
Greedy Flipping for
Constrained Word Deletion

Jin-ge Yao, Xiaojun Wan
Institute of Computer Science and Technology, Peking University, Beijing 100871, China

The MOE Key Laboratory of Computational Linguistics, Peking University
{yaojinge, wanxiaojun}@pku.edu.cn

Abstract

In this paper we propose a simple yet efficient method for
constrained word deletion to compress sentences, based on
top-down greedy local flipping from multiple random ini-
tializations. The algorithm naturally integrates various gram-
matical constraints in the compression process, without using
time-consuming integer linear programming solvers. Our for-
mulation suits for any objective function involving arbitrary
local score definition. Experimental results show that the pro-
posed method achieves nearly identical performance with ex-
plicit ILP formulation while being much more efficient.

Introduction

Sentence compression is the task of generating a gram-
matical and usually shorter summary for a long sentence,
while preserving its most important information. This task
has aroused much attention because of its potential appli-
cations, including the generation of headlines and subtitles,
text display on small screens and non-extractive summariza-
tion. One specific instantiation of sentence compression is
word deletion, namely generating a compression by drop-
ping words from the original sentence. This is also known
as extractive compression, as opposed to abstractive com-
pression which allows more elaborate transformations other
than word deletion such as lexical substitution.

Although some related studies start to transfer focus onto
abstractive methods (Woodsend and Lapata 2011; Narayan
and Gardent 2014; Rush, Chopra, and Weston 2015; Xu et
al. 2016), deletion-based compression is still far from being
solved. Meanwhile, it has been shown that extractive meth-
ods can still become more suitable than abstractive methods
in many scenarios (Nomoto 2009).

Various approaches have been proposed to challenge the
task of deletion-based compression. Earlier pioneering stud-
ies (Knight and Marcu 2000; Turner and Charniak 2005)
consider several insightful approaches, including generative
noisy-channel models and discriminative decision tree mod-
els. Structured discriminative compression models (McDon-
ald 2006) are capable of integrating rich features and have
been shown effective. More recently, sequence-to-sequence
learning with gated recurrent nets has also been applied for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

deletion-based compression (Filippova et al. 2015), utiliz-
ing large-scale parallel training data. A potential weakness
for these approaches is the lack of explicit reassurance for
the generated compressions to be syntactically grammatical.

To ensure that the generated compressions remain to be
grammatical, there are two major paradigms. The first is
explicitly rewrite sentences with pre-defined synchronous
grammars based on constituent parse trees, known as tree
transduction (Cohn and Lapata 2007; 2009; Yamangil and
Shieber 2010). In such models a synchronous grammar is in-
duced from a corpus of parallel constituent trees. Compres-
sions are generated from the grammar to maximize some
weighted scores.

The other paradigm is constraints-based models, i.e. ex-
plicitly impose syntactic constraints to make the final com-
pressions grammatical. Many sentence compression mod-
els that explicitly deal with syntactic constraints are mostly
based on integer linear programming (ILP) (Clarke and La-
pata 2008; Filippova and Strube 2008; Thadani and McKe-
own 2013) or Markov logic networks (MLN) (Huang et al.
2012; Yoshikawa et al. 2012). The constraints are mostly
derived from dependency parsing, which is usually much
cheaper in terms of computation, compared with constituent
parsing. Unfortunately inference problems in ILP models
and MLNs are in general NP-hard, which limits the effi-
ciency and scalability of such approaches.

To enhance local smoothness in practice, language mod-
els are usually introduced when decoding tree transduc-
tion models and ILP models. This brings the challenge
that the scoring function now consists of different kinds of
local structures (ngrams in LM and local tree structure),
eliminating the possibility for efficient decoding using dy-
namic programming and making ILP models even slower
in practice. One may use Lagrangian relaxation and dual
decomposition for approximate inference (Thadani 2014;
Yao, Wan, and Xiao 2014) for structured models, utilizing
the fact that the score function can be decomposed into sub-
parts for efficient independent decoding followed by merg-
ing the solutions from the subparts.

In this paper we present a much simpler yet more effi-
cient solution for sentence compression, enabling: (1) syn-
tactic constraints ensuring grammaticality, and (2) rich scor-
ing functions containing different kinds of locality or struc-
tures. Starting with an initial random bit vector indicating

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3518

binary decisions for word deletion, the algorithm traverses
the dependency tree and locally flips one (or more, accord-
ing to certain constraints) bit(s) as an attempt to improve
the scoring function, injecting local grammatical constraints
during this process. Multiple random initializations will be
conducted to tackle the problem of local optimality. Exper-
iments show that the proposed simple algorithm can yield
results that are close to exact ILP formulations, while being
much more efficient in terms of time cost.

Constrained Word Deletion

The Problem

Sentence compression is usually expressed as a combina-
torial optimization problem. Given a long sentence x =
{x1, . . . , xn} to be compressed, ILP-based models encode
the decision to keep or delete each word xi as an indicator
variable δi ∈ {0, 1} and we denote word deletions as setting
corresponding δi to be 0. Then any candidate compression
can be expressed as a bit vector d = {δ1, . . . , δn}. The ob-
jective function Fx(d) is in the form of:

Fx(d) = S(x,d) +

n∑
i=1

δi · w(xi) (1)

where S(x,d) is a rich scoring function for a compression
d on x, defined on local structures such as bigrams and tri-
grams, while w(xi) is a weighing function for word xi. For
dependency-based compression (Filippova and Strube 2008)
we can also view w(xi) in (1) as the score for a dependency
arc with the word xi as modifier, while δi being the indicator
for keeping/deleting that arc. From either view, the objective
function Fx(d) consists of different types of locality, mak-
ing it difficult to optimize efficiently.

One solution is to cast the problem of maximizing (1) as
integer linear programming (ILP) (Clarke and Lapata 2008).
More specifically, we can introduce a variable to denote the
binary decisions on each local structure (e.g. a trigram), with
a bunch of additional constraints to let them being con-
sistent with the bit vector d = {δ1, . . . , δn}. 1 This will
lead to a significant growth of complexity for optimization.
For example, trigram-based scoring function will introduce
additional O(n3) variables and a bunch of coherence con-
straints and thereby complicate the combinatorial optimiza-
tion problem.

To ensure that the generated compressions remain to be
grammatical, additional syntactic constraints on the values
of d need to be specified explicitly in the ILP model. We
briefly describe them in the next independent subsection
since they will also be used in our solution.

Syntactic Constraints

In previous work (Clarke and Lapata 2008), the following
constraints have been introduced and shown to be useful for
the task:

1This change is inevitable in ILP since simply using the prod-
uct δiδjδk to denote a trigram (xi, xj , xk) will make the objective
function nonlinear. A specific binary variable tijk is required to
keep linearity and additional linear constraints are needed to en-
sure consistency between tijk and d.

Modifier Constraints Modifier constraints ensure that re-
lationships between head words and their modifiers remain
grammatical in the compression:

δi − δj ≥ 0, ∀i, j : xj ∈ cmod(xi), (2)
δi − δj = 0, ∀i, j : xj ∈ mmod(xi), (3)

where cmod(x) denotes certain types of modifiers of x
including non-clausal modifiers (ncmod) and determiners
(detmod), while mmod(x) denotes negative modifiers (e.g.
not, never) and possessive modifiers (e.g. her, our). Con-
straints (2) guarantee that if we include a certain-type mod-
ifier (e.g. non-clausal modifier, ncmod) in the compression
(such as an adjective or a noun) then the head of the mod-
ifier must also be included. Constraints (3) ensure that the
meaning of negations or possessions should be preserved in
the compressions.

Argument-structure constraints There are a few intu-
itive constraints that take the overall sentence structure into
account. The first constraint ensures that if a verb is present
in the compression then so are its arguments (subjects and
objects), and if any of the arguments are included in the com-
pression then the verb must also be included:

δi − δj = 0, ∀i, j : xj ∈ subj/obj(xi). (4)

The second constraint forces the compression to contain
at least one verb if the source sentence contains one as well:∑

i:xi∈verbs

δi ≥ 1. (5)

The constraint entails that it is not possible to drop the main
verb from any full sentence.

Other sentential constraints include those that are applied
to prepositional phrases (PP) and subordinate clauses (SUB):

δi − δj = 0, ∀i, j : xj ∈ PP/SUB(xi). (6)

These constraints force the introducing term, mainly the
preposition or subordinators such as who and which, to be
included in the compression if any word from within the
syntactic constituent is also included.

Meanwhile, there are constraints for coordinations (cc).
If two head words are conjoined in the source sentence, then
if they are included in the compression the coordinating con-
junction must also be included:

(1− δi) + δj ≥ 1, (7)
(1− δi) + δk ≥ 1, (8)

δi + (1− δj) + (1− δk) ≥ 1, (9)
∀i, j, k : xj & xk conjoined by xi. (10)

Finally, anything within brackets should be treated com-
paratively less important in the source sentence:

δi = 0, ∀i : xi ∈ parenthesized. (11)

Discourse Constraints The discourse constraint intro-
duced by Clarke and Lapata (2008) concerns personal pro-
nouns as they should be included in the compression:

δi = 1, ∀i : xi ∈ personal pronouns. (12)

3519

The Proposed Method

Regrouping Syntactic Constraints

The constraints introduced in the previous section are en-
coded as inequalities and equalities in an ILP formulation.
We regroup the constraints according to the format rather
than the encoded semantics, for the sake of our proposed al-
gorithm. The format of different types of constraints can be
regrouped into four specific categories:

• Pre-specification constraints: those requiring the vari-
ables to take pre-specified values, e.g. δi = 0 for brack-
eted words and δi = 1 for personal pronouns.

• Head constraints: for certain types of head-modifier re-
lations, requiring δi − δj ≥ 0.

• Simultaneous constraints: under certain types of condi-
tions we require the head and the modifier to have the
same decisions, i.e. δi − δj = 0. Also the coordination
constraints will be classified as this type of constraints.

• Non-local constraints: mainly the verb constraint, i.e.∑
i:xi∈verbs δi ≥ 1.

In this study we address these types of constraints differ-
ently. These constraints can be absorbed into the inference
procedure by our formulation.

Addressing the Constraints on Dependency Trees
in Constrained Local Search

Our method is based on iterative greedy local search from
a starting initialized solution. Given a randomized initializa-
tion of the bit vector d, the inference process will traverse
the dependency tree and try locally modifying the solution
(flipping the value of δi along with possibly other variables
to satisfy the constraints for δi) to see whether the objec-
tive function increases. During the traversal, syntactic con-
straints will be introduced at each relevant node.

We first deal with the pre-specification constraints. The
solution is straightforward: update the bit vector to explicitly
specify particular bits to be 0 or 1.

Since the other types of constraints are defined according
to dependency relations or part-of-speech (POS) tags, our
method can naturally take them into consideration when lo-
cally flipping the bits.

We perform a preorder traversal on the dependency tree,
going top-down from the root to the leaves. At each node,
we check for all local simultaneous constraints involving
the current node xi. A local search should be done while
being consistent with these constraints, therefore multiple
related simultaneous flips might be needed. Meanwhile, the
head constraints can be injected almost trivially. Since we
are going top-down, the decisions of children nodes will not
affect the decision of the current node except in the case of
simultaneous constraints which we have already dealt with.
The only thing remains to be done is to check whether the
current node has a head constraint with its direct head. If so,
setting δi = 1 for the current node will also trigger the bit
for its head word to be 1 as well.

It is also easy to address the non-local verb constraint,
we check the POS tag on the current node. If it is a verb,

we will mark the current partial search as legitimate. The fi-
nal solution will be the bit vector which scores the highest
among those legitimate ones. Note that if no legitimate labels
after a whole local search procedure, we know that there ex-
ist no verbs in the current sentence and the local search result
can be directly returned.

We denote the above local flipping search procedure as
LS with constraints 2. This procedure will return a locally
flipped version of d. Local search will be implemented by
comparing d(k) and its flipped version. If we cannot improve
the score for another whole traversal, we have reached a lo-
cal optimum.

Randomized Local Search

Given such a local search algorithm, we can achieve local
optimum from any initialized bit vector d(0), since the ob-
jective function does not decrease in each iteration. All we
need to achieve global optimum (or some good enough lo-
cal optimum), is to set multiple random d’s and run local
search. Related randomized local search strategies have al-
ready been applied in various NLP tasks such as machine
translation (Moore and Quirk 2008; Ravi and Knight 2010),
language modeling (Deoras, Mikolov, and Church 2011),
and dependency parsing (Zhang et al. 2014).

The whole randomized local search procedure is de-
scribed in Algorithm 1. We name the procedure as random-
ized constrained greedy flipping.

Algorithm 1 Randomized constrained greedy flipping
Input: sentence x with dependency tree t;

scoring function: F (x,d)

Output: Compression bit vector: d̃
1: Randomly initialize bit vector d(0); k ← 0;
2: d(0) ← pre specification(d(0))
3: repeat
4: list ← top-down node list of d(k);
5: for each word/node in list do
6: d(k) ← simul constraints(x, t,d(k))
7: d′ ← LS with constraints(x, t,d(k))
8: d(k+1) ← argmaxd∈{d(k),d′} F (x,d);
9: k ← k + 1;

10: end for
11: until no change made in this iteration
12: return d̃ = d(k)

For a more clear description we give a simplified illus-
tration. Figure 1 illustrates an example dependency tree for
our explanation of the local search algorithm to compress
the sentence x = John gives him the correct answer., as-
suming a scoring function F (·). Suppose the initialization
is d(0) = 100111. We first address the pre-specification
constraints to set δ3 to be 1 (the discourse constraint (12)).
Then we traverse from the root word gives (x2): consider-
ing the simultaneous constraints, we will be choosing from

2Due to the space limit we temporarily omit the pseudocode for
summarizing this part.

3520

d(0) = 000111 and d′ = 111111. Suppose the latter one
scores higher, then d(1) = 111111. Meanwhile, since we
are visiting a verb node, we mark the result as legitimate.
After similar steps, when we visit the node correct, we will
be choosing from d(5) = 111111 and d′ = 111101. Sup-
pose F (d′) > F (d(5)), our local search result for this itera-
tion will be d(6) = 111101, corresponding to preserving all
words but the less informative adjective correct.

Figure 1: An example sentence to be compressed

It is easy to see that the local search process can be easily
done in parallel. We leave the exploration on how much a
crafted parallel implementation can boost the acceleration as
future work. Also, caching the scores for queried bit vectors
can make the process more efficient.

Score Definition

Our proposed solution can be used for any scoring function
without strong assumptions, as long as it can be evaluated.
In this work we study several scoring schemes with some of
them integrating multiple local structures.

Importance Weights Assignment For word importance
weight w(xi) in (1), there are many ways that can be de-
fined. In this study we use the formula introduced by (Clarke
and Lapata 2008) which is a modification of the significance
score of (Hori and Furui 2003):

w(xi) = fi log
FA

Fi
, (13)

where fi and Fi are the frequency of xi in the document and
corpus respectively, Fa is the sum of all topic words in the
corpus, l is the number of clause constituents above xi, and
N is the deepest level of clause embedding. Fa and Fi are
estimated from a large document collection, fi is document-
specific, whereas l

N is sentence specific.

Scoring for Rich Local Structures Any scores or weights
defined locally on words, ngrams or dependency edges can
be used for our method, and in principle for the ILP mod-
els with the introduction of many additional variables and
constraints. In this study we explore the usage of trigram
scores and local discriminative scores on compression bi-
grams, to form consistency with previous work (Clarke and
Lapata 2008).

Trigram scores Following previous work, we utilize tri-
gram scores in the form of log probabilities from a pre-
trained language model to enhance local smoothness.

Structured Discriminative Scores In ILP-based models
proposed by Clarke and Lapata (2008), alternative scores de-
rived from the structured discriminative model presented by
McDonald (2006) have also been explored. This model uses
a large-margin learning framework (MIRA) coupled with a
feature set defined on compression bigrams and syntactic
structure. Given learned weights, the model generate com-
pressions with:

argmax
y∈Y(x)

w�f(x,y), (14)

where Y(x) denotes the candidate set of compressions for
the original sentence x. This decoding procedure can be ef-
ficiently performed with Viterbi-like dynamic programming
if f is defined locally. Following previous work (McDonald
2006; Clarke and Lapata 2008), in this work we use bigrams
in the target compression as the local structure.

Any training strategy that is applicable for typical global
linear models can be adopted. We trained the model using
the structured perceptron (Collins 2002) modified with Ada-
Grad updates (Duchi, Hazan, and Singer 2011) 3:

wt+1
i ← wt

i −
η√∑t

τ=1(s
τ
i)

2

sti, (15)

where st = f(xt,yt
∗) − f(xt,yt) is the subgradient for in-

stance t and η is the learning rate that is set to be constant
1.0 in this work. We take the discriminative weights after
five training epochs as they perform well on the develop-
ment sets.

Length Control

In the original ILP formulations by Clarke and Lapata
(2008), the control over the lengths of the generated com-
pressions are directly encoded in yet another linear con-
straint

∑
i δi ≥ b. Since it is unfair to set hard length con-

trolling constant for every sentence, we use an alternative
way by introducing a parameter α > 0 to control the ef-
fect of word weights in the objective function (1), slightly
changing it into:

Fx,α(d) = S(x,d) + α
n∑

i=1

δi · w(xi). (16)

Since the weights are positive (while the log probability lan-
guage model scores in S(x,d) are negative), a larger α will
encourage the selection of more words. Using this length
control strategy, there will be no change to the proposed al-
gorithm other than evaluating F (·).

Experiments

Data

We evaluate our methods on two corpora that were anno-
tated by human annotators 4. One was created on sentences
sampled from the British National Corpus (BNC) and the

3We also tried MIRA used by McDonald (2006) but observed
slightly inferior performance, compared with AdaGrad perceptron.

4Available at http://jamesclarke.net/research/resources

3521

American News Text Corpus, while the other was human-
annotated compressions on broadcast news. Therefore we
will refer to these two corpora as Written and Spoken respec-
tively. We split the datasets into training, development and
test sets according to (Galanis and Androutsopoulos 2010).

To get dependency parses and implement checkers for
syntactic constraints, all sentences are parsed with the Stan-
ford parser 5.

Evaluation Metrics

We evaluate the compression results by both automatic met-
rics and manual ratings.

For automatic evaluation, there are two metrics to be con-
sidered in the sentence compression task. The compression
ratio calculates the ratio of compression lengths and origi-
nal lengths, reflecting the difference before and after being
compressed. The other measure is the F1-score of grammat-
ical relations of generated compressions against the gold-
standard compression. The dependency relations are pro-
vided by a dependency parser with grammatical labels. This
measure has been generally accepted in previous works of
sentence compression. Clarke and Lapata (2006) showed
that it correlates well with human ratings. To avoid over-
fitting the parsing errors from the Stanford Parser during
validation, we chose MaltParser 6, a well-known transition-
based dependency parser, at the evaluation stage.

For fair comparisons, we tune relevant parameters on the
development set to make all system producing outputs with
similar compression ratio which is close to the gold-standard
manual compressions.

We also conduct manual evaluation. As manually evalu-
ating the whole test set requires enormous efforts, follow-
ing previous work, we sample a subset of 30 sentences from
each dataset for manual rating. Three annotators who are flu-
ent in English were asked to rate each candidate for the same
long sentence. Ratings should be in the form of 1-5 scores
for each compression. Compressions with better grammati-
cality and importance preservation should be assigned with
higher scores.

Methods in Comparison

We report results from the following systems:

• McDonald06: We reimplemented the structured discrim-
inative model by McDonald (2006) 7.

• GA10: The system proposed by Galanis and Androut-
sopoulos (2010), essentially a two-stage method to rerank
compressions generated by a discriminative maximum en-
tropy model.

• T3: Tree transduction models proposed by Cohn and Lap-
ata (2009) which learns parse tree transduction rules from
a parallel corpus using a large margin method.

5http://nlp.stanford.edu/software/lex-parser.html
6http://www.maltparser.org/
7For consistent comparisons with other systems, our reimple-

mentation does not include the k-best inference strategy presented
by McDonald (2006) for learning with MIRA.

• ILP(LM): Using ILP solvers to solve 1 with syntactic
constraints, with the scores S(·) defined as log probabili-
ties from a trigram language model.

• ILP(Disc): Similar to the above with the scores S(·) de-
fined as structured discriminative models. This model,
along with ILP(LM), can be treated as reimplementations
of ILP models proposed by Clarke and Lapata (2008).

• ILP(LM+Disc): Similar ILP formulations with the scores
combined from the above two systems. Note that there
will be indicator variables for multiple types of local
structures, which simultaneously increase the number of
variables and consistency constraints, and hence the over-
all complexity.

• RCGF: The counterparts of ILP models using our pro-
posed randomized constrained greedy flipping algorithm
with K = min{300, 2|x|} different initializations.
Most of the systems in comparison include scores derived

from a language model. We train a trigram language model
on the Reuters Corpus (Volume 1) 8 with modified Kneser-
Ney smoothing, using the widely used tool SRILM 9. All
ILPs are solved using a state-of-the-art solver GLPK 10.

Results

Table 1 summarizes the results from our compression exper-
iments on the two corpora. The rightmost column lists aver-
aged inference time per sentence. The difference of GR-F1
between the top group and the rest, along with the differ-
ence of time between ILP and the rest, have passed multi-
ple testing for the significance level p < 0.01. Note that to
show the superiority in average, we have already excluded a
few extreme cases that caused the ILP solver too much time
(running more than a minute for one single sentence) merely
when calculating the average cost for ILP models.

From Table 1 we can obviously observe that ILP models
with explicit syntactic constraints outperforms other base-
lines. For different objective functions in ILP models, only
using discriminative scores performs the worst, while adding
them on language model scores can boost the performance.

In terms of running time, the McDonald06 system per-
forms an order of magnitude faster since the inference pro-
cedure only involves an efficient dynamic programming
(Viterbi) process. Compare to ILP counterparts, our pro-
posed greedy flipping algorithm makes significantly much
faster inference while giving almost identical GR-F1 scores.

Table 2 displays results for manual evaluation on the
sampled 30 sentences in each dataset. Models with explicit
constraints (ILP and RCGF) perform significantly better in
terms of both grammaticality and importance preservation,
compared with the other systems. There hardly exists any
difference between the quality of the generated compres-
sions from ILP models and those from our method. We find
that the compressions for the sampled sentences are identi-
cal for Written corpus 11.

8http://trec.nist.gov/data/reuters/reuters.html
9http://www-speech.sri.com/projects/srilm/

10http://www.gnu.org/software/glpk/
11Since the compressions are displayed to the annotator simulta-

3522

Written CR(%) GR-F1(%) Time (s)

McDonald06 70.3 52.4 0.02
GA10 71.5 60.2 0.77
T3 70.4 58.8 0.75
ILP(LM) 71.2 64.5 1.23
ILP(Disc) 70.8 62.0 1.22
ILP(LM+Disc) 71.8 66.5 1.72
RCGF(LM) 71.3 64.5 0.25
RCGF(Disc) 70.6 61.8 0.27
RCGF(LM+Disc) 71.7 66.4 0.28
Gold-Standard 71.4 100.0 -
Spoken CR(%) GR-F1(%) Time (s)

McDonald06 69.5 50.6 0.02
GA10 71.7 59.2 0.75
T3 75.5 59.5 0.76
ILP(LM) 71.3 61.5 1.05
ILP(Disc) 70.2 56.2 1.06
ILP(LM+Disc) 72.6 66.2 1.49
RCGF(LM) 71.3 61.5 0.22
RCGF(Disc) 70.2 55.9 0.22
RCGF(LM+Disc) 72.7 66.2 0.25
Gold-Standard 72.4 100.0 -

Table 1: Results of automatic evaluation

Analysis and Discussion

Our proposed greedy flipping algorithm do not have large
number of variables as in ILP models, while most decisions
are made locally during a linear-time preorder tree traver-
sal. Due to the effectiveness in each iteration, our method
still remains to be fast although requiring multiple random
restarts. Therefore, for optimizing the same objective func-
tion with the same constraints, our proposed algorithm be-
haves much faster than ILP models while providing almost
the same competitive results. As the random search proce-
dure can be proceeded independently, more parallelized im-
plementation will further improve our inference algorithm.

Due to the complex nature of our problem structure with
different types of constraints, it is difficult to give a formal
mathematical analysis for worst-case convergence bound.

To shed some light on the reason why simple random lo-
cal search process can indeed work, we perform some statis-
tics first. Table 3 contains some statistics over the success
rate, i.e. the proportion of sentences whose global optimal
solution (obtained via ILP) can be found efficiently using
our method, showing that for short sentences (no more than
15 words) it is rather easy to achieve global optimal. For
longer sentences we can also expect our algorithm to behave
nicely, with very few long and complex sentences reaching
sub-optimal solutions.

We also draw a figure (Figure 2, the solid blue path) to de-
pict the magnitude of objective function (ratio of currently
found best solution against the global optimal, y-axis), pro-
ceeding with iterations (x-axis). The example is sampled

neously, though being randomly shuffled and made “anonymous”
for each sentence, same compressions will receive the same ratings
in normal cases.

Written GR. Imp. CR(%)

McDonald06 3.68†∗ 3.55†∗ 70.7
GA10 3.96†∗ 3.57†∗ 71.6
T3 4.22†∗ 3.69†∗ 72.0
ILP(LM+Disc) 4.56 4.14 72.2
RCGF(LM+Disc) 4.56 4.14 72.2
Gold-Standard 4.86 4.80 72.7
Spoken GR. Imp. CR(%)

McDonald06 3.77†∗ 3.49†∗ 72.0
GA10 4.03†∗ 3.81†∗ 72.3
T3 4.17†∗ 3.68†∗ 74.0
ILP(LM+Disc) 4.38 4.03 72.4
RCGF(LM+Disc) 4.38 4.02 72.3
Gold-Standard 4.82 4.86 73.4

Table 2: Results of manual ratings. (†: sig. diff. from ILP; *:
sig. diff. from RCGF, for p < 0.01)

Dataset Length ≤ 15 Length > 15
Written 100 98.1
Spoken 100 96.4

Table 3: Fractions (%) of sentences that our method find the
optimal solution

from the shorter sentences. We can see that the path jumped
for very few times and reach the global optimum quickly. We
also include one particular long sentence which our method
fails to find the exact global optimum (Figure 2, dotted path),
jumping more often than the simpler sentence.

Figure 2: Examples of running paths

Therefore we conjecture that the success of our simple
randomized constrained local search algorithm is mainly due
to the fact that the number of (good) local optimal points are
rather small, perhaps at the order of tens, compared with the
overall search space in size of 2|x| for bit vectors. This prop-
erty is particularly significant for shorter sentences with sim-
pler structures. Some of the local solutions might be close to
the global optimum as well.

Conclusion and Future Work

In this study we propose a randomized constrained local
search algorithm for sentence compression, which can nat-
urally integrate syntactic constraints and generate equally
competitive compressions as ILP-based models, while being
way much faster.

3523

For future study we would like to explore the potential
effectiveness of discriminative scores given training data in
larger scale, as some efforts have focused on extracting par-
allel corpus for sentence compression (Filippova and Altun
2013). Meanwhile, It is also worthwhile to study what kinds
of initializations may lead to better optimal or sub-optimal
solutions.

Our local search process resembles Metropolis-Hastings
or Gibbs sampling for Markov Chain Monte Carlo inference
in Bayesian probabilistic models. We would like to study
sampling-based methods and make comparisons as well.

Acknowledgments
We thank all reviewers for helpful comments on an earlier
draft of this paper. This work was supported by National
Natural Science Foundation of China (61331011), National
Hi-Tech Research and Development Program (863 Program)
of China (2015AA015403) and IBM Global Faculty Award
Program. Xiaojun Wan is the corresponding author.

References
Clarke, J., and Lapata, M. 2006. Models for sentence compression:
A comparison across domains, training requirements and evalua-
tion measures. In Proceedings of the COLING/ACL, 377–384. As-
sociation for Computational Linguistics.
Clarke, J., and Lapata, M. 2008. Global inference for sentence
compression: An integer linear programming approach. Journal of
Artificial Intelligence Research 31:273–381.
Cohn, T., and Lapata, M. 2007. Large margin synchronous gener-
ation and its application to sentence compression. In Proceedings
of EMNLP-CoNLL, 73–82. Prague, Czech Republic: Association
for Computational Linguistics.
Cohn, T., and Lapata, M. 2009. Sentence compression as tree
transduction. Journal of Artificial Intelligence Research 34:637–
674.
Collins, M. 2002. Discriminative training methods for hidden
markov models: Theory and experiments with perceptron algo-
rithms. In Proceedings of EMNLP, 1–8. Association for Com-
putational Linguistics.
Deoras, A.; Mikolov, T.; and Church, K. 2011. A fast re-scoring
strategy to capture long-distance dependencies. In Proceedings of
EMNLP, 1116–1127. Edinburgh, Scotland, UK.: Association for
Computational Linguistics.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. The Jour-
nal of Machine Learning Research 12:2121–2159.
Filippova, K., and Altun, Y. 2013. Overcoming the lack of parallel
data in sentence compression. In Proceedings of EMNLP, 1481–
1491. Seattle, Washington, USA: Association for Computational
Linguistics.
Filippova, K., and Strube, M. 2008. Dependency tree based sen-
tence compression. In Proceedings of the Fifth International Nat-
ural Language Generation Conference, 25–32. Association for
Computational Linguistics.
Filippova, K.; Alfonseca, E.; Colmenares, C. A.; Kaiser, L.; and
Vinyals, O. 2015. Sentence compression by deletion with LSTMs.
In Proceedings of EMNLP, 360–368. Lisbon, Portugal: Associa-
tion for Computational Linguistics.
Galanis, D., and Androutsopoulos, I. 2010. An extractive super-
vised two-stage method for sentence compression. In HLT-NAACL,

885–893. Los Angeles, California: Association for Computational
Linguistics.
Hori, C., and Furui, S. 2003. A new approach to automatic speech
summarization. Multimedia, IEEE Transactions on 5(3):368–378.
Huang, M.; Shi, X.; Jin, F.; and Zhu, X. 2012. Using first-order
logic to compress sentences. In AAAI.
Knight, K., and Marcu, D. 2000. Statistics-based summarization -
step one: Sentence compression. In AAAI/IAAI, 703–710.
McDonald, R. T. 2006. Discriminative sentence compression with
soft syntactic evidence. In EACL.
Moore, R. C., and Quirk, C. 2008. Random restarts in minimum
error rate training for statistical machine translation. In Proceed-
ings of COLING 2008, 585–592. Manchester, UK: Coling 2008
Organizing Committee.
Narayan, S., and Gardent, C. 2014. Hybrid simplification using
deep semantics and machine translation. In Proceedings of the
ACL, 435–445. Baltimore, Maryland: Association for Computa-
tional Linguistics.
Nomoto, T. 2009. A comparison of model free versus model in-
tensive approaches to sentence compression. In Proceedings of
EMNLP, 391–399. Singapore: Association for Computational Lin-
guistics.
Ravi, S., and Knight, K. 2010. Does giza++ make search errors?
Computational Linguistics 36(3):295–302.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural atten-
tion model for abstractive sentence summarization. In Proceedings
of EMNLP, 379–389. Lisbon, Portugal: Association for Computa-
tional Linguistics.
Thadani, K., and McKeown, K. 2013. Sentence compression with
joint structural inference. In Proceedings of CoNLL, 65–74. Sofia,
Bulgaria: Association for Computational Linguistics.
Thadani, K. 2014. Approximation strategies for multi-structure
sentence compression. In Proceedings of the ACL, 1241–1251.
Baltimore, Maryland: Association for Computational Linguistics.
Turner, J., and Charniak, E. 2005. Supervised and unsupervised
learning for sentence compression. In Proceedings of the ACL,
290–297. Association for Computational Linguistics.
Woodsend, K., and Lapata, M. 2011. Learning to simplify sen-
tences with quasi-synchronous grammar and integer programming.
In Proceedings of EMNLP, 409–420. Association for Computa-
tional Linguistics.
Xu, W.; Napoles, C.; Pavlick, E.; Chen, Q.; and Callison-Burch, C.
2016. Optimizing statistical machine translation for text simplifi-
cation. Transactions of the Association for Computational Linguis-
tics.
Yamangil, E., and Shieber, S. M. 2010. Bayesian synchronous
tree-substitution grammar induction and its application to sentence
compression. In Proceedings of the ACL, 937–947. Association
for Computational Linguistics.
Yao, J.-g.; Wan, X.; and Xiao, J. 2014. Joint decoding of tree
transduction models for sentence compression. In Proceedings of
EMNLP, 1828–1833. Doha, Qatar: Association for Computational
Linguistics.
Yoshikawa, K.; Hirao, T.; Iida, R.; and Okumura, M. 2012. Sen-
tence compression with semantic role constraints. In Proceedings
of the ACL, 349–353. Association for Computational Linguistics.
Zhang, Y.; Lei, T.; Barzilay, R.; and Jaakkola, T. 2014. Greed
is good if randomized: New inference for dependency parsing. In
Proceedings of EMNLP, 1013–1024. Doha, Qatar: Association for
Computational Linguistics.

3524

