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Abstract

Distant supervision (DS) is a promising technique for relation
extraction. Currently, most DS approaches build relation ex-
traction models in local instance feature space, often suffer
from the multi-instance problem and the missing label prob-
lem. In this paper, we propose a new DS method — proto-
type-based global representation learning, which can effec-
tively resolve the multi-instance problem and the missing la-
bel problem by learning informative entity pair representa-
tions, and building discriminative extraction models at the
entity pair level, rather than at the instance level. Specifically,
we propose a prototype-based embedding algorithm, which
can embed entity pairs into a prototype-based global feature
space; we then propose a neural network model, which can
classify entity pairs into target relation types by summarizing
relevant information from multiple instances. Experimental
results show that our method can achieve significant perfor-
mance improvement over traditional DS methods.

Introduction

Relation extraction (RE) is a fundamental task of text anal-
ysis and knowledge acquisition, which aims to identify and
categorize relations between pairs of entities in text. For ex-
ample, a RE system will extract a relation Founder-of(Jobs,
Apple) from the sentence “Jobs co-founded Apple in 1976”.
Unfortunately, traditional relation extraction approaches
(Kambhatla 2004; Zhang et al., 2006; etc.) are mostly super-
vised, thus require expensive labeled data and often suffer
from the labeled data bottleneck when building relation ex-
tractors in web or open domain situation.

To resolve the labeled data bottleneck, a promising tech-
nique is distant supervision (DS), which tries to build RE
systems by exploiting the easily obtained relations/facts in a
knowledge base as supervision (e.g., Yago', DBPedia* and
Freebase®), rather than using labeled data. Figure 1 shows a
classical DS system (Craven and Kumlien, 1999; Wu et al.,
2007; Mintz et al., 2009): Firstly, all sentences containing
specific entity pairs are collected from a text corpus. Then
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these instances are heuristically labeled by aligning them
with relations in KB. Finally, the heuristically labeled train-
ing data is used to build relation extractors.

Knowledge Base

CEO-of(Steve Jobs, Apple)
Founder-of(Steve Jobs, Apple)
CEO-of(Marissa Mayer, Yahoo!)
Founder-of(Steve Wozniak, Apple)

Heuristically
labeling

nces

S1: Jobs, the CEO of Apple

S2: Jobs joins Apple as

S3: Jobs co-founded Apple in 1976
S4: Jobs launched Apple in 1976

S5: Mayer is the new CEO of Yahoo!
S6: Mayer joins Yahoo!

S7: Woz co-founded Apple in 1976
S8: Woz joins Apple as

Entity Pairs Types

CEO-of
Founder-of

(Jobs, Apple)

(Mayer, Yahoo!) CEO-of

(Woz, Apple) Founder-of

Figure 1.Training data labeling in DS system

Compared with traditional supervised RE systems, DS
systems have several challenging problems. Firstly, while
the objective of standard supervised RE systems is to clas-
sify relation instances (i.e., a sentence mentioned a specific
entity pair such as S/, S2, ..., S8 in above), the objective of
DS systems is to classify entity pairs, where each entity pair
contains a collection of instances (e.g., (Jobs, Apple) is rep-
resented by four instances {S/, S2, S3, S4}) — this problem
is referred as the multi-instance problem. Secondly, in
standard supervision problem, the gold labels of all training
instances are given, while in DS only entity pair labels are
given, while the labels of all training instances are unknown
— we refer to this problem as the missing label problem.

Traditionally, most DS approaches build relation extrac-
tion models in local instance feature space — this paper re-
fers them as instance-level models (Bunescu & Mooney,
2007; Riedel et al., 2010; Yao et al., 2010; Hoffmann et al.,
2010; Surdeanu et al., 2012; Ritter et al., 2013; Zeng et al.,
2015; Han and Sun, 2016; etc.). This paradigm first learns
instance-level classifiers which can classify individual in-
stances into target relation types (e.g., classify S/ into CEO-

!http://www.mpi-inf.mpg.de/yago-naga/yago
2 http://www.dbpedia.org/
3 http://www.freebase.com/



of or Founder-of), then the relation types of an entity pair
are determined using the classification scores of its instances,
by assuming a relationship between the labels of an entity
pair and the labels of its instances (e.g., the commonly used
at-least-one assumption). For instance, in Figure 1 the rela-
tion types of (Jobs, Apple Inc.) will be determined by the
classification results of S7, S2, S3 and S4.

The instance-level model based DS approaches, however,
often suffer from the multi-instance problem and the miss-
ing label problem. Firstly, due to the multi-instance problem,
a system should summarize relevant evidence from multiple
instances. For example, to extract Founder-of(Jobs, Apple)
in Figure 1, a system should summarize relevant evidence
“X co-found Y’ from S3 and “X launched Y’ from S4, mean-
while should identify “X, the CEO of Y’ from S/ and “X join
Y’ from S2 as irrelevant evidence. Unfortunately, the dis-
criminative learning process of the instance-level models
occurs at the instance level, but not at the entity pair level.
This fact prevents instance-level models from leveraging in-
formation beyond individual instances. Secondly, the multi-
instance problem and the missing label problem make it a
challenging problem to learn accurate classifiers in local in-
stance feature space. For example, Figure 2(a) plots the in-
stances in Figure 1, we can see that the optimal classification
hyperplane is hard to learn due to the overlap of instances
from different entity pairs and the missing labels of all in-
stances.

In this paper, we propose a new DS method — prototype-
based global representation learning, which can effectively
solve the multi-instance problem and the missing label prob-
lem by learning informative entity pair representations. Spe-
cifically, we propose an effective global representation
learning algorithm — prototype-based embedding, which
will represent each entity pair by its similarities to a set of
informative and discriminative relation prototypes. For ex-
ample, in Figure 2(b) the entity pairs (Jobs, Apple), (Mayer,
Yahoo!) and (Woz, Apple) are embedded into a three-dimen-
sional global feature space, with its dimensions correspond-
ing to prototypes “X co-found Y, “X launch Y’ and “X is
CEO of Y. Based on the global representations of entity
pairs, we propose a neural network, which can categorize
these entity pairs into relation types by jointly embedding
entity pairs and learning classifiers in global feature space.
Compared with traditional DS methods, our method has the
following advantages:

1) By learning global representations of entity pairs,
our method can effectively solve the missing label problem
and the multi-instance problem. Concretely, we solve the
multi-instance problem by representing each entity pair as
an individual point in global feature space (Figure 2(b)), ra-
ther than representing it as a set of points in instance feature
space (Figure 2(a)). Furthermore, because the relation types
of all training entity pairs are given in KB, there will be no
missing label problem in entity pair level classification.

3444

(Jobs, Apple)
(Mayer, Yahoo!)
(Woz, Apple)

o

0.8

0.6

(a)

0.4

A 30 03D ST X

Figure 2. The representation of entity pairs: (a) The
multi-instance representation; and (b) The global
representation via prototype-based embedding

2) Compared with instance-level models, our model can
better summarize information from multiple instances. Fur-
thermore, the discriminative learning process of our model
occurs at the entity pair level, which makes the learning
problem of DS systems less challenging. For instance, in
Figure 2, it is obviously easier to determine the optimal clas-
sification hyperplane in the global feature space than in the
local instance feature space.

3) The prototype-based embedding algorithm can learn
accurate global representation for entity pairs. Currently, to
the best of our knowledge, there is only one global represen-
tation based DS method — Mintz et al. (2009), which rep-
resents an entity pair by simply combining together all fea-
tures of its instances. Such a naive global representation
strategy, unfortunately, will introduce a lot of noisy infor-
mation in global representation, e.g., the irrelevant infor-
mation from “Jobs join Apple”, “Jobs left Apple”, “Apple
after Jobs” will be used to extract Founder-of(Jobs, Apple).
By contrast, our method can filter out irrelevant instances
via its similarities to a set of relation prototypes.

We conduct experiments on a standard data set. Experi-
mental results show that our method can significantly im-
prove the performance of DS systems.

This paper is organized as follows. Firstly we describe the
embedding algorithm. Secondly we introduce our relation
extraction system. Then we discuss experiments and review
related work. Finally we conclude this paper.



Global Representation Learning via
Prototype-based Embedding

In this section, we describe our global representation learn-
ing algorithm. We first introduce how to embed entity pairs
into a prototype-based feature space, then we describe how
to sample informative and discriminative prototypes.

Prototype-based Entity Pair Embedding

In DS systems, each entity pair B contains a set of instances
B = {xi, X2, ..., X|}, where each instance xi is represented
as a feature vector xi= [Xi1, X, ..., Xin] With x;; = 1 if x; con-
tains feature f;, and 0 otherwise. Figure 3 demonstrates sev-
eral feature vectors of the instances in Figure 1. Given an
entity pair B, the goal of our global representation learning
algorithm is to learn a global feature vector, which can pro-
vide a global view of all relevant information from different
instances of B.

CEO  join co-found launch of

S1 1 0 0 0 1
S2 0 1 0 0 0
S3 0 0 1 0 0
S4 0 0 0 1 0

Figure 3. Several feature vectors of instances

In this paper, we learn the global feature vectors of entity
pairs by assuming that there exists a set of prototypes for
each relation type, and these prototypes can be used to cap-
ture the relevant evidence for extracting a specific relation
type. For example, the Founder-of relation is often ex-
pressed using several regular patterns, such as “X is the
founder of Y, “X co-found Y’ and “X launch Yin ...”. Using
these Founder-of prototypes, we can capture the Founder-of
evidence of an instance by measuring its similarities with
these prototypes. For example, we can capture Founder-of
evidence of “Jobs co-founds Apple in 1976 via its similar-
ity to the Founder-of prototype “X co-found Y.

Based on the above assumption, each prototype can be
viewed as a global feature detector of entity pairs. That is, if
an entity pair contains many instances which are similar to
the prototypes of a relation type, then it will be highly likely
to express this relation type. Formally, given a set of proto-
types C = {ci, ..., ¢k}, we embed an entity pair B into the
prototype-based feature space as m(B) = [m;(B), my(B), ...,
mx(B)], where the k" coordinate of m(B) is the max simi-
larity between the instances of B and prototype c:

m, (B)=max sim(x;, ¢, w,)
1

where sim(X;, ¢k, Wi) is a parameterized similarity function
between x; and ¢, and wy is its parameters. There are many
similarity functions can be used in our algorithm, including
the weighted dot product:

sim(X , ¢, , W, )=

i

ij Xij ij
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the Sigmoid function:
sim(x,, ¢,, w,) =1/ (1+exp(—)_W, x.¢,

J

the Radial Basis function (RBF):
. zj (ijxu' 'ijckj)2
sim(x, ¢, W, ) =exp(————————
)
and the Rectifier function:
sim(x,, ¢, w, ) = max(0, Z:wijuckj

Using the above method, we can repfesent (Jobs, Apple) in
Figure 1 as:
max sim(. , X co-found Y)
(Jobs, Apple) =| max sim(., X launch Y)
max sim(., X is CEO of )

sim(S3, X co-found Y) 0.9
=| sim(S4, X launchY) |=]|0.8
sim(S1, X is CEO of Y) 0.9

We can see that:

1) The global representation can summarize relevant evi-
dence from multiple instances. In prototype-based feature
space, each coordinate can represent information from a spe-
cific instance, and the information from different instances
can be simultaneously represented in different coordinates.
For example, in the above (Jobs, Apple) representation, the
information from S3, S4 and S/ are simultaneously repre-
sented in 1%, 2" and 3" coordinates.

2) The global representation can identify relevant infor-
mation and filter out irrelevant information for relation ex-
traction: If an instance is irrelevant to the target relation
types, then it should not be similar to any prototypes. For
example, the information from “Jobs joins Apple” will be
filtered out for the extraction of Founder-of and CEO-of re-
lations, because it isn’t similar to any Founder-of or CEO-
of prototypes. This characteristic shields our global repre-
sentation from the noisy information from irrelevant in-
stances, which is especially important for effective DS sys-
tems.

Prototype Learning

It is obvious that the quality of prototypes is critical for
global representation learning. This section describes how
to learn informative and discriminative prototypes. Specifi-
cally, we employ the sampling strategy (Gu et al., 2001) to
learn prototypes, i.e., we sample representative training in-
stances as prototypes. Generally, a good prototype must sat-
isfy the following two requirements (Liu & Motoda, 2013):

- Goodness-of-exemplar: a prototype must abstract out
the central tendency of the instances expressing a specific
relation type, i.e., a good prototype must cover a lot of in-
stances of a relation type;

- Goodness-of-discrimination: a prototype must be able
to distinguish relation instances from other relation types.
For example, although “X join Y’ may cover a lot of CEO-



of instances, it is not a good prototype because it cannot dis-
tinguish instances from many other relation types, such as
Founder-of, CFO-of, Manager-of and Employee-of. By con-
trast “Xjoint Y as its CEO” will be a good CEO-of prototype
because it is both discriminative and representative.

To meet the above two requirements, we propose a pro-
totype learning method, which can: 1) ensure the goodness-
of-discrimination by iteratively sampling prototypes from
wrongly classified training instances; and 2) ensure the
goodness-of-exemplar by sampling instances according to
their goodness-of-exemplar scores. Specifically, given the
training instances {Xi, X, ..., Xm} of a specific relation type,
we learn prototypes as follows:

Step 1: Initialize the prototype set by sampling from

positive training instances via Weighted Rejection Sam-

pling algorithm;

Step 2: Train our relation extraction model using current

prototypes;

Step 3: Collect wrongly classified training instances

from the wrongly classified entity pairs;

Step 4: Sample new prototypes from the wrongly clas-

sified instances via Weighted Rejection Sampling algo-

rithm and add them to prototype set;

Step 5: Go to Step 2 until coverage.

In this paper, the above algorithm achieves coverage if the
prototype number reaches a predefined threshold or our
model achieves its best performance on the development
data set.

To sample representative prototypes from instances, fol-
lowing the idea of DBSCAN clustering algorithm (Ester et
al., 1996), we measure an instance’s goodness-of-exemplar
via its 6-NN value, i.e., how many instances whose similar-
ity to this instance is larger than o. For example, in Figure 4
the instance x, is more representative than x, because it has
a larger 6-NN value.

AL \
' X !

: 1o 9
Al AS N,

o

Figure 4.Measuring the goodness-of-exemplar via o-NN
value, here 6-NN( x1)=5 and 6-NN(x2)=1

Using the above goodness-of-exemplar measure, the
Weighted Rejection Sampling algorithm is shown in below.
We can see that, the algorithm ensures the goodness-of-ex-
emplar by sampling instances according to their 6-NN val-
ues, and avoids redundant prototypes by rejecting prototype
candidates similar to current prototypes.

A Neural Network for Joint Global Represen-
tation Learning and Entity Pair Classification

This section describes how to build a global representation
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Weighted Rejection Sampling Algorithm
Input:
- The wrongly classified instances X = {xi, ..
- The number of sampled prototypes K
- The similarity threshold ¢
Output: The new prototypes C={c1, ¢c2, ..
For xi in X:
Compute 6-NN(xi)
End for
C—{}
While Size(C) < K:
Sample x from X with probability « exp(c-NN(x))
If maxk sim(x, ¢ck) < o:
Addxto C
End while

.Xm}

., CK}

based relation extractor and how to learn its parameters.
Generally, a global representation based relation extractor
contains two components: 1) a global representation learn-
ing component which maps an entity pair into a global fea-
ture vector; and 2) an entity pair classifier which categorizes
entity pairs into target relation types. We found that the
above two components can be jointly modeled in a neural
network architecture. Figure 5 shows the neural network we
used in this paper.

The proposed neural network architecture provides a flex-
ible framework for global representation-based DS systems:
we can replace the prototype-based embedding layer with
other global representation learning layers, e.g., the well-
known convolutional layer. We can also change the entity
pair classification layer to other classification layers, e.g., a
softmax layer or even a multi-layer neural network itself.

Linear SVM layer @ @@ O O ©

fwe

m(B) OOOOOOO

max pooling
Prototype
- @@@@@@@

embedding

sim(.,¢;) sim(.,cx)
1W[1:k]
Instances of
Entity pair
... Xp|

Figure 5. The neural network architecture of our system, where

the prototype-based embedding is modeled via a prototype simi-

larity layer and a max-pooling layer, and the entity pair classifi-
cation is modeled via a linear SVM layer



Parameter Learning. Given a set of prototypes, we need
to learn the following parameters:

- The parameters of the prototype-based embedding

algorithm: [wi, wo, ..., Wk];

- The parameters of the entity pair classifier, in our
neural network it is the weights of the linear SVM
layer We.

In our above neural network framework, we can learn our
system’s parameters by first computing gradients of its pa-
rameters via Backpropagation algorithm, and then optimiz-
ing parameters using optimization algorithms such as SGD,
AdaGrad and AdaDelta. In this paper, we optimize our
model’s parameters using the AdaDelta optimization algo-
rithm. Because many entity pairs have more than one rela-
tion (e.g., Steven Jobs is both CEO-of and Founder-of Apple
Inc.), this paper solves this multi-label problem by training
a neural network model for each relation type using the
“one-versus-all” strategy.

Experiments
Data Set

We conduct experiments on the commonly used KBP data
set (Surdeanu et al., 2012). The KBP data set was con-
structed by aligning relations from English Wikipedia in-
foboxes against a document collection which contains the
KBP shared task corpus (Ji et al., 2011) and the June 2010
version of Wikipedia. The KBP data set contains 41 relation
types, 183,062 training relations and 3,334 testing relations.
We evaluate all methods the same as Surdeanu et al. (2012):
1) relations are evaluated regardless of their support docu-
ments; and 2) only the gold relations mentioned in matched
sentences are considered.

Systems and Baselines

We compare our method with four baselines:

Mintz++ — This is a traditional DS method proposed by
Mintz et al.(2009), which represents an entity pair by simply
combining all features of its instances together.

Hoffmann — This is an instance-model based multi-in-
stance multi-label DS method proposed by Hoffmann et al.
(2011), which first classifies instances into target relation
types, then the label of an entity pair is determined from its
instance labels via a deterministic at-least-one assumption.

Surdeanu — This is an instance-model based multi-in-
stance multi-label DS approach proposed by Surdeanu et al.
(2012), which first classifies instances into target relation
types, then the entity pair labels are determined using its
instance labels via a relational classifier.

DSCNN - This is a simpler version of our model: we re-
place the prototype-based global feature detector in our neu-
ral network (see Figure 5) with the well-known CNN feature
detector (i.e., Convolutional layer + Max-pooling layer).
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In our experiments, we use the implementations and the
optimal settings of Stanford’s MIMLRE package (Surdeanu
et al., 2012) for the three baselines: Mintz++, Hoffmann and
Surdeanu. For the DSCNN baseline and our prototype-em-
bedding based method (referred as DSProto in below), we
use the same partition as Surdeanu et al. (2012) for tuning
and testing. Because positive/negative training instances are
highly imbalanced, we put a higher misclassification cost
(the tuned value is 2) to positive instances during training.

Overall Results

Following previous methods, we evaluate all systems using
precision, recall and F-measure on the ranked relation ex-
tractions, and provide the precision/recall curves of all sys-
tems. The overall results are shown in Figure 6 and Table 1.

Precision Mintz++ - o-
Hoffmann
Surdeanu

DSCNN — &~

DSProto —o—

Recall

0.05 0.1 0.15 0.2 0.25 0.3

Figure 6. Precision/Recall curves on KBP data set

System P R F1

Mintz++ 0.260 0.250 0.255
Hoffimann 0.306 0.198 0.241
Surdeanu 0.249 0314 0.278
DSCNN 0.286 0.214 0.244
DSProto 0.459 0.231 0.307

Table 1. The best F1-measures in P/R curves

From Figure 6 and Table 1, we can see that:

1)The prototype-based global representation learning
method can achieve competitive performance: Compared
with Mintz++, Hoffinann, Surdeanu and DSCNN baselines,
our method correspondingly achieved 20%, 27%, 10% and
26% F1 improvements.

2) By better summarizing evidence from multiple rele-
vant instances, the performance of DS systems can be im-
proved: Compared with the two instance-level model based
DS baselines Hoffimann and Surdeanu, our method corre-
spondingly achieved 27% and 10% F1 improvements. We
believe this is because our method provides a better way to
exploit evidence from multiple instances: our method can
simultaneously represent the evidence from multiple in-
stances in the global feature vector, and can exploit them in
discriminative learning/classification process.



3) By distinguishing relevant instances from irrelevant
instances, our method can learn more accurate entity pair
representations: Compared with the naive global represen-
tation baseline — Mintz++, our method achieved 20% F1 im-
provements. This is because Mintz++ cannot identify irrel-
evant instances, therefore its entity pair representation may
be dominated by noisy information. By contrast, our method
can effectively filter out irrelevant instances via its similari-
ties to the learned prototypes.

4) Compared with the general CNN feature detector,
our prototype-based feature detector can better capture the
evidence for relation extraction: Compared with the DSCNN
baseline, our method achieved 26% F1 improvement. We
found the main reason is that the feature vectors of relation
instances are both sparse and high-dimensional: The KBP
data set contains more than 4,000,000 instance features but
most instances contain only 10~30 features. In this case, it
is too many parameters to learn effective CNN feature de-
tectors. By contrast, the parameter size is compact in our
prototype-based feature detector (proportional to the feature
number in prototypes).

Detailed Analysis

In this section, we provide a detailed analysis for our method.

The effect of the size of prototypes. To assess how the
size of prototypes will affect the extraction performance, we
conduct experiments using different prototype sizes (pro-
portional to the optimal size). The experimental results are
shown in Table 2. We can see that our method achieved a
stable performance on different sizes of prototypes: there is
a small F1 decrease using a prototype set whose size is only
25% of the optimal size. This result also verified our as-
sumption that a compact set of prototypes can cover most of
the instances of a specific relation type.

25%
0.272

50%
0.283

100%
0.307

200%
0.298

KBP

Table 2. The best F1-measures using different sizes (pro-
portional to optimal size) of prototypes

Furthermore, we found that the optimal prototype num-
bers are different for different relation types, and our method
can learn them adaptively. For instance, our method learned
~500 prototypes for the relation org:city_of headquarters,
while learned ~100 prototypes for the relation per:age.

The effect of iterative prototype learning. To assess the
effect of our prototype learning method, we conduct two ex-
periments: 1) we iteratively sample prototypes from
wrongly classified training instances — this is the proposed
prototype learning method; 2) we sample prototypes in an
one-shot manner, i.e., we sample all prototypes at once from
positive training instances via the Weighted Rejection Sam-
pling algorithm. The experimental results are shown in Ta-
ble 3. We can see that, iteratively sampling from wrongly
classified instances can significantly improve the perfor-
mance of our method. We believe this is because the one-
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shot sampling can only ensure the goodness-of-exemplar of
prototypes, meanwhile our method can ensure both the
goodness-of-exemplar and the goodness-of-discrimination.

One-Shot Iterative
KBP 0.286 0.307

Table 3. The best F1-measures of one-shot prototype sam-
pling and iterative prototype sampling

Related Work

Currently, most DS approaches are focused on improving
classification performance in local instance feature. Two
most common strategies are multi-instance learning tech-
niques and better training instance labeling algorithms.

The multi-instance learning based DS approaches focus
on learning instance-level classifiers by modeling the label
relationship between instance labels and entity pair labels.
Currently, one of the most common approaches uses the at-
least-one assumption (Bunescu and Mooney, 2007; Riedel
etal., 2010; Yao et al., 2010; Hoffmann et al., 2010). In re-
cent years, several other label relationship models are also
proposed, e.g., the relational classifier (Surdeanu et al.,
2012), the Markov Logic Network (Han & Sun, 2016). Due
to the missing label problem, the learning of multi-instance
models is often a challenging problem. Xu et al. (2013), Min
et al. (2013), Ritter et al. (2013) and Zhang et al. (2013) fur-
ther took the incompleteness of KB into consideration.

One other common strategy is to develop better training
instance labeling algorithms. It is obvious that the original
simple DS assumption (Craven and Kumlien, 1999; Wu et
al., 2007; Mintz et al., 2009) will often fail and result in
wrongly labeled training instances. Therefore a lot of meth-
ods are focused on eliminating wrongly labeled training in-
stances (Takamatsu et al., 2012; Roth and Klakow, 2013;
Han and Sun, 2014; Hoffmann et al., 2010; Zhang et al.,
2010; Roller et al., 2015; Bing et al., 2015).

There were also some other strategies for improving sys-
tem. Nguyen and Moschitti (2011) and Pershina et al. (2014)
infused labeled corpus with heuristically labeled DS corpus.
Riedel et al. (2013) and Fan et al. (2014) exploited the co-
occurrence statistics between relations/instances/features.
Zeng et al.(2014) propose a piecewise CNN which can bet-
ter represent relation instances.

Conclusions

This paper describes a new distant supervision paradigm —
global representation learning-based distant supervision
and proposes an effective global representation learning al-
gorithm — prototype-based embedding. By learning in-
formative entity pair representations, our method can
achieve competitive performance. This paper uses manually
designed instance features to represent instances, in future
we want to develop a neural network which can jointly em-
bed relation instances and entity pairs.
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