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Abstract

Time-inconsistency refers to a paradox in decision making
where agents exhibit inconsistent behaviors over time. Exam-
ples are procrastination where agents tend to postpone easy
tasks, and abandonments where agents start a plan and quit in
the middle. To capture such behaviors and to quantify ineffi-
ciency caused by such behaviors, Kleinberg and Oren (2014)
propose a graph model with a certain cost structure and initi-
ate the study of several interesting computation problems: 1)
cost ratio: the worst ratio between the actual cost of the agent
and the optimal cost, over all the graph instances; 2) moti-
vating subgraph: how to motivate the agent to reach the goal
by deleting nodes and edges; 3) Intermediate rewards: how
to incentivize agents to reach the goal by placing intermedi-
ate rewards. Kleinberg and Oren give partial answers to these
questions, but the main problems are open.
In this paper, we give answers to all three open problems.
First, we show a tight upper bound of cost ratio for graphs,
and confirm the conjecture by Kleinberg and Oren that Ak-
erlof’s structure is indeed the worst case for cost ratio. Sec-
ond, we prove that finding a motivating subgraph is NP-hard,
showing that it is generally inefficient to motivate agents
by deleting nodes and edges in the graph. Last but not
least, we show that computing a strategy to place minimum
amount of total reward is also NP-hard and we provide a 2n-
approximation algorithm.

1 Introduction

In behavioral economics, an important theme has been to un-
derstand individual behaviors that are inconsistent over time.
There are at least two types of inconsistencies investigated
in the literature. The first type is procrastination (Akerlof
1991; O’Donoghue and Rabin 1999; Kleinberg and Oren
2014): agents tend to postpone costly actions even though
such delay may incur further cost. The second type is aban-
donment (O’Donoghue and Rabin 2008): agents plan for a
multi-phase task (usually with rewards in the end), spend ef-
forts in the initial phases and decide to quit in the middle.

Both types of behaviors have been widely observed in
reality. Akerlof (1991) describes a story of procrastination
where an agent must ship a package within the next a few
days, incurs an immediate cost for shipping the package

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or some additional daily cost for not shipping the package.
Clearly, the optimal strategy for the agent is to ship the pack-
age right away, avoiding any additional daily cost. However,
as the story goes, the agent chooses to procrastinate and to
send the package in one of the last few days. Similar ex-
amples abound, ranging from golf club members that never
play golf (abandonment) to investors that rent an apartment
for years before making a purchase (procrastination).

The interpretation to all these phenomena lies in that
agents value current cost more than the cost in the fu-
ture. Researchers in the literature have developed various
models to capture this observation and to interpret the in-
consistencies (Strotz 1955; Akerlof 1991; Laibson 1997;
Frederick, Loewenstein, and O’donoghue 2002; Ockenfels
and Roth 2002; Osogami and Morimura 2012). In what
follows, we describe the coined time-inconsistent planning
model in (Kleinberg and Oren 2014).

1.1 The time-inconsistent planning model

Roughly put, the time-inconsistent planning model is no
different from the standard planning model (Pollak 1968;
Russell and Norvig 2003), except for a slight twist on the
cost structure. The standard planning model is a directed
graph (aka. task graph) where each node in the graph repre-
sents a state, each directed edge denotes an action that tran-
sits one state to another and each action incurs a certain cost,
marked as the weight on the edge. The planner’s goal is to
find a shortest (min-cost) path between the initial state and
target state. While the time-inconsistent planning model re-
defines the cost of a path: instead of summing the costs of
all edges on that path:

∑
i=1 c(ei) where c(ei) is the cost of

the i-th edge on the path, a time-inconsistent agent applies a
multiplicative factor 0 < β < 1 to the costs of all the edges
except for the first edge in the path c(e1)+β

∑
i=2 c(ei). The

interpretation is that the time-inconsistent agent evaluates
the current actions by its true cost, while discounts the costs
(rewards) of all future actions by β. The time-inconsistent
planning model is defined as a time-inconsistent agent who
looks for a discounted shortest path at any state in the task
graph. The cost model above is also a special case of the
quasi-hyperbolic discounting model (Laibson 1997).

The model is general enough to capture a range of inter-
esting time-inconsistent behaviors. In particular, Kleinberg
and Oren (2014) show that:
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• It can easily capture Akerlof’s example (Figure 1): time-
inconsistency agents may follow a sub-optimal path.

• The model can be easily extended to a model to include
reward. It can be further used to capture the phenomenon
of abandonment: agents may find it desirable to follow
the optimal discounted path at first but then find it not
beneficial when evaluating at some following node.

• The model can be used to model the interesting fact of
choice reduction: agents can be better motivated to reach
the target by deleting certain middle nodes and edges.

The time-inconsistent model can also be served for study-
ing “Badge design” of online communities and social media
sites (Anderson et al. 2013; 2014; Easley and Ghosh 2013),
where one basic problem is how to optimally place rewards
on the intermediate nodes (i.e., the third open problem). The
time-inconsistent planning is also a bounded rationality be-
havior (Wang and Tang 2015; Zuo and Tang 2015).

After the first draft of this paper, several extensions of the
original model have been proposed. Kleinberg, Oren, and
Raghavan (2016) consider a sophisticated agent who make
choices based on the belief that himself will procrastinate in
the future. Such an agent has a bounded cost ratio of β−1

(the present bias). Gravin et al. (2016) consider the present
bias as a random variable. For any distribution of present
bias, the graph that maximizes the cost ratio is still similar
to the Akerlof example, and distribution with high tails is
likely to cause high cost ratios. As a follow-up work of our
unpublished manuscript, Albers and Kraft (2016) solve sev-
eral closely related complexity problems and give approxi-
mation algorithms, which we will describe later.

1.2 Results and contributions

1. Cost ratio. Cost ratio is defined as the ratio between the
cost of the path found by the agent and that of the min-cost
path. Kleinberg and Oren (2014) give a partial characteri-
zation of cost ratio: roughly, any graph with a sufficiently
high cost ratio must contain Figure 1 (denoted as Fk) as
a graph minor and k is at least a constant fraction of n.
In light of this, an important open problem is: when the
graph does not contain a Fk-minor, how bad can the cost
ratio be? This question is particularly important since it
concerns whether Fk is indeed the worst case instance.
We solve this problem by proving that, for any graph that
does not contain a Fk-minor, the cost ratio can be at most
β2−k, where β is the discount factor. Therefore, we con-
firm that Fk is indeed the worst case instance for cost ratio
and the bound proved by Kleinberg and Oren is tight.
We put forward a few technical insights in order to prove
this upper bound. First of all, we identify a set of short-
cut nodes where the agent’s min-cost choice and time-
inconsistent choice differs. Then we focus on shortcut
nodes and the nodes around them. Finally, we conduct
a refined analysis to the costs of paths according to the
structure of shortcut nodes.

2. Minimal Motivating Subgraphs. We consider the case
when there is a reward at the target node. If the agent’s
cost is less or equal to the reward, then the agent moves

on, otherwise, the agent stops and doesn’t reach the target.
A motivating subgraph is a subgraph of the original task
graph and a time-inconsistent agent can reach the target in
this subgraph. It is minimal if none of its proper subgraphs
is motivating. Clearly, motivating subgraph is closely re-
lated to the previously mentioned economic problem of
choice reduction. Kleinberg and Oren prove a relatively
complex property that says the minimal motivating sub-
graphs are necessarily sparse. Here, we ask a natural com-
plexity question: what is the computational complexity of
finding minimal motivating subgraph?
We answer this question by showing that the problem is
NP-hard. More generally, we show that finding any (e.g.,
minimal or maximal) motivating subgraph is NP-hard. As
a follow-up of our work, Albers and Kraft (2016) give a
(1 +

√
n) approximation of computing a motivating sub-

graph, and shows the NP-completeness of approximating
the problem by any factor smaller than

√
n/3.

3. Cost of incentivizing agents by placing intermediate re-
wards. Instead of motivating agents to reach their target
by choice reduction (i.e., via motivating subgraph), an al-
ternative way in the literature is to place rewards on inter-
mediate nodes. The question (the third open problem by
Kleinberg and Oren) is: what is the minimum total reward
needed to motivate an agent to reach the target?
We consider various versions of this problem, including
whether we can use negative rewards and whether all
rewards put should be claimed at last. We prove that,
all the problems are NP-hard. After that, we give a 2n-
approximation algorithm. As a follow-up, Albers and
Kraft (2016) give NP-completeness of a slight variant of
our problem, where the user only gives positive reward
and only cares for what is actually claimed.

To sum up, we solve all three open problems in (Kleinberg
and Oren 2014).

2 Formal description of the model

A task graph is an acyclic directed graph G with a start node
s and a target node t, where each edge (u, v) has a non-
negative cost c(u, v). For any pair of nodes (u, v), we denote
by d(u, v) the minimum total cost from u to v,

d(u, v) = min
P∈P(u,v)

∑
e∈P

c(e),

where P(u, v) is the set of all possible paths from u to v.
For simplicity, let d(v) = d(v, t) for any node v. Denote the
discount parameter by β ∈ [0, 1]. An agent starts from s and
travels towards t. In each step, the agent at node u chooses
an out-neighbor v that minimizes c(u, v) + βd(v) (if more
than one node minimizes this value, the agent chooses one
arbitrarily). Clearly, the agent cares less about the future for
smaller β. Suppose P is the s-t path that the agent chooses,
the cost ratio is defined as

∑
e∈P c(e)/d(s), i.e., the ratio of

actual cost to the optimal cost.
Given two undirected graphs H and K, we say that H

contains a K-minor if we can map each node κ in K to a
connected subgraph Sκ in H , with the properties that (i) Sκ
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Figure 1: Fk

and Sκ′ are disjoint for every two nodes κ, κ′ in K, and (ii)
if (κ, κ′) is an edge in K, then there is some edge connecting
a node in Sκ with a node in Sκ′ .

Moreover, let σ(G) denote the skeleton of G, the undi-
rected graph obtained by removing the directions on the
edges in G. Let Fk denote the directed graph with nodes
v1, v2, . . . , vk, and w, and edges (vi, vi+1) for i = 1, . . . , k−
1, and (vi, w) for i = 1, . . . , k. Figure 1 depicts Fk. Fk is
a special structure in this setting. It vividly illustrates the
Akerlof story. An agent starts from node v1 with the target
node w. The optimal strategy is going from v1 to w directly.
However, the agent will choose the path v1, v2, ..., vk, w
and cause procrastination. Furthermore, Kleinberg and Oren
(2014) have proved the following theorem:
Theorem 2.1 For every λ > 1 there exist n0 > 0 and ε >
0 such that if n ≥ n0 and cost ratio r > λn, then σ(G)
contains an Fk-minor for some k ≥ εn.

3 Maximum Cost Ratio

In light of the result above, Kleinberg and Oren propose the
following open question: what is the maximum cost ratio
(if exists) if σ(G) does not contain an Fk-minor. In other
words, the problem asks, without Fk, how much waste can
be resulted from time-inconsistency. The question is essen-
tial in understanding cost ratio since it is closely concerned
whether Fk is the worst case instance.

Note that an edge is exactly F1. Assume k > 1, we have
the following theorem.
Theorem 3.1 For any k > 1, if σ(G) does not contain an
Fk-minor, the cost ratio is at most β2−k. This bound is tight
and can be achieved by Fk−1.

3.1 Proof Sketch

To analyze the cost ratio of any graph, our first observation
is to focus on the set of shortcut nodes. Roughly, a shortcut
node is a node that is on the path chosen by the agent and at
this node the agent’s min-cost choice differs from his actual
choice. Clearly, if there were no such nodes, i.e., the agent’s
actual path and min-cost path coincide, we would end up in
the ideal case where the cost ratio is 1.

For each shortcut node u, we obtain a lower bound for
d(u), which is a sum of d(·)’s (may be multiplied by some
coefficients) for nodes lying after u on the actual path. An
important intuition here is that each appearance of such a
shortcut node contributes a factor of β to the cost ratio, and
k such appearances (to be formally defined) would lead to
the worst case of βk and we show that this happens only
when Fk-minor exists.

To upper bound the cost ratio, we need to carefully expand
the cost formula d(s) as a linear combination of costs on
edges c(e)’s. This is complicated, again, by the existence
of shortcut nodes, since the recursive formula that defines
d(ui) (where ui is some shortcut node) introduces two new
terms d(u′i), the cost from the next node on the actual path
and d(wi), the cost where the current min-cost path merges
with the actual path (See Figure 2). Our strategy then is to
fix d(wi) and carefully expand d(u′i).

A key step of our proof is that two different cases of wi

(immediately after some shortcut nodes on the actual path,
or not) are considered and different relaxations are tailored
for each case. The absence of this refined analysis would
lead to a loose bound as in the Kleinberg-Oren paper.

Continue the expansion of d(ui) until the right hand side
contains c(e)’s only, i.e., representing d(ui) as a linear com-
bination of c(e)’s, we obtain the final result by bounding the
coefficients of the linear combination.

3.2 Formal Proof

We now formally prove Theorem 3.1. During the proof, we
introduce a number of lemmas, which are proved in the full
version.
Proof. Let P be the path that the agent actually travels
through. Recall that, c(e) is the cost of edge e and d(u, v)
is the minimum total cost from u to v, and d(v) = d(v, t).
The main idea of the proof is to obtain an inequality with the
form d(s) ≥ ∑

e∈P α(e)c(e) where α’s are positive coeffi-
cients, and then give the upper bound in terms of the minimal
coefficient, i.e.

∑
e∈P c(e)/d(s) ≤ mine∈P α(e).

First of all, we need a basic inequality. Here we introduce
some notations. For any node u on P , denote by u′ the first
node after u in P ; for any pair of nodes (u, v) on P , denote
by c(u, v) the total cost of edges between u and v in P .
Definition 3.2 A node u on P is called shortcut node if the
second node in the min-cost path from u to t is not u′. In
other words, at a shortcut node, the agent’s min-cost choice
differs from his actual choice on P .

If node u on P is not a shortcut node, we have d(u) =
c(u, u′) + d(u′). So if there is no shortcut node, we would
have d(s) = c(s, s′)+d(s′) = c(s, s′)+c(s′, s′′)+d(s′′) =
· · · = ∑

e∈P c(e), resulting in a cost ratio of 1.
Suppose there are n shortcut nodes: u1, u2, . . . , un in the

order of appearance on P . For i = 1, 2, . . . , n, denote by Pi

the min-cost path from ui to t, and note for any two nodes
u, v in the order of appearance on Pi, d(u, v) is exactly the
sum of the cost of edges connecting them on Pi, so that for
any three nodes u, v, w in order on Pi, we have d(u,w) =
d(u, v) + d(v, w); denote by wi the second crossing point
(note that the first node is ui) of P and Pi (if there are more
than one min-cost path, arbitrarily choose one); denote by vi
the first node after ui on Pi. Figure 2 describes the notations.

By the definition of time-inconsistency, the agent at ui

chooses P over Pi, we have

c(ui, vi) + βd(vi) ≥ c(ui, u
′
i) + βd(u′i). (1)

Intuitively, we do not want any node that is not on P to show
up. Note d(vi) = d(vi, wi) + d(wi), we can expand (1) as
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Figure 2: Relationship between nodes.

c(ui, vi) + βd(vi, wi) + βd(wi) ≥ c(ui, u
′
i) + βd(u′

i). (2)

Then note d(ui, wi) = c(ui, vi) + d(vi, wi) ≥ c(ui, vi) +
βd(vi, wi), combining (2), we have

d(ui, wi) + βd(wi) ≥ c(ui, u
′
i) + βd(u′i). (3)

Add (1 − β)d(wi) to both sides of (3) and use d(u′i) =
c(u′i, ui+1) + d(ui+1), we have

d(ui) ≥ c(ui, u
′
i) + βd(u′i) + (1− β)d(wi)

= c(ui, u
′
i) + βc(u′i, ui+1) + βd(ui+1)

+(1− β)d(wi). (4)

Second, we use Formula (4) iteratively to obtain the full
decomposition of d(s). The righthand side of the inequality
consists of three parts: one cost term c and one distance term
d(w) and one distance term d(u). Our idea is to expand the
d(u) term iteratively. For concreteness, we list below the first
few steps of the expansion:

d(s) = c(s, u1) + d(u1)

≥ c(s, u1) + c(u1, u
′
1) + βd(u′1) + (1− β)d(w1)

= c(s, u1) + c(u1, u
′
1) + βc(u′1, u2) + βd(u2)

+(1− β)d(w1)

≥ c(s, u1) + c(u1, u
′
1) + βc(u′1, u2) + βc(u2, u

′
2)

+β2d(u′2) + β(1− β)d(w2) + (1− β)d(w1)

≥ · · · .
The next lemma shows the expansion after i steps. Before

that, we give some notations for ease of presentation.

Definition 3.3 Si is the set of j’s such that j < i and wj

lies after u′i−1 (excluding) on P .

Informally, Si denotes the indexes of shortcut nodes that
might make up of an Fk-minor with node u′i−1. We can im-
mediately obtain that for all i, |Si| ≤ k − 2, because of the
lack of Fk-minor.

Definition 3.4 For i = 1, 2, . . . , n, if there exists j such that
wi = u′j , then let ti = j + 0.5; otherwise let ti be the
smallest index such that uti lies after wi (including) on P (if
no such index exists, ti = n+ 1).

Since wi must lie after u′i on P , we can obtain a trivial prop-
erty that ti ≥ i+ 1. Now by an easy analysis we can obtain
that Si can be represented by {j|1 ≤ j < i, tj ≥ i}.

Now we are ready to present our expansion lemma.

Lemma 3.5 For i = 1, 2, . . . , n,

d(s) ≥
i∑

j=1

(
ajc(u

′
j−1, uj) + bjc(uj , u

′
j)
)
+ ai+1d(u

′
i)

+
∑

j∈Si+1

(1− β)bjd (wj) , (5)

where {ai, bi, i = 1, 2, . . .} are determined as

a1 = 1, ai = βbi−1 +
∑

j:i−1<tj<i

(1− β)bj

bi = ai +
∑

j:tj=i

(1− β)bj .

Here u′0 = s and un+1 = t.
Set i = n in (5), we have

d(s) ≥
n∑

j=1

(
ajc

(
u′j−1, uj

)
+ bjc

(
uj , u

′
j

))

+an+1c(u
′
n, t). (6)

Third, we show lower bounds for coefficients ai and bi.
Lemma 3.6 bi ≥ ai ≥ β|Si|.
It means that coefficient bi and ai cannot be too small, then
by d(s)/

∑
e∈P c(e) ≥ mini{bi, ai}, we can get an upper

bound for cost ratio. In the proof, we first find an interesting
relationship of ai, bi and Si: am +

∑
j∈Sm

(1 − β)bj = 1,
and then prove the bounds for ai and bi by induction.

For contradiction, assume |Si| ≥ k−1 for some i. Choose
k − 1 elements from Si, say j1, j2, . . . , jk−1 where j1 <
j2 < · · · < jk−1 < i. Consider uj1 , uj2 , . . . , ujk−1

, u′i−1.
The following lemma states that if a graph has such a struc-
ture, it must contain an Fk-minor.
Lemma 3.7 Let P be a path of G, and u1, u2, . . . , uk are
nodes on P in order of appearance. If for i = 1, 2, . . . , k−1,
there exists a path Pi such that (i) it starts at ui, and (ii) the
second crossing point of Pi and P ( certainly the first one
is ui) exists and lies after uk (excluding) on P , then σ(G)
contains an Fk-minor.

By this lemma we conclude that σ(G) contains an Fk-
minor, a contradiction. Thus |Si| ≤ k− 2. Hence by (6) and
Lemma 3.6 we have

d(s) ≥
n∑

j=1

(
β|Sj |c

(
u′j−1, uj

)
+ β|Sj |c

(
uj , u

′
j

))

+β|Sn+1|c (u′n, t)

≥ βk−2c(s, t)

which implies c(s, t)/d(s) ≤ β2−k. ��

3.3 Tightness of the Bound

So far we have obtained an upper bound for cost ratio r, now
we provide an example to show that the bound is achiev-
able. We use the example mentioned in (Kleinberg and Oren
2014) to show a graph with exponential cost ratio, i.e. the
graph obtained from Fk−1 by adding the corresponding
weights (see Figure 3). The cost ratio of the graph is exactly
β2−k, which proves the tightness of our upper bound.

3668



 

β2-k

β-3β-2

β-1

1

00

0

w
vk-1

v4

v3

v2

v1

Figure 3: Akerlof’s example

4 Hardness of Finding minimal motivating

subgraphs

As mentioned, the basic model introduced in Section 2 can
be easily extended to capture abandonment, by placing a re-
ward at the target node. Formally, suppose the reward is r
and the agent is in node u, if minv c(u, v) + βd(v) > βr,
i.e., the discounted cost is less than the discounted reward,
the agent will abandon the plan.

A natural question in this extended model is whether a
time-inconsistent agent can reach the target, and if not, can
we delete some nodes and edges to help it reach the tar-
get. The first question is easy to check. To formally inves-
tigate the second question, define motivating subgraph as a
subgraph of the original task graph such that the agent can
reach the target in the subgraph. A motivating subgraph is
minimal if none of its proper subgraph is motivating. We
are interested in the following computational question con-
cerning (minimal) motivating subgraph (the second the open
question): is there a polynomial time algorithm that finds a
(minimal) motivating subgraph?

In what follows, we answer this question negatively (un-
less NP = P) with the following theorem.

Definition 4.1 MOTIVATING-SUBGRAPH: for an acyclic
graph G with n nodes, given reward r on target node and
bias factor β, find a motivating subgraph of G.

Theorem 4.2 MOTIVATING-SUBGRAPH is NP-hard.

Before the proof, we first consider an easier complexity
problem related to minimal motivating subgraphs. We can
show that finding a minimal motivating subgraph is hard.
Definition 4.3 MINIMAL-MOTIVATING-SUBGRAPH: for
an acyclic graph G with n nodes, given reward r on
target node and present bias β, find a minimal motivating
subgraph of G.

Theorem 4.4 MINIMAL-MOTIVATING-SUBGRAPH is NP-
hard.

Proof. [Proof Sketch] We show that finding valid assign-
ments for 3-SAT instances is polynomial-time reducible to
MINIMAL-MOTIVATING-SUBGRAPH. For any 3-CNF with
n variables x1, x2, ..., xn and m clauses C1, C2, ..., Cm,
construct a task graph G based on the structure of the for-
mula. Here we depict the graph generated by (x1 ∨ ¬x2 ∨
x3) ∧ (x2 ∨ ¬x3 ∨ x4) and β = 0.9. Each ui corresponds
to clause Ci, while each vi and v′i correspond to variable xi;
ui and vj are adjacent if xj is in clause Ci; wi are functional
nodes that allow the agent to travel through the top path in

the graph. The idea is to construct valid assignment for each
variable from its corresponding nodes’ neighborhood struc-
ture in a minimal motivating subgraph.

20.35

w

0

0
0

0

0

0

0

0

0.1
0.10.10.1

v'4v'3v'2v'1

1.91.9
2

2
2

2

v4v3v2v1

0.02w154 0.1450.1450.1450.1450.145 ... w155
(βr=20.305)

u2
ts

w2w1u1

Figure 4: Corresponding graph of (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨
¬x3 ∨ x4) with β = 0.9.

Given any valid assignment for the original formula, we
build a minimal motivating subgraph of G in polynomial
time as follows. For each 1 ≤ i ≤ n, if xi is assigned
true, remove v′i and adjacent edges; otherwise remove edge
(vi, w). For 1 ≤ i ≤ m, let Ci = yi1 ∨ yi2 ∨ yi3 , here yij
denotes xij or ¬xij . Assume WLOG. that yij is assigned
true, then preserve only (ui, vij ) among (ui, vi1), (ui, vi2)
and (ui, vi3), eliminate the other two edges from G. Finally,
we remove all nodes with no in-degree. The resulting graph
is a minimal motivating subgraph of G.

Given G′ being a minimal motivating subgraph of G, we
construct a valid assignment for the original boolean formula
in polynomial time as follows. For each 1 ≤ i ≤ n, if path
vi → vi′ → w remains in G′, assign xi to be false, otherwise
assign xi to be true. Together with the previous paragraph
we prove the correctness of the reduction. ��

Now we prove Theorem 4.2: it is hard to find any moti-
vating subgraph, not just minimal ones.
Proof. Assume we have an algorithm A solving
MOTIVATING-SUBGRAPH. Notice that we can use A to
check whether a graph has a motivating subgraph. Now
we propose the following algorithm that solves MINIMAL-
MOTIVATING-SUBGRAPH by calling A.

For a given graph G, check whether G contains a motivat-
ing subgraph. If not, we reject the input. Repeatedly remove
an edge from G such that the remaining graph still includes
a motivating subgraph, until no edge can be removed.

The correctness of the algorithm is straightforward, while
the running time of the algorithm is polynomial of the size of
the graph. From Theorem 4.4 we know that MOTIVATING-
SUBGRAPH is NP-hard. ��

5 Hardness of motivating agents by placing

intermediate reward

In this section, we consider the question of whether we can
place intermediate reward on internal nodes to motivate the
agent. Denote by r(v) the reward on node v; the agent at
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Figure 5: Example figure for proving Theorem 5.2. Edges that might be traveled by the agent are in bold lines.

node u will continue to move if and only if there exists a
path P from u to t such that

c′(P ) = c(u, u′) + β
∑

v∈P,v �=u,t

(c(v, v′)− r(v)) ≤ 0,

where u′ denotes the first node after u in P and v′ denotes
the node after v on P . The agent chooses the path that min-
imize c′(P ), which is the equivalent cost (i.e., cost of edges
minus rewards on the path) of path P . We are interested in
finding the configuration with the smallest sum of reward
that motivate the agent to reach t (the third open problem).

5.1 Problem statement

As suggested by Kleinberg and Oren (2014), multiple ver-
sions of this problem are considered. In the first two ver-
sions, we restrict attention to positive rewards. In the first
version, we might put rewards that are never claimed. We
avoid this in the second version: all rewards that we put must
be claimed. In the third version, we consider the possibility
of placing negative rewards, which can be used to prevent
the agent from entering bad paths. In this version, we want
to minimize the sum of absolute values of all rewards.

We formally define this problem:

Definition 5.1 Minimum Total Rewards with bias factor β
(MINIMAL-TOTAL-REWARDβ): Given a weighted acyclic
graph G, node s, t, and a real number R, decide whether
there exists a reward configuration r(v), ∀v ∈ G such
that the agent is motivated to reach the target, and that∑

v∈G |r(v)| ≤ R.
There are three versions of the problem, depending on the

constraints on the rewards:
MINIMAL-TOTAL-REWARDβ I: r(v) ≥ 0, ∀v.
MINIMAL-TOTAL-REWARDβ II: r(v) ≥ 0, ∀v ∈ P ; r(v) =
0, ∀v ∈ P , where P is the path actually taken by the agent.
MINIMAL-TOTAL-REWARDβ III: r(v) ∈ R.

5.2 Main Theorem

We show that all versions of this problem are NP-hard:

Theorem 5.2 MINIMAL-TOTAL-REWARDβ I,II,III are
NP-hard for all β < 1.

Proof. [Proof Sketch] We prove the theorem by reducing 3-
SAT to MINIMAL-TOTAL-REWARDβ . The reduction graph
is depicted in Figure 5 (detailed description is in the full
version). The proof idea is as below: We construct a long
graph body with two long strings (unvnun−1vn−1 · · ·u0

and u′nv
′
nu
′
n−1v

′
n−1 · · ·u′0), and set weight in the graph such

that there is reward on exact one of vi and v′i in the minimum
reward setting; also, the one with reward depends on the 3-
SAT clause so as to construct a valid assignment. ��

5.3 Approximation Algorithm

Considering the problem is NP-hard, we provide an approx-
imation algorithm which works for all three versions.

Algorithm 1 The shortest good path algorithm for
MINIMAL-TOTAL-REWARDβ

1: for each edge (vi, vj) do
2: Suppose the agent currently lies at node vi and wants

to go to node vj , if the agent would go through edge
(vi, vj) directly, we call this edge “good”.

3: end for
4: Find the shortest path which only consists of good

edges: s(= vk(0)), vk(1), vk(2), ..., vk(h), t(= vk(h+1)).
5: for each node k(i), i = 1, ..., h do
6: r(vk(i)) = c(vk(i−1), vk(i))∗β−1+c(vk(i), vk(i+1))
7: end for
8: r(t) = c(vk(h), t) ∗ β−1

9: r(any other node)=0.

The idea of good edge (vi, vj) is, when the agent is at
node vi, as long as r(vj) is large enough, the agent will go to
vj directly. For the edge that is not good, the agent will never
pass edge (vi, vj) in any reward configuration. Algorithm 1
runs in polynomial time and we have the following claim.

Theorem 5.3 Alg. 1 has an approximation ratio of 2n.
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