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Figure 1.Training data labeling in DS system 
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Figure 2. The representation of entity pairs: (a) The 
multi-instance representation; and (b) The global 

representation via prototype-based embedding 
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Figure 5. The neural network architecture of our system, where 
the prototype-based embedding is modeled via a prototype simi-
larity layer and a max-pooling layer, and the entity pair classifi-

cation is modeled via a linear SVM layer 
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Figure 6. Precision/Recall curves on KBP data set  
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Table 1.  The best F1-measures in P/R curves
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Table 2. The best F1-measures using different sizes (pro-
portional to optimal size) of prototypes 

  

Table 3. The best F1-measures of one-shot prototype sam-
pling and iterative prototype sampling
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