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Abstract

We propose a framework to improve the performance of
distantly-supervised relation extraction, by jointly learning to
solve two related tasks: concept-instance extraction and rela-
tion extraction. We further extend this framework to make
a novel use of document structure: in some small, well-
structured corpora, sections can be identified that correspond
to relation arguments, and distantly-labeled examples from
such sections tend to have good precision. Using these as
seeds we extract additional relation examples by applying la-
bel propagation on a graph composed of noisy examples ex-
tracted from a large unstructured testing corpus. Combined
with the soft constraint that concept examples should have
the same type as the second argument of the relation, we
get significant improvements over several state-of-the-art ap-
proaches to distantly-supervised relation extraction, and rea-
sonable extraction performance even with very small set of
distant labels.

Introduction

In distantly-supervised information extraction (IE), a knowl-
edge base (KB) of relation or concept instances is
used to train an IE system. For example, a set
of facts like sideEffect(meloxicam, stomach-
Bleeding), interactsWith(meloxicam, ibu-
profen), etc are matched against a corpus, and the match-
ing sentences are then used to generate training data con-
sisting of labeled relation mentions. Distant supervision
is less expensive to obtain than directly supervised labels,
but produces noisy training data whenever matching er-
rors occur. This causes problems especially when few dis-
tant labels are available. Hence distant supervision is of-
ten coupled with learning methods that allow for noise,
e.g., by introducing latent variables for each entity mention
(Hoffmann et al. 2011; Riedel, Yao, and McCallum 2010;
Surdeanu et al. 2012); by carefully selecting the entity men-
tions from contexts likely to include specific KB facts (Wu
and Weld 2010); or by careful filtering of the KB strings
used as seeds (Movshovitz-Attias and Cohen 2012).

Another recently-introduced approach to reducing the
noise in distant supervision combines distant labeling with
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label propagation (LP) (Bing et al. 2015; 2016). Label prop-
agation is a family of graph-based semi-supervised learn-
ing (SSL) methods in which “nearby” instances in the graph
are encouraged to have similar labels. Depending on the
LP method, agreement with seed labels can be imposed as
a hard constraint (Zhu, Ghahramani, and Lafferty 2003) or
a soft constraint (Lin and Cohen 2010; Talukdar and Cohen
2014). When seed-label agreement is a soft constraint, then
LP can be viewed as a way of smoothing the seed labels, so
that labels for groups of “similar” instances (i.e., instances
nearby in the graph) are upweighted if they agree, and down-
weighted if they disagree (Bing et al. 2015).

In combining distant supervision with LP, one must build
a graph that connects instances that are likely to have the
same label. Previous systems have constructed graphs
which connect mentions appearing in the same coordinate-
list structure—e.g., the underlined noun phrases in “Get
medical help if you experience chest pain, weakness, or
shortness of breath” (Bing et al. 2015). This approach was
shown to improve performance in recognizing instances of
certain medical noun-phrase (NP) categories, such as drug
names and disease names. An extension of this approach
(Bing et al. 2016) learned extract relations, using a more
complex graph structure.

This paper presents three new contributions extending this
line of work. First, we combine the concept-instance extrac-
tion and relation-extraction tasks, in the process greatly sim-
plifying the relation-extraction LP step. The combination of
the tasks is simple but effective. In (Bing et al. 2016), rela-
tion extraction was performed on an “entity centric” corpus,
where each document is primarily concerned with a particu-
lar “title entity”, and the first argument of each relation is al-
ways the title entity: hence relation extraction can be viewed
as classification, where an entity mention is labeled with its
slot filling role, i.e., its relation to the title entity. The intu-
ition behind combining concept extraction and relation ex-
traction is that relation arguments are often constrained to
be of a particular type; for example, the sideEffect of
a drug is necessarily of the type symptom. Hence, incor-
porating type constraints in relation extraction can improve
performance.

The second contribution is a novel use of document struc-
ture; in particular, we exploit the fact that in some small,
well-structured corpora, sections can be identified that cor-
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Figure 1: A structured document in WebMD describing the
drug meloxicam. All documents in this corpora have the
same seven sections.

respond fairly accurately to relation arguments. Figure 1
shows a document from such a structured corpus (discussed
later) which contains sections labeled “Side Effects”. If
“nausea” is distantly labeled as a side effect of meloxicam
in the “Side Effects” section of this structured document, it
is very likely to be a correct mention for the sideEffect
relation. Used naively, extending a corpus with a small well-
structured one needn’t lead to improvements, but when com-
bined with LP, we show a consistent and sometimes substan-
tial improvement in performance. We thus illustrate a novel
and effective way to make use of a small well-structured cor-
pus, a commonly available resource that is intermediate in
structure between a KB and an ordinary text corpus.

The third contribution is experimental. We perform exten-
sive experiments comparing this approach to state-of-the-art
distant labeling methods based on latent variables, and show
substantial improvements: the relative improvements under
F1 measure are from 72% to 110% on one domain, and 22%
to 30% on a second domain. Below we present our method
in outline and then in detail; present experimental results;
discuss related work; and finally conclude.

DIEJOB: Distant IE by JOint Bootstrapping

Overview

The architecture for DIEJOB, our system for distantly-
supervised relation extraction, is shown in Figure 2. We con-
sider a common case, in which most information is found
in relatively unstructured free text, but some smaller cor-
pora exist that are well-structured. DIEJOB thus assumes
at least two corpora exist for the domain of interest: a large
target corpus and a smaller structured corpus. Further, it
assumes that every document in these two corpora is as-
sociated with a particular entity, called title entity or sub-
ject entity. Many widely-used corpora have this structure,
including Wikipedia and the authoritative websites we use,
DailyMed and WebMD.

From each corpus, DIEJOB produces two types of men-
tion sets: a relation mention set R and a concept men-
tion set C. For the example of Figure 1, R contains a
sideEffect relation mention for “stomach upset” from
the first sentence, and C may contain mentions of the
Symptom concept, like “stomach upset” and “nausea” from
the same sentence. The tail argument values (such as “nau-
sea” in sideEffect(meloxicam, nausea)) of a re-
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Figure 2: Architecture of DIEJOB.

lation are often from a particular unary concept. For ex-
ample, the sideEffect relation takes instances of Symptom
concept as the value range of its second argument.1 Naively,
those concept mentions in C could serve as a source to gen-
erate relation examples, but not all concept mentions are
relation mentions: e.g., the Symptom mentions of “con-
fusion” and “mood changes” from “Symptoms of overdose
may include: confusion, mood changes ...” are not mentions
of the sideEffect relation (or any other relation we cur-
rently extract). For the structured corpus, the relation and
concept mention sets are referred to as Rs and Cs, and for
the target corpus Rt and Ct. Some special treatments (dis-
cussed below) are done while preparing Rs and Cs.

After producing Rs, Rt, Cs and Ct, DIEJOB builds a bi-
partite graph, following prior work (Lin 2012), in which the
nodes are either mentions in the four sets, or features of these
mentions, with edges between a mention and its features. To
distill a cleaner set of relation training examples, DIEJOB
performs LP on the bipartite graph. Only the mentions from
Rs are used as seed relation examples in this LP stage (be-
cause they are more accurate, discussed later).

Finally the distilled relation examples are used to train
an ordinary SVM classifier over their extracted features.
DIEJOB thus finally learns to classify an unseen mention
by the relation which holds between the mention and its cor-
responding title entity based on features of the mention—a
convenient architecture to use for large-scale extraction.

Below we will describe the components of DIEJOB and
the experiments in more detail.

Relations and Corpora2

Even large curated KBs are often incomplete and the sit-
uation is worse in the medical domain where the cover-
age of large KBs like Freebase is fairly limited. We fo-
cus on extracting instances of eight commonly-used rela-
tions, defined in Freebase, about drugs and diseases. The
drug relations are usedToTreat, conditionsThis-
MayPrevent, and sideEffect. The concept types
of their second arguments are DiseaseOrMedical-
Condition, DiseaseOrMedicalCondition, and
Symptom, as defined by Freebase. The disease rela-
tions are hasTreatment, hasSymptom, riskFactor,

1This is also true for general domains: the founder of a com-
pany should be a Person instance, and its headquarters is usually
a City instance.

2We released some data at: http://curtis.ml.cmu.edu/gnat/ and
http://www.wcohen.com
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hasCause, and preventionFactor, with correspond-
ing concept types as MedicalTreatment, Symptom,
RiskFactor, DiseaseCause, and ConditionPre-
ventionFactor.

We are primarily concerned with extraction from large,
authoritative sources. Our target drug corpus, called Dai-
lyMed, is downloaded from dailymed.nlm.nih.gov and con-
tains 28,590 XML documents. Our target disease corpus,
called WikiDisease, is extracted from a Wikipedia dump
of May 2015 and contains 8,596 disease articles. The
structured drug corpus3, called WebMD, contains 2,096
pages collected from www.webmd.com. Each page has the
same sections, such as Uses and Side Effects, correspond-
ing to usedToTreat/conditionsThisMayPrevent
and sideEffect relations, respectively. The structured
disease corpus, called MayoClinic, contains 1,117 pages
collected from www.mayoclinic.org. Each page also has
regular sections, such as Symptoms, Causes, Risk Factors,
Treatments/Drugs, and Prevention, corresponding to has-
Symptom, hasCause, riskFactor, hasTreatment,
and preventionFactor. These corpora are all entity
centric, i.e., each page discusses a single entity. 4

We use GDep (Sagae and Tsujii 2007), a dependency
parser trained on GENIA Treebank, to parse the corpora,
followed by a simple POS-tag based chunker to extract NPs.
We also extract a list (e.g. “stomach upset, nausea, and dizzi-
ness”) for each coordinating conjunction whose edge label
is “NMOD” in the dependency tree. For each NP mention,
we extract features (described below) from its context; and
for each coordinate list, we extract similar features of the NP
chunks. A mention not inside a list is regarded as a singleton
list that contains only one item.

Mention Preparation

Relation mention sets, i.e. Rs and Rt, are prepared with
distant supervision. The extracted NP mentions are dis-
tantly labeled using relation seed triples from Freebase
(e.g. sideEffect(meloxican,nausea)). Specifi-
cally, we require that the title entity matches the first argu-
ment value of the relation, and the NP mention matches the
second argument value. To improve the quality of Rs, we
also require that the section from which the mention was
taken is relevant to the relation; e.g., a mention labeled with
the sideEffect relation must appear in a section entitled
Side Effects. Such a constraint limits the number of labeled
mentions in Rs. In the next section, we will show how to ex-
tend this small but accurate example set to a larger training
set of examples, with reasonable quality.

3It is not difficult to find such structured pages in differ-
ent domains, such as scientist (http://famouschemists.org/, hav-
ing “Famous For”, “Awards”, and “Discoveries” sections) and
movie (http://www.imdb.com/chart/top, having “Awards”, “Plot
Summary”, etc.)

4In fact, entity-centric corpora are common in different
domains, such as animal (http://a-z-animals.com/animals/),
world heritage (http://whc.unesco.org/en/list), disease gene
(https://www.genecards.org/cgi-bin/listdiseasecards.pl, and soft-
ware (http://stackoverflow.com/tags).

The concept mentions are designed to have high recall
with respect to possible argument values for a relation. For
each relation r, we generate a set of concept mentions which
lie in the range of r’s second argument. Following the DIEL
system (Bing et al. 2015), we extract concept instances from
Freebase as seeds, and extend the seed set using LP in each
corpus. Then the coordinate-term lists and singleton lists
(NPs) are collected as concept mentions. Thus, we get two
concept mention sets: Cs from the structured corpus, and
Ct from the target corpus. Note that some mentions in Cs

may come from unrelated sections; for instance, Cs for the
Symptom concept may contain mentions from the Overdose
section, which cannot be examples of the sideEffect re-
lation. Therefore, we filter out the mentions in Cs that are
not from the appropriate section for this concept (using the
mapping from concepts to relations and the mapping from
relations to section titles, given in the previous section).

We emphasize that the section-specific processing is only
done on the structured corpus, i.e. for Cs and Rs. Our tar-
get corpora have thousands of section titles, most of which
are not related in any way to the relations being extracted.
Thus the target relation mentions (Rt) and target concept
mentions (Ct) are collected without considering section in-
formation.

Relation Label Propagation

With the relation mentions and the concept mentions lying
in the range of the corresponding relation, we are able to
distill a cleaner set of training relation examples to learn
extractors. Rs contains more confident relation examples
because of constraints by document structure, but it is lim-
ited in size. In contrast, the number of Rt mentions is
larger, but they are noisier. In general, the degree to which
Rt mentions will be useful may be domain- and corpus-
specific. Cs and Ct are generated with respect to the
type of the mentions, but not their relationship with the ti-
tle entity: e.g., a mention in Ct corresponding to the NP
“dizziness” would not be associated with the triple side-
Effect(meloxican,dizziness); and indeed, dizzi-
ness might be a condition treated by, not caused by, the ti-
tle entity “meloxican”. Therefore, Ct itself cannot be di-
rectly used as relation examples, however, it can serve as
a resource to distill relation examples. In our experiments,
Rs mentions are always used as seed relation examples in
LP, but we build bipartite propagation graphs with different
combinations of the four sets of mentions and study their
relative performance.

In total, we have 7 bipartite graphs, each with a different
set of mentions from the following combinations: Rs∪Cs∪
Rt ∪Ct, Rs ∪Cs ∪Rt, Rs ∪Cs ∪Ct, Rs ∪Cs, Rs ∪Rt ∪
Ct, Rs ∪ Rt, or Rs ∪ Ct. In a bipartite graph, one set of
nodes are mentions, and the other set of nodes are features
of mentions. An edge is added between each feature and
each mention containing that feature. The edges are TFIDF-
weighted (treating the features as words and the mentions as
documents).

We use an existing multi-class label propagation method,
namely, MultiRankWalk (MRW) (Lin and Cohen 2010),
which is a graph-based SSL method related to personalized
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PageRank (PPR) (Haveliwala et al. 2003), aka random walk
with restart (Tong, Faloutsos, and Pan 2006). MRW can be
viewed simply as computing a personalized PageRank vec-
tor for each class, each of which is computed using a person-
alization vector that is initially uniform over the seeds, and
finally assigning to each node the class associated with its
highest-scoring vector. MRW’s final scores depend on the
centrality of nodes, as well as their proximity to seeds. The
MRW implementation we use is based on ProPPR (Wang,
Mazaitis, and Cohen 2013).

Classifier Learning

Given the ranked mentions of these relation labels from the
above LP, we pick the top N to train classifiers, which can
then be used to classify the entity mentions (singleton lists)
and coordinate lists in any document. We use the same fea-
ture generator for both mentions and lists. Shallow features
include: tokens in the NPs, and character prefixes/suffixes
of these tokens; BOW from the sentence containing the NP;
and tokens and bigrams from a window around the NPs.
From dependency parsing, we find the verb which is clos-
est ancestor of the head of current NP, all modifiers of this
verb, and the path to this verb. For lists, the dependency
features are computed relative to the head of the list.

We use SVMs (Chang and Lin 2001) and discard single-
ton features, as well as the most frequent 5% of features
(as a stop-wording variant). Specifically, binary classifiers
are trained with examples of one relation as the positives,
and examples of the other classes as negatives. We also add
N general negative examples, randomly picked from those
that are not distantly labeled by any relation. A linear ker-
nel and default values for all other parameters are used 5.
A threshold of 0.5 is used to separate positive and negative
predictions, and the positive class with the highest probility
is finally selected. If a new list or mention is not classified
as positive by any classifier, it is predicted as “other”.

Experiments

Experimental Comparisons

The first three baselines are distant supervision (DS) sys-
tems. They classify each testing NP mention into one of the
relation types or “other”, using naive matching to the Free-
base seed triples as distant supervision. Each sentence in the
corpus is processed with the same preprocessing pipeline
to detect NPs, which are then labeled with the Freebase
seed triples. The features are defined and extracted in the
same way as we did for DIEJOB, and binary classifiers are
trained with the same method. The first DS baseline, named
DS Struct, only uses the section-filtered examples from a
structured corpus, i.e. Rs, as training data. The second
DS baseline, named DS Target, only uses labeled examples
from the target corpus, i.e. Rt. While the third DS baseline,
named DS Both, uses examples from both target corpus and
structured corpus.

We also compare against two latent variable learners. The
first is MultiR (Hoffmann et al. 2011) which models each re-
lation mention separately and aggregates their labels using

5https://www.csie.ntu.edu.tw/ cjlin/libsvm/

a deterministic OR. The second is MIML-RE (Surdeanu et
al. 2012) which has a similar structure to MultiR, but uses a
classifier to aggregate the mention level predictions into an
entity pair prediction. We used the publicly available code
from the authors6 for our experiments. Since these methods
do not distinguish between structured and unstructured cor-
pora, we used the union of these corpora in our experiments,
and the feature set used in the bipartite graph. We found that
the performance of these methods varies significantly with
the number of negative examples used during training, and
hence we tuned these and other parameters7 directly on the
evaluation data, and report their best performance. The last
comparison is Mintz++ (Surdeanu et al. 2012), a distant-
supervision baseline which improves on the original model
from (Mintz et al. 2009) by training multiple classifiers, and
allowing multiple labels per entity pair.

We also compare with DIEBOLDS (Bing et al. 2016),
which uses LP on a graph containing entity mention pairs.
The graph used by DIEBOLDS is more complex than the
mention-feature graph used here, in DIEJOB. One set of ver-
tices correspond to (title-entity, mention-entity) pairs. The
other set of vertices are identifiers for coordinate lists: a
mention pair is connected with the lists from any document
describing the subject, and containing the mention. Addi-
tional edges are also introduced based on document struc-
ture and BOW context features. DIEBOLDS performs label
propagation from the mention pairs distantly labeled with
Freebase relation triples.

Experimental Settings and Evaluation Dateset

We extract triples from Freebase as distant labeling seeds
in the same way as (Bing et al. 2016) did. Specifically,
if the subject of a triple matches with the drug or disease
name of a document in a corpus (structured or target) and
its object value appears in that document, it is extracted.
For the disease domain, we get 2022, 2453, 905, 753, and
164 triples for hasTreatment, hasSymptom, risk-
Factor, hasCause, and preventionFactor, respec-
tively. For the drug domain, we get 3112, 315, and 265
triples for usedToTreat, conditionsThisMayPre-
vent, and sideEffect, respectively.

We have two strategies to pick the top N lists for classi-
fier learning. One strategy picks the top N directly, without
distinguishing if they come from the structured corpus or
the target corpus. It is referred to as DIEJOB Both. The
other strategy picks the top N examples only from the tar-
get corpus, and it is referred to as DIEJOB Target. Here our
concern is the difference between the feature distributions of
the two corpora.

Our evaluation dataset contains 20 manually labeled
pages, 10 pages each from the disease corpus WikiDisease
and the drug corpus DailyMed. This data was originally gen-
erated in (Bing et al. 2016). The annotated text fragments
are manually chunked NPs which are the second argument

6http://aiweb.cs.washington.edu/ai/raphaelh/mr/
and http://nlp.stanford.edu/software/mimlre.shtml

7Parameters include the number of epochs (for both MultiR and
MIML-RE) and the number of training folds for MIML-RE.
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Table 1: Extraction results on the evaluation pages. Starred
rows are upper bounds on performance

Disease Drug
P R F1 P R F1

DS Struct 0.300 0.300 0.300 0.232 0.072 0.110
DS Target 0.228 0.335 0.271 0.170 0.188 0.178
DS Both 0.233 0.353 0.281 0.154 0.175 0.164

DIEBOLDS 0.143 0.372 0.209 0.050 0.435 0.090
MultiR* 0.198 0.333 0.249 0.156 0.138 0.146

Mintz++* 0.192 0.353 0.249 0.177 0.178 0.178
MIML-RE* 0.211 0.360 0.266 0.167 0.160 0.163

DIEJOB Target 0.231 0.337 0.275 0.299 0.300 0.300
DIEJOB Both 0.317 0.333 0.324 0.327 0.288 0.306

DIEJOB Target* 0.235 0.339 0.277 0.289 0.425 0.344
DIEJOB Both* 0.317 0.333 0.324 0.282 0.422 0.338

values of any of the eight relations considered here, with the
title drug or disease entity of the corresponding document as
the relation subject. The evaluation data contains 436 triples
for the disease domain and 320 triples for the drug domain.
A system’s task then is to extract all correct values of the
second argument of a given relation from a test document.
We evaluate the performance of different systems from an
IR perspective: a title entity (i.e., document name) and a re-
lation together act as a query, and the extracted NP strings
as retrieval results. For string matching, we employ Second-
String with SoftTFIDF as distance metric (Cohen, Raviku-
mar, and Fienberg 2003) and the match threshold is 0.8 for
all compared systems.

Experimental Results

Table 1 shows the microaveraged values of precision, recall
and F1 measure. The results for DIEBOLDS are from (Bing
et al. 2016). The starred systems are directly tuned on the
evaluation data and should be considered as upper bounds
on true performance. DIEJOB Target and DIEJOB Both are
tuned with a tuning dataset (details discussed later). (For
the disease domain, DIEJOB Both and DIEJOB Both* get
the same results, because they use the same parameters, al-
though they are tuned with different data.)

DIEJOB Both outperforms all the other systems. Com-
pared with MultiR, Mintz++, and MIML-RE, the relative
improvements under the F1 measure are 22% to 30% in the
disease domain, and 72% to 110% in the drug domain. The
precision values of DIEJOB Both are much higher than pre-
vious works. For recall, DIEBOLDS and DIEJOB Both’s
performances are comparable to the latent-variable systems
on the disease domain and much better on the drug domain.
One reason may be DIEJOB’s LP step handles the noisy dis-
tant examples better than the latent variable models. Another
reason is that DIEJOB predicts one label for a coordinate-
term list (lists are common in the drug domain), which im-
plicitly coordinates the labels of list items, while MultiR,
Mintz++, and MIML-RE break a list into individual items
which are predicted separately.

The precision values of DIEBOLDS are much lower than
DIEJOB, especially for the drug domain. Unlike DIEJOB,
DIEBOLDS builds an LP graph containing all singleton and
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Figure 3: Precision-recall curves.

coordinate lists of noun phrases in the corpus, which intro-
duces many irrelevant examples. DIEBOLDS achieves the
highest recall values, but in practice, it is also likely to pre-
dict a testing mention as belonging to one of the eight rela-
tions, but not “other”.

On these tasks, the simple DS baselines’ performance
is competitive with previous works. One exception is
DS Struct on the drug domain, where the recall is only
0.072. This is perhaps because the total number of exam-
ples in Rs for the three drug relations is only 485, which
is very small. The precision of DS Struct is better than
DS Target and DS Both for both domains, presumably be-
cause of the higher quality of the examples in Rs. DS Both,
which naively extends the target corpus with the structured
one, does not lead to improvements, but DIEJOB, which
uses the structured corpus to modify LP, does improve.

For the disease domain, DIEJOB Both performs better
than DIEJOB Target, no matter how they are tuned (i.e.
on tuning or evaluation data). This shows that the men-
tions from Rs and Cs of MayoClinic corpus provide good
training examples. For the drug domain, DIEJOB Both and
DIEJOB Target achieve similar results. This may be be-
cause DIEJOB Both is more sensitive to the difference in
feature distributions of structured and target corpora, since
it uses examples from the structured corpus to learn clas-
sifiers as well. Among the four corpora we use, WebMD,
MayoClinic, and WikiDisease are written to be readable by a
large audience, while DailyMed articles are more difficult in
terms of readability: hence the difference between the struc-
tured and unstructured corpora is larger in the drug domain.

Precision-recall curves are given in Figure 3. For the drug
domain, DIEJOB’s precision is consistently better, at the
same recall level, than any of the other methods. For the
disease domain, our system’s precision is generally better
after the recall level 0.05.
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Figure 4: Performance of DIEJOB variants and effect of the parameter N.

Tuning and Ablation Studies

Here we examine the performance of different variants, and
the effect of the parameter N . The performance of all graph
variants on a tuning dataset (containing 10 labeled pages) is
given in Figure 4. Combined with the strategies for picking
top N (i.e. DIEJOB Target and DIEJOB Both), there are 13
variants: shown in Figures 4a and 4b for disease; Figures 4c
and 4d for drug. (Note that DIEJOB Target does not have
the variant RsCs, because RsCs does not contain any ex-
amples from the target corpus.)

For the disease domain, each variant of DIEJOB Both and
DIEJOB Target performs similarly to its counterpart, on av-
erage, DIEJOB Both is slightly better than DIEJOB Target.
For the drug domain, on average, DIEJOB Target is better
than DIEJOB Both. One explanation is that the two corpora
in the disease domain are more similar, so combining ex-
amples from them is more beneficial. However, the effect
of such a mixture is negative for drug domain, whose struc-
tured and target corpora are more dissimilar.

In Table 1, the reported results of the tuned DIEJOB Both
and DIEJOB Target for the disease domain are from the
variants RsCs and RsCsRt respectively, while for the drug
domain, both are from RsRt. One explanation could be:
(1) if the structured corpus is similar to the target cor-
pus, it is better to use DIEJOB Both, and including ex-
amples of the structured corpus (e.g., RsCs and RsCsRt,
both have Cs used) generally performs well with a larger N
value; (2) if the structured and target corpora are dissimilar,
DIEJOB Target is better and RsRt has an advantage over
other variants, as the main focus is distilling good training
examples from Rt and a smaller number of top N examples
is preferred.

Related Work

To overcome the noise in distantly-labeled examples,
(Riedel, Yao, and McCallum 2010) introduced an “at least
one” heuristic, where instead of taking all mentions for a
pair as correct examples only at least one of them is assumed

to express that relation. MultiR (Hoffmann et al. 2011) and
MIML-RE (Surdeanu et al. 2012) extend this approach to
support multiple relations expressed by different sentences
in a bag. Unlike them, DIEJOB improves the quality of
training data with a bootstrapping step before feeding the
noisy examples into a learner, by using the confident exam-
ples from a structured corpus as seeds. The benefit of this
step is two-fold: (1) It distills the distantly-labeled examples
by propagating labels from good seeds, and downweights
the noisy ones; (2) The propagation will walk to more re-
lation examples in the concept mention set that cannot be
distantly labeled with triples from knowledge bases.

Document structure was previously explored by (Bing et
al. 2016), which used the structure to enrich an LP graph by
adding coupling edges between mentions in the same sec-
tion of particular documents. In this work, we explore the
semantic association between section titles and relation ar-
guments. Furthermore, we perform a joint bootstrapping on
relation and type mentions to collect training examples with
better quality. Technically, the propagation graphs used are
different: DIEJOB’s graph has carefully produced mention
nodes (from those four sets) and their feature nodes, while
DIEBOLDS’ graph has triple nodes (i.e., subject-NP pairs)
and all singleton and coordinate lists of noun phrases of the
corpora. Accordingly, their propagation seeds are different:
DIEJOB uses confident examples as seeds (labeled from par-
ticular sections of a structured corpus) to propagate labels to
more examples via feature similarity, while DIEBOLDS di-
rectly uses Freebase triples as seeds and propagates labels
through edges built from coordinate lists and sections.

In the classic bootstrap learning scheme (Riloff and Jones
1999; Agichtein and Gravano 2000; Bunescu and Mooney
2007), a small number of seed instances are used to extract
new patterns from a large corpus, which are then used to
extract more instances. Then, in an iterative fashion, new
instances are used to extract more patterns. DIEJOB de-
parts from earlier bootstrapping methods in combining label
propagation with a standard classification learner, and it can
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improve the quality of distant examples and collect new ex-
amples simultaneously.

Conclusions

We proposed the DIEJOB framework to generate good ex-
amples for distantly-supervised IE. It exploits the document
structure of a small well-structured corpus to collect seed
relation examples, and it also collects concept mentions that
could be the second argument values of relations. DIEJOB
then conducts label propagation to find mentions that can
be confidently used as training examples to train classi-
fiers for labeling new entity mentions. The experimental re-
sults show that this approach consistently and significantly
outperforms state-of-the-art approaches, and performs well
when few distant labels are available.
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