks in a principled way. We call such a model
neural hybrid trees. More specifically, it is straightforward
to incorporate the neural scores (Equation 6) into our scor-
ing function (Equation 2). The new scoring function is thus
defined as follows:

FΛ,Θ(n,m,h) = Λ · Φ(n,m,h) +GΘ(n,m,h) (7)

where Θ is the parameters of the neural networks and G is
a neural scoring function over the (n,m,h) tuples. In this
work, we define features at each level of the hybrid tree h.
That is, the neural features are defined over pairs of the win-
dow surrounding a word wj in n and the semantic unit m
immediately associated with wj . We denote an input win-
dow wj−J , ..., wj , ..., wj+J as ωj . Thus, we define the neu-
ral scoring function as follows:

G(n,m,h) =
∑

(ω,m)∈W(n,m,h)

c(ω,m,n,m,h)× ψ(ω,m)

(8)
where W(n,m,h) is the set of (ω,m) pairs that can be
extracted from (n,m,h) and c returns their number of
occurences. We include start-of-sentence, end-of-sentence,
and padding symbols to make the length of the word se-
quence (the window size) constant.

As an illustration, the neural network in Figure 2 takes
a target word, a preceeding word, and a following word
as input, i.e., we have the window size J = 1. We look
at the word w4, which is directly attached to the semantic
unit mb. By feeding w4 and its context to the neural net-
work, we obtain the score for the tuple (w3, w4, w5,mb),
i.e., ψ(w3, w4, w5,mb). In the same manner, we can com-
pute all such features in a particular hybrid tuple (n,m,h)
to obtain the value of G(n,m,h).

Learning and Decoding

The training process involves the computation of the ob-
jective function and the gradient terms. We define the log-
likelihood objective for the training set as:

L(Λ,Θ) =
∑

i

log
∑

h∈H(ni,mi)

exp(FΛ,Θ(ni,mi,h))

−
∑

i

log
∑

m′,h′∈H(ni,m′)

exp(FΛ,Θ(ni,m
′,h′)) (9)

The first term computes the potential of (n,m). The sec-
ond term is a normalization term. In both cases, we need
to perform a summation over all possible latent hybrid tree
structures. This can be done using a bottom-up dynamic
programming approach as described in (Lu 2014). The ap-
proach essentially computes the inside score associated with
an (n,m) pair, which gives the sum of scores of all such hy-
brid trees rooted at (n,m). The computation of the second
term involves dynamic programming over a packed forest
representation rather than a single tree.

Our goal is to maximize this objective function by tun-
ing the model parameters, i.e., the discrete feature weight
vector Λ and neural network parameters Θ. We first con-
sider computing the gradient for Λ. Assume that Λ =
〈λ1, λ2, . . . , λN 〉. Differentiating with respect to λk, the
weight associated with the k-th discrete feature φk, yields:

∂L(Λ,Θ)

∂λk
=

∑

i

∑

h

EPΛ,Θ(h|ni,mi)[φk(ni,mi,h)]

−
∑

i

∑

m,h

EPΛ,Θ(m,h|ni)[φk(ni,m,h)] (10)

Analogous to the inside score computation, we can define
and compute outside scores for (n,m), from which the
above gradient can be computed efficiently.

Next, we need to compute the gradient for the neural net-
work parameters Θ. The idea here is to provide the error
signals for the output layer of the neural network. Recall
that each node in the output layer computes a score associ-
ated with a semantic unit m and an input window ω. Hence,
we first compute:

∂L(Λ,Θ)

∂ψ(ω,m)
=

∑

i

∑

h

EPΛ,Θ(h|ni,mi)[c(ω,m,ni,mi,h)]

−
∑

i

∑

m,h

EPΛ,Θ(m,h|ni)[c(ω,m,ni,m,h)] (11)

The above gradients can be computed using the same dy-
namic programming principle. Intuitively, we treat the neu-
ral features in a similar way as the discrete non-neural fea-
tures. However, instead of having a separate weight for each
neural feature (essentially each (ω,m) pair), the weights are
computed using a feedforward neural network. Thus, their
gradients can be computed in the same manner as computing

3312

the gradients for the discrete features. Subsequently, we pass
these gradients to the neural network and apply the chain
rule to compute gradients for Θ.

The decoding involves finding the optimal semantic tree
m∗ given a new input sentence n:

m∗ = argmax
m

P (m|n)

= argmax
m

∑

h∈H(n,m)

exp(FΛ,Θ(n,m,h)) (12)

The computation of P (m|n) in Equation 12 above involves
a summation over all possible hybrid tree structures. To
make the computation efficient using dynamic program-
ming, we replace the

∑
operation above with max, result-

ing in the following equation:

m∗ = argmax
m,h∈H(n,m)

exp(FΛ,Θ(n,m,h)) (13)

Then, we use a Viterbi decoding algorithm to find the best
latent hybrid tree h∗, from which we can extract the optimal
semantic tree m∗.

Experiments and Results

Datasets and Evaluation

We evaluate our approach on the multilingual GeoQuery
dataset, which is a standard benchmark evaluation for se-
mantic parsing (Wong and Mooney 2006; Kate and Mooney
2006; Lu et al. 2008; Jones, Johnson, and Goldwater 2012).
The data consists of 880 pairs of natural language sen-
tences and corresponding semantic representations. In this
work, our model is designed for handling the class of tree-
structured semantic representations.

The initial version of GeoQuery is in English. Further re-
leases include Chinese (Lu and Ng 2011), German, Greek,
and Thai (Jones, Johnson, and Goldwater 2012). In this
work, we annotated the corpus with additional three lan-
guages: Indonesian, Swedish, and Farsi. Each version was
annotated by a native speaker of the respective language. We
use the standard train/test split (600/280) in order to make
our results comparable to previous works.

Following previous works (Jones, Johnson, and Goldwa-
ter 2012; Lu 2014), our evaluation uses a standard script that
constructs Prolog queries based on the system outputs. The
queries are then used to retrieve answers from the GeoQuery
database. An output is correct if and only if the retrieved an-
swer is the same as the gold standard. We report the accuracy
and F1-measure percentage.

Implementations and Settings

The hybrid tree framework was implemented in Java. The
original implementation is publicly available. We follow the
experimental settings in (Lu 2015). In particular, we use the
L-BFGS algorithm (Liu and Nocedal 1989) with a maxi-
mum of 100 iterations. We set c, the maximum height of
a semantic tree, to 20. Discrete (non-neural) feature weights
are �2-regularized with a weight of 0.01.

We implement the neural networks using Torch7 library
(Collobert, Kavukcuoglu, and Farabet 2011). The network

is trained using backpropagation. The parameters are up-
dated for 100 iterations using gradient descent with Adam
updates (Ba and Kingma 2015), where the initial learning
rate is 0.001. We use the Polyglot word embeddings (Al-
Rfou, Perozzi, and Skiena 2013), which provides pre-trained
models for several languages. The dimension of the word
embedding is 64. We wrote a generic interface to facilitate
interaction between the hybrid tree framework and the neu-
ral network back-end through socket communication.2

Our hyperparameter tuning for the neural network in-
cludes the choice of the activation function {tanh, ReLU},
the number of hidden units {50,100,150,200}, the number of
hidden layers {0,1,2}, and the amount of dropout regulariza-
tion {0,0.25,0.5}. We select these parameters through vali-
dation on the English dataset by further splitting the train-
ing set into 400 instances for training and 200 instances
for tuning. Our final selection is the following: tanh acti-
vation, 100 hidden units, 1 hidden layer, and no dropout.
Another hyperparameter that is worth noting is the window
size J {0,1,2}. We deem that this hyperparameter is more
language-specific, hence, we report evaluation results on all
different window sizes.

The original hybrid tree model is non-convex due to la-
tent variables. Adding nonlinear features through neural net-
works increases the model’s complexity. Therefore, to help
learning, we divide our training procedure into two phases,
where each phase focuses on a certain region of the feature
space. In the first phase, we focus on optimizing the non-
neural feature weights by training the original hybrid tree
model in (Lu 2015), which does not utilize a neural network.
We then use the trained weights to initialize the non-neural
weight vector Λ. The second phase is the neural hybrid tree
training, where we optimize the neural parameters Θ. We
found empirically during our development that setting these
weights to fixed values yields better results.3 We make our
system, code and our newly created datasets on three lan-
guages available at http://www.statnlp.org/research/sp/.

Results

Table 1 shows evaluation results of our system as
well as other systems from previous works under the
same experimental settings. Particularly, we compare
our system with different window sizes {0,1,2} against
WASP, HYBRIDTREE+, UBL-S, TREETRANS, DISCHT+,
SEQ2TREE-DL and SEQ2SEQ-JL4 systems.

Results show that our system consistently obtains higher
results than all the previous systems, including the discrim-
inative hybrid tree model that does not have any neural
features. We further evaluate our system on four language
datasets, which have not been tried by previous works. Ta-
ble 2 shows consistent improvements over DISCHT+. The

2http://zeromq.org/
3Our implementation allows fine-tuning these weights jointly

with the neural parameters.
4SEQ2TREE-DL and SEQ2SEQ-JL reported the evaluation re-

sults on English only. SEQ2TREE-DL evaluated based on exact
match using the lambda calculus representation. See Section 4.3 of
(Dong and Lapata 2016).

3313

English Thai
Acc. F Acc. F

WASP 71.1 77.7 71.4 75.0
HYBRIDTREE+ 76.8 81.0 73.6 76.7
UBL-S 82.1 82.1 66.4 66.4
TREETRANS 79.3 79.3 78.2 78.2
DISCHT+ 86.8 86.8 80.7 80.7
SEQ2TREE-DL 87.1 - - -
SEQ2SEQ-JL 89.3 - - -

J = 0 87.9 87.9 82.1 82.1
This work J = 1 88.6 88.6 84.6 84.6

J = 2 90.0 90.0 82.1 82.1
German Greek

WASP 65.7 74.9 70.7 78.6
HYBRIDTREE+ 62.1 68.5 69.3 74.6
UBL-S 75.0 75.0 73.6 73.7
TREETRANS 74.6 74.6 75.4 75.4
DISCHT+ 75.7 75.7 79.3 79.3

J = 0 75.7 75.7 81.1 81.1
This work J = 1 76.8 76.8 79.6 79.6

J = 2 73.9 73.9 80.7 80.7

Table 1: Performance of various works across four different
languages. Acc.: accuracy %, F: F1-measure %.

Chinese Indonesian
Acc. F Acc. F

DISCHT+ 76.1 76.1 75.0 75.0
J = 0 76.8 76.8 76.1 76.1

This work J = 1 75.4 75.4 78.6 78.6
J = 2 81.1 81.1 81.8 81.8

Swedish Farsi
DISCHT+ 79.3 79.3 73.9 73.9

J = 0 81.1 81.1 75.0 75.0
This work J = 1 82.9 82.9 76.1 76.1

J = 2 83.9 83.9 74.6 74.6

Table 2: Performance across additional four languages eval-
uated in this work. Acc.: accuracy %, F: F1-measure %.

best result for each dataset is written in bold. Except for
Greek, the best result for each language is obtained with a
window size J > 0. Nonetheless, we observe that there is
a consistent improvement over DISCHT+ even with J = 0,
which essentially replaces sparse word representation with
a dense embedding. For German, we notice a performance
drop when using J = 2. This is in line with the finding
reported in (Lu 2014), where including longer distance fea-
tures appears to be harmful for German.

Discussions

Model Robustness

We evaluate the robustness of the model on a synthetic
dataset automatically created from the original corpus.
Specifically, we use WordNet (Fellbaum 1998) to replace
word occurrences in the original test split with their syn-
onyms. First, we start with the English dataset and run a
part-of-speech tagger (Bird, Klein, and Loper 2009) to ob-
tain all verbs, nouns, and adjectives. We replace words that

occur in their lemma form with a random synonym obtained
from the first sense in WordNet. Stop words are ignored. In
the next step, we generate the synonym corpus for the re-
maining 7 languages by substituting words that are replaced
in the English version. We utilize the extended version of the
Open Multilingual WordNet (Bond and Foster 2013).

Table 3 compares the performance of DISCHT+ and our
model. We use the best performing J for each language.
First, we observe that replacing words with synonyms re-
sults in a performance drop. This is expected because this
process often generates out-of-vocabulary (OOV) words.
The number of OOV words also depends on the WordNet
size for each language. On average, the absolute drop in per-
formance (in terms of F1 measure) is 1.6% for DISCHT+,
while for our model the drop is 1.2%. This shows that our
model, which makes use of word embeddings as features,
degrades robustly in the presence of OOV. Moreover, the
same conclusion still holds, that is, our neural hybrid tree
model outperforms the discriminative hybrid tree without
neural features.

DISCHT+ This work
F diff. F diff.

English 84.3 -2.5 89.6 -0.4
Thai 78.9 -1.8 83.2 -1.4
German 75.7 0.0 76.8 0.0
Greek 78.6 -0.7 80.4 -0.7
Chinese 71.8 -4.3 76.4 -4.7
Indonesian 73.9 -1.1 81.4 -0.4
Swedish 77.5 -1.8 82.1 -1.8
Farsi 73.2 -0.7 75.7 -0.4
avg. diff. -1.6 -1.2

Table 3: Performance on the synonym datasets. F: F1-
measure %, diff.: difference % from original F1.

Figure 3: 2-D projection of learned phrase representations

Learned Window Representation

We visualize the representation learned by the hidden layer
of the neural network. Since the input to the network is a
window of consecutive words, essentially the hidden layer

3314

is learning an embedding for each phrase, which poten-
tially carries semantically meaningful information. In the
figure, we plot the hidden layer output for English phrases
(J = 2) found in GeoQuery. The vector is projected into a 2-
dimensional space using Barnes-Hut-SNE (Van Der Maaten
2013). Each representation is a 100-dimensional vector.
It can be observed that syntactically similar phrases are
grouped together (what state has the ...). Moreover, semanti-
cally similar words (highest, greatest) are grouped together
and more separated from their antonyms (lowest, smallest).

Conclusion

This paper presents a neural hybrid tree framework for se-
mantic parsing. Our model integrates two different, yet com-
plementing paradigms: graphical models and neural net-
works. We showed through empirical evaluations that our
approach is competitive to the state-of-the-art in semantic
parsing for multiple languages. It would be interesting to
devise a unified approach that jointly transforms natural lan-
guage sentences from multiple languages into a shared se-
mantic representation. Potentially, we can improve our neu-
ral model with a recurrent architecture, such as long short-
term memory. We leave these for future work.

Acknowledgments

We would also like to thank the anonymous reviewers for
their helpful comments. This work is supported by MOE
Tier 1 grant SUTDT12015008, and is partially supported by
project 61472191 under the National Natural Science Foun-
dation of China.

References

Al-Rfou, R.; Perozzi, B.; and Skiena, S. 2013. Polyglot:
Distributed word representations for multilingual NLP. In
Proceedings of CoNLL.
Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016a.
Learning to compose neural networks for question answer-
ing. In Proceedings of NAACL.
Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016b.
Neural module networks. In Proceedings of CVPR.
Ba, J., and Kingma, D. 2015. Adam: A method for stochastic
optimization. In Proceedings of ICLR.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
Proceedings of ICLR.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural language
processing with Python. O’Reilly Media, Inc.
Bond, F., and Foster, R. 2013. Linking and extending an
open multilingual Wordnet. In Proceedings of ACL.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research 12:2493–2537.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A Matlab-like environment for machine learning.
In Proceedings of BigLearn, NIPS Workshop.

Dong, L., and Lapata, M. 2016. Language to logical form
with neural attention. In Proceedings of ACL.
Durrett, G., and Klein, D. 2015. Neural CRF parsing. In
Proceedings of ACL-IJCNLP.
Fellbaum, C. 1998. WordNet. Wiley Online Library.
Jia, R., and Liang, P. 2016. Data recombination for neural
semantic parsing. In Proceedings of ACL.
Jones, B. K.; Johnson, M.; and Goldwater, S. 2012. Seman-
tic parsing with bayesian tree transducers. In Proceedings of
ACL.
Kate, R. J., and Mooney, R. J. 2006. Using string-kernels for
learning semantic parsers. In Proceedings of COLING-ACL.
Krishnamurthy, J., and Kollar, T. 2013. Jointly learning
to parse and perceive: Connecting natural language to the
physical world. Transactions of the Association for Compu-
tational Linguistics 1:193–206.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2010. Inducing probabilistic CCG grammars from
logical form with higher-order unification. In Proceedings
of EMNLP.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Liu, D. C., and Nocedal, J. 1989. On the limited memory
BFGS method for large scale optimization. Mathematical
programming 45(1-3):503–528.
Lu, W., and Ng, H. T. 2011. A probabilistic forest-to-string
model for language generation from typed lambda calculus
expressions. In Proceedings of EMNLP.
Lu, W.; Ng, H. T.; Lee, W. S.; and Zettlemoyer, L. S. 2008.
A generative model for parsing natural language to meaning
representations. In Proceedings of EMNLP.
Lu, W. 2014. Semantic parsing with relaxed hybrid trees. In
Proceedings of EMNLP.
Lu, W. 2015. Constrained semantic forests for improved
discriminative semantic parsing. In Proceedings of ACL-
IJCNLP.
Pennington, J.; Socher, R.; and Manning, C. D. 2014.
GloVe: Global vectors for word representation. In Proceed-
ings of EMNLP.
Van Der Maaten, L. 2013. Barnes-Hut-SNE. In Proceedings
of ICLR.
Vinyals, O.; Kaiser, Ł.; Koo, T.; Petrov, S.; Sutskever, I.; and
Hinton, G. 2015. Grammar as a foreign language. In Pro-
ceedings of NIPS.
Wong, Y. W., and Mooney, R. J. 2006. Learning for semantic
parsing with statistical machine translation. In Proceedings
of NAACL.
Zettlemoyer, L. S., and Collins, M. 2005. Learning to
map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proceedings of UAI.
Zettlemoyer, L. S., and Collins, M. 2007. Online learning
of relaxed CCG grammars for parsing to logical form. In
Proceedings of EMNLP-CoNLL.

3315

