
Best-First Width Search: Exploration
and Exploitation in Classical Planning

Nir Lipovetzky
The University of Melbourne

Melbourne, Australia
nir.lipovetzky@unimelb.edu.au

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

It has been shown recently that the performance of greedy
best-first search (GBFS) for computing plans that are not nec-
essarily optimal can be improved by adding forms of explo-
ration when reaching heuristic plateaus: from random walks
to local GBFS searches. In this work, we address this problem
but using structural exploration methods resulting from the
ideas of width-based search. Width-based methods seek novel
states, are not goal oriented, and their power has been shown
recently in the Atari and GVG-AI video-games. We show first
that width-based exploration in GBFS is more effective than
GBFS with local GBFS search (GBFS-LS), and then proceed
to formulate a simple and general computational framework
where standard goal-oriented search (exploitation) and width-
based search (structural exploration) are combined to yield a
search scheme, best-first width search, that is better than both
and which results in classical planning algorithms that out-
perform the state-of-the-art planners.

Introduction
It is well known that action selection in reinforcement learn-
ing must balance exploration and exploitation for deliver-
ing optimal behavior (Sutton and Barto 1998). The same is
true in probabilistic and non-deterministic planning when
non-admissible heuristics are used, as then non-greedy ac-
tions must be considered as well (Bonet and Geffner 2012).
The exploitation and exploration tradeoff is also at the heart
of Monte-Carlo Tree Search (MTCS) algorithms like UCT
(Kocsis and Szepesvári 2006), which are based on optimal
methods developed for arm selection in multi-armed bandit
problems (Auer, Cesa-Bianchi, and Fischer 2002).

In classical planning, exploration is not needed for op-
timality, as greedy best-first search (GBFS) and, indeed,
any best-first algorithm (BFS), delivers optimal solutions
when used in anytime mode; i.e., not stopping until com-
pletion (Hansen and Zhou 2007). GBFS is the complete
search method of choice in planners such as FF, FD, and
LAMA (Hoffmann and Nebel 2001; Helmert 2006; Richter
and Westphal 2010). The problem of GBFS, however, is
that it often runs into large plateaus where the search gets
lost as no states with better heuristic values are found. Re-
cently it has been shown that the performance of GBFS for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

computing plans that are not necessarily optimal can be im-
proved by adding forms of exploration to get out of these
plateaus (Xie, Nakhost, and Müller 2012; Xie et al. 2014;
Xie, Müller, and Holte 2014).

In this work, we address the problem of heuristic plateaus
in greedy best-first search but from a different perspective:
rather than adding exploration to a greedy goal-directed
search, we look at a very effective class of structural explo-
ration methods that have been developed recently, and see
how to extend them with a goal-directed search. The two
perspectives, however, are closely related, and we will look
into this relation too.

The exploration methods that we use are based on the
ideas of width-based search (Lipovetzky and Geffner 2012).
Width-based search algorithms were developed in the setting
of classical planning to show that instances of many existing
domains can be solved in low polynomial time when they
feature atomic goals. The ideas have also been used to yield
state-of-art results in classical planning over the standard in-
stances (Lipovetzky and Geffner 2012), and more recently
in the Atari games (Lipovetzky, Ramirez, and Geffner 2015;
Shleyfman, Tuisov, and Domshlak 2016), and those of the
General Video-Game AI competition (Geffner and Geffner
2015). Width-based methods are pure exploration meth-
ods that are not goal-oriented, and our goal is to integrate
them with heuristic search methods to get the best of both.
For this, we show first that GBFS with width-based explo-
ration is more effective than GBFS with local GBFS search
(Xie, Müller, and Holte 2014), and formulate then a sim-
ple but general computational framework where standard
goal-oriented search (exploitation) and width-based search
(exploration) are combined to yield a search scheme, that
we call best-first width-search, that is better than both and
results in classical planning algorithms that outperform the
state-of-the-art planners.

The paper is organized as follows. We provide first some
background on classical planning, and heuristic and width-
based search, and look then at GBFS with width-based ex-
ploration, best-first width search, and ways to combine dif-
ferent best-first width searches, presenting in all cases rele-
vant experimental results.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3590

Background
The classical model for planning S = 〈S, s0, SG, A, f〉 is
made up of a finite set of states S, an initial state s0, a set of
goal states SG, and actions a ∈ A(s) that deterministically
map one state s into another s′ = f(a, s), where A(s) is
the set of actions applicable in s. The solution to a classical
planning model is a sequence of actions a0, . . . , am, called
a plan, that generates a state sequence s0, s1, . . . , sm+1 such
that ai ∈ A(si), si+1 = f(ai, si), and sm+1 ∈ SG.

A classical planning problem P defines a classical state
model S(P) in compact form through a set of variables in
a planning language such as STRIPS. In the absence of ex-
plicit cost information, it is assumed that action costs are all
1 so that the cost of a plan is given by its length, and the op-
timal plans are the shortest ones. Planners that seek optimal
plans are called optimal planners. We focus on satisficing
planners which are aimed at computing good-quality plans
fast. While optimal planners are compared in terms of time
and coverage, the empirical evaluation of satisficing plan-
ners takes plan quality into account as well.

Best-First Search
Most computational approaches to satisficing planning seek
a plan for P by searching for a path connecting the ini-
tial state with a goal state in the directed graph associ-
ated with the state model S(P) (Geffner and Bonet 2013).
For guiding this search they use heuristics derived auto-
matically from P , including the additive, relaxed planning
graph, and landmark heuristics, that will be denoted as
hadd, hff , and hL respectively (Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Richter, Helmert, and Westphal
2008). All these heuristics are based on a suitable problem
simplification, that in STRIPS is called the delete-relaxation
as it consists of the original problem but with the action
delete lists set to empty. A delete-free STRIPS problem can
be solved (non-optimally) in low polynomial time, and the
additive and RPG heuristics encode the cost of solutions to
such a relaxation from the seed state. The landmark heuris-
tic, on the other hand, just counts the number of landmarks
to be achieved. The landmarks represent explicit or implicit
atomic subgoals of the problem, usually computed from the
delete-relaxation as well (Hoffmann, Porteous, and Sebastia
2004).

In best-first search (BFS), a path in a graph is sought
by sequentially expanding the best-node in the OPEN list
(the search frontier) according to an evaluation function f
(smaller values preferred). The process starts with a sin-
gle node in OPEN representing the initial state, and termi-
nates when the selected node represents a goal state. Greedy
best-first search (GBFS) is a best-first search where the
evaluation function f is given by the heuristic. The clas-
sical A* search is a BFS with a function f that adds up
the heuristic h and the accumulated cost g (Pearl 1983;
Edelkamp and Schroedl 2011). The plans returned by A*
are provably optimal when the heuristic h doesn’t overesti-
mate costs. The plans found with GBFS are not optimal but
are computed faster. In principle, any BFS can be used to
compute optimal plans if used in anytime mode, i.e., if not

terminated until the OPEN list gets empty while preserving
the best plan found (Hansen and Zhou 2007)

While the first generation of heuristic-search planners was
based on forms of BFS using one heuristic, more recent
planners incorporate a number of enhancements, including
helpful actions (Hoffmann and Nebel 2001), delayed evalu-
ation, and multiple queues (Helmert 2006). Delayed evalua-
tion is useful in problems with large branching factors. Help-
ful actions refer to applicable actions that are relevant to the
relaxed plan computed as part of the RPG heuristic. Multiple
queues allow the combination of heuristics without aggre-
gating them into a single function. LAMA, for example, per-
forms a BFS with 4 queues: two of the queues are ordered by
hff (or hadd), and two by hL. In addition, one queue for each
heuristic is for nodes that result from helpful actions. An
alternative way to combine heuristics h1, . . . , hn is lexico-
graphically: preferring nodes that minimize h1, and in case
of ties, nodes that minimize h2, and so on. We will denote
the resulting heuristic or preferences as 〈h1, . . . , hn〉, and
will use them as the language for integrating goal-directed
preferences (heuristics) with exploration-based preferences
(width).

Width-Based Search
Width-based search algorithms operate over states that as-
sign a value x to a finite number of variables X over finite
and discrete domains. The simplest such algorithm is IW(1),
which is a plain breadth-first search where newly generated
states that do not make an atom X = x true for the first time
in the search are pruned. The algorithm IW(2) is similar ex-
cept that a state s is pruned when there are no atoms X = x
and Y = y such that the pair of atoms 〈X = x, Y = y〉
is true in s and false in all the states generated before s.
More generally, the algorithm IW(k) is a normal breadth-
first except that newly generated states s are pruned when
their “novelty” is greater than k, where the novelty of s is i
iff there is a tuple t of i atoms such that s is the first state
in the search that makes all the atoms in t true, and no tuple
of smaller size has this property (Lipovetzky and Geffner
2012).

From a theoretical point of view, IW(k) can solve arbi-
trary instances of many of the standard benchmark domains
in low polynomial time, provided that the goal is a single
atom (Lipovetzky and Geffner 2012). Such domains can be
shown to have a small and bounded width w that does not
depend on the instance size, which implies that they can be
solved (optimally) by running IW(k) with k = w. Moreover,
IW(k) runs in time and space that are exponential in k and
not in the number of problem variables that grows with the
instance size.

From a practical point of view, the algorithm Iterated
Width (IW) that calls the procedures IW(1), IW(2), . . . se-
quentially until finding a solution, has been used to solve
the standard benchmark instances featuring multiple (con-
junctive) atomic goals. For this, Serialized IW (SIW) calls
IW sequentially: first for achieving one goal, then from the
resulting state for achieving two goals, and so on. While
SIW is a blind search procedure that is incomplete (it can
get trapped into dead-ends), it performs much better than a

3591

GBFS guided by the additive or RPG heuristics, computing
in general better plans, in less time (Lipovetzky and Geffner
2012).

Lipovetzky and Geffner developed also a planner BFS(f)
that made use of landmarks, heuristics, helpful actions and
delayed evaluation, in combination with novelty-based pref-
erences, whose performance matched the performance of
LAMA (Lipovetzky and Geffner 2012). Our purpose in
this work is to explore the synergies between heuristic and
width-based search more systematically. By BFS(w), we
will refer to a BFS search purely guided by novelty mea-
sures, breaking ties by accumulated cost g. It is complete
like IW but more practical as it avoids the repeated work
done in successive invocations of IW(1), IW(2), etc.

BFS with Width-Based Exploration
One of the problems of GBFS is the presence of heuris-
tic plateaus where a large number of iterations of GBFS
does not succeed in generating states with a lower heuris-
tic value (Hoffmann 2005). One way to deal with this prob-
lem is through the use of multiple queues ordered by dif-
ferent heuristics as in LAMA, but even then large plateaus
are bound to exist. Two methods that have been explored re-
cently for dealing with heuristic plateaus are random walks
(Xie, Nakhost, and Müller 2012), and local GBFS or GBFS-
LS (Xie, Müller, and Holte 2014). In GBFS-LS, a local
GBFS guided by the same heuristic is triggered when the
global GBFS fails to improve the value of the heuristic after
a STALL-SIZE number of iterations. The local GBFS is like
the global GBFS except that it operates on a local queue,
initialized with a selected node from the plateau. This local
search finishes when a state is found with a lower heuris-
tic value, or when LS-SIZE nodes have been expanded. At
that point, the states in the local queue are moved to the
global queue, whether the process succeeded or not. The lo-
cal GBFS is triggered at most MAX-LOCAL-TRY times for
any given plateau, resulting in a GBFS-LS search that im-
proves the performance of the plain GBFS on many domains
(Xie, Müller, and Holte 2014).

The local search in GBFS-LS, however, is very much
blind, as the heuristic is of limited use for getting out of
plateaus. Indeed, due to the FIFO strategy used, the local
search tends to be a breadth-first search over states that have
the same heuristic value. This prompts the first question that
we address in this work: wouldn’t this local blind explo-
ration work better if carried out by a structural method like
IW or BFS(w)?

We have evaluated this question experimentally using
the same settings and parameters as those reported for
GBFS-LS; namely, STALL-SIZE=1000, LS-SIZE=1000,
and MAX-LOCAL-TRY=100. We just use BFS(w) for the
local search instead of GBFS. We call the resulting algo-
rithm GBFS-W to distinguish it from GBFS-LS.

Table 1 shows the results of the baseline GBFS in compar-
ison with GBFS-LS and GBFS-W. The first four columns in
the table use h = hadd, while the following four columns
use h = hff . The domains and instances are from the 2014
planning competition (Vallati et al. 2015). For h = hadd, the
number of instances solved (out of a total of 280) goes from

47 for the baseline GBFS, to 57 for GBFS-LS, and 78 for
GBFS-W. For h = hff the numbers are 55, 79, and 88. Thus,
while GBFS-LS improves the baseline GBFS, GBFS-W im-
proves GBFS-LS quite consistently. Table 1 shows other
methods for combining goal-directed and exploratory search
that yield better results and which we consider next.

In the implementation of GBFS-W as in other algorithms
below, a simplification is made: novelty measures w(s) are
computed with 2 or 3 level precision only, meaning in the
first case, that w(s) is determined to be 1 or greater than
1, and in the second, that w(s) is determined to be 1, 2, or
greater than 2. The reason for this simplification is that de-
termining that w(s) is i is exponential in i−1, as all new
tuples of size up to i may have to be considered. By de-
fault, novelty measures w(s) are computed with 2-level pre-
cision only; namely, w(s) is determined to be 1 or greater
than 1. This includes their use in GBFS-W. This is informa-
tive enough even in problems where the width of individual
goals is 2. The reason is that the novelty measures are used
in GBFS-W and the other algorithms below for reducing the
value of the heuristic and not for achieving the goals as in
IW. In a a few cases, as indicated, we will appeal to novelty
measures computed with 3-level precision as well.

Best-First Width-Search
The notion of novelty plays a secondary role in GBFS-W:
just to get the GBFS search going when it gets stuck. There
are however other ways for combining the goal-directed and
the exploratory search. We focus next on their combination
in the context of a best-first search with lexicographic pref-
erences, where preferences arise from one or more goal-
directed heuristics and novelty measures. We call this family
of search algorithms best-first width-search (BFWS). As we
will see, in the best-performing BFWS variants, the novelty
measures will appear first in the lexicographic ordering, thus
playing the primary role in the search, with the goal-directed
heuristics being used for tie breaking only.

GBFS-W can be approximated by BFWS with the (lex-
icographic) evaluation function f = 〈h,w〉 where h is the
heuristic function and w the novelty measure function. For
this evaluation function, the preferred states in OPEN are the
ones with lowest h value, and among those, the ones that are
most novel (i.e., smallest novelty measure). For this, how-
ever, we need to define and compute novelty in a slightly
different way, taking the heuristic h, and more generally,
multiple functions hj , into account. A similar idea is used
in the BFS(f) planner (Lipovetzky and Geffner 2012):

Definition 1 The novelty w(s) of a newly generated state
s given the functions h1, . . . , hm is i iff there is a tuple
(conjunction) of i atoms and no smaller tuple, that is true
in s and false in all states s′ generated before s with the
same function values, i.e., with h1(s

′) = h1(s), . . . , and
hm(s′) = hm(s).

We write w(s) as wh1,...,hm
(s) when we want to make

explicit the use of the functions hj in the definition of
w(s). According to this definition, a new state s has nov-
elty wh1,...,hm(s) = 1, for example, if there is an atom p

3592

that is true in s but false in all the states s′ generated before
s such that hj(s

′) = hj(s) for all 1 ≤ j ≤ m.
Provided with this definition, BFWS with evaluation

function f1 = 〈h,w〉, denoted as BFWS(f1), selects from
OPEN the states s with lowest h(s) value, and among those,
the ones with smallest w(s) value, where w = wh. For ef-
ficiency, as discussed before, we don’t compute the value
w(s) exactly. Instead, except when stated otherwise, we just
determine whether w(s) is 1 or greater than 1. As a result, a
state s will not be preferred to a state s′ when the two states
have the same heuristic values and both states have novelty
measures greater than 1.

BFWS(f1) provides an approximation of a GBFS driven
by h, with a local BFS(w) search for escaping plateaus;
namely the GBFS-W algorithm above. It turns out how-
ever that this BFWS variant is not as good as GBFS-W.
The reason is that when BFWS(f1) reaches an h-plateau,
the novelty-based exploration can give preference to at most
|F | states, where F stands for the set of atoms in the prob-
lem, as there can be at most |F | states with novelty 1 for the
same h value. In GBFS-W, on the other hand, there are at
most |F | preferred states in each local search, but multiple
(MAX-LOCAL-TRY) local searches are triggered from the
same plateau.

Remarkably, however, BFWS with evaluation function
f2 = 〈w, h〉, where the preference order between heuris-
tics and novelties are reversed, performs much better than
both BFWS(f1) with f1 = 〈h,w〉 and GBFS-W. The pre-
ferred states in f2 = 〈w, h〉 are not picked among the ones
with lowest h but among those with lowest novelty mea-
sure w(s) = wh(s), with the heuristic h being used as a
tie breaker. As a result, BFWS(f2) is not greedy and may
expand nodes s′ that do not have the min heuristic value in
OPEN. The number of such non-greedy expansions however
cannot exceed |F | × hM , where hM is the maximum pos-
sible value of the heuristic (e.g., for h = hff , hM ≤ |A|,
where A is the set of actions in the problem). The reason for
this is that only states s with novelty 1 will be preferred to
states s′ with a smaller heuristic value and there cannot be
more than |F | × hM such states.

Table 1 shows the results of these and other algorithms.
The table is organized into four sets of columns. The first
set of columns is for plain GBFS, GBFS-LS, GBFS-W, and
BFWS(f2) for f2 = 〈w, h〉, in all cases using h = hadd.
The second set of columns is for the same algorithms but
with h = hff . For hadd, the number of problems solved
by the algorithms is 47, 57, 78, and 100 respectively; while
for hff , it is 55, 79, 88, and 104. For both heuristics, the
local search LS helps, but the local BFS(w) exploration in
GBFS-W helps even more. Moreover, in both cases, the best
results are achieved by BFWS(f2) that is not greedy as it
uses the novelty measures as the primary evaluation func-
tion in f2 = 〈w, h〉, breaking ties with the heuristic h. Av-
erage times and plan qualities are shown in the bottom of
the table. The first two sets of columns show that among the
eight planners considered so far, BFWS(f2) with h = hff

has the best coverage, and also the best average times and
plan lengths.

The third set of columns in Table 1 shows the performance

of two other planners. The first is a GBFS planner with eval-
uation function f3 = 〈hL, hff〉, where hL is the landmark
heuristic. This configuration results in 99 problems being
solved. In this configuration, the landmark heuristic can be
thought as dividing the problems into subproblems which
are then solved with the hff heuristic. The second planner
is BFWS(f4) where the evaluation function f4 is obtained
from f3 by just pushing in a novelty preference as the main
function; namely f4 = 〈w, hL, hff〉 with w = whL,hff

. Inter-
estingly, this small change increases the number of problems
solved from 99 to 149.

The last column in Table 1 represents a different BFWS
planner, which is the one that solves the highest number of
problems: 192. As a reference, to be shown in a second table,
LAMA solves 171. The evaluation function for this BFWS
planner is f5 = 〈w,#g〉 where #g(s) tracks the number of
top problem goals that are not true in s. The novelty measure
w(s) is computed given both this counter #g and a second
counter #r(s), i.e., w = w#g,#r. The second counter tracks
the number of atoms in the last relaxed plan computed in the
way to s that have been made true. Relaxed plans are com-
puted only for states that decrease the #g count in relation
to their parent, and for the initial state. The set of atoms Fπ

in a relaxed plan π are those that appear as preconditions or
positive effects of actions a in π. If the last relaxed plan π
in the way to s was computed in a state s′, #r(s) stands for
the number of atoms in Fπ that are true in some state s′′ be-
tween s′ and s, including these two states (Lipovetzky and
Geffner 2014).

In BFWS(f5), novelty measures w = w#g,#r are com-
puted with a 3-value precision (namely, w(s) is 1, 2, or
greater than 2), taking advantage that the two counters
#g and #r are computationally cheap. The most preferred
states s according to f5 are the novelty 1 states that appear
closest to the goal as measured by the number of top goals
achieved. The total number of novelty 1 states is again poly-
nomially bounded; indeed since #r(s) ≤ |F |, this number
cannot exceed |F |2 × |G|, where F and G stand for the set
of problem atoms and goals respectively. Similarly, the total
number of novelty 2 states is bounded by |F |3 × |G|.

Notice that BFWS(f5) with f5 = 〈w#g,#r,#g〉 manages
to outperform LAMA without appealing to many of the tech-
niques that have been found essential for performance in re-
cent years; namely, helpful actions, landmarks, delayed eval-
uation, and multiple queues or searches. The planner BFS(f)
in (Lipovetzky and Geffner 2012), that combines width-
based exploration with most of these techniques, solves
more problems than LAMA, 177 vs. 171, but less than
BFWS(f5), as shown in Table 2.

Dual BFWS
The experiments above illustrate that it is better to use goal-
heuristics to break ties in a novelty-driven BFS search, than
using novelty-measures or other exploration forms to break
ties in a greedy heuristic-driven search. We’ll provide some
intuitions for this below, and focus now on improving per-
formance further by considering a dual BFWS algorithm. In
this Dual BFWS planner, like in FF, a slow but incomplete
search, the planner front-end, is followed if not successful,

3593

GBFS GBFS-LS GBFS-W BFWS GBFS GBFS-LS GBFS-W BFWS GBFS BFWS BFWS
〈hadd〉 〈hadd〉 〈hadd〉 〈w, hadd〉 〈hff〉 〈hff〉 〈hff〉 〈w, hff〉 f3 = 〈hL, hff〉 f4 = 〈w, hL, hff〉 f5 = 〈w〈#g,#r〉,#g〉

Barman (20) 0 0 0 16 0 0 0 10 0 15 20
CaveDiving (20) 5 6 (1.09) 6 (0.22) 6 (1.22) 6 6 (1.33) 6 (1.34) 5 (0.36) 7 7 (1.08) 7
Childsnack (20) 0 0 0 0 0 0 0 0 3 9 (0.33) 2
CityCar (20) 0 3 6 6 0 0 4 5 1 9 (1.50) 5
Floortile (20) 2 2 (0.99) 2 (1.00) 2 (0.49) 2 2 (1.18) 2 (1.18) 2 (0.12) 2 2 (0.09) 2
GED (20) 0 2 10 16 16 15 (0.60) 13 (0.47) 18 (0.20) 20 20 (0.23) 20
Hiking (20) 8 7 (0.21) 7 (0.21) 8 (1.73) 2 6 (0.61) 7 (0.36) 9 (0.88) 2 9 (0.42) 8
Maintenance (20) 16 16 (1.00) 16 (1.00) 16 (1.00) 11 16 (0.21) 16 (0.21) 11 (1.00) 16 16 (1.00) 16
Openstacks (20) 0 0 0 0 5 0 0 5 4 4 (1.00) 20
Parking (20) 0 0 0 0 0 0 0 0 1 2 (0.85) 20
Tetris (20) 1 7 (0.39) 9 (0.39) 3 (2.43) 1 5 (0.10) 9 (0.14) 1 (3.77) 9 13 (0.07) 15
Thoughtful (20) 13 6 (0.72) 9 (0.52) 20 (0.30) 12 9 (0.39) 11 (0.49) 18 (0.27) 12 15 (0.09) 17
Transport (20) 2 3 (0.26) 5 (0.28) 6 (0.25) 0 0 0 0 2 8 (0.58) 20
Visitall (20) 0 5 8 1 0 20 20 20 20 20 (1.00) 20
Total Coverage (280) 47 57 78 100 55 79 88 104 99 149 192
Average Time 138.43 119.62 77.16 98.50 82.85 98.56 95.28 30.02 275.84 189.46 228.36
Average Quality 34.63 72.23 47.43 34.79 30.67 55.04 68.83 30.16 313.59 314.86 362.33

Table 1: Coverage over IPC-8 benchmarks of GBFS, GBFS-LS, GBFS-W, and BFWS with different evaluation functions. First
four columns use h = hadd, and second four h = hff . Heuristic and evaluation functions shown for each column. GBFS-W and
GBFS-LS use the same parameters as Xie et al. Reduction factor in terms of generated states with respect to GBFS is reported in
parenthesis, e.g. 0.07 implies the algorithm generated 7% of the states generated by GBFS. Average times in seconds and plan
lengths shown for each of the four sets of columns, over problems solved by all planners in the corresponding set of columns.
Averages for last column are higher as they include all problems solved by a single planner. Best coverage overall shown in red.
Best coverage for each of the three sets of columns shown in bold. Algorithms implemented in LAPKT. Experiments performed
on 2.40GHz Intel Processor; time and memory outs after 30 min or 8GB.

by a slower and complete search, the planner back-end. Dual
BFWS turns out to outperform not only BFWS(f5), and
hence LAMA, but all the planners that participated in the
competition, including Jasper, Mercury, and the winner Iba-
cop portfolio (Xie, Müller, and Holte ; Katz and Hoffmann
2014; Cenamor, De La Rosa, and Fernández 2014).

As a front end of Dual-BFWS, we use the BFWS(f5)
planner above with f5 = 〈w,#g〉 and w = w#g,#r, but
with one difference that makes the algorithm incomplete:
states s with a novelty w(s) > 1 are pruned. Indeed, this
incomplete algorithm runs in polynomial time and expands
|F |2 × |G| states in the worst case, which is the maximum
number of states s that can have novelty w(s) = 1. This
incomplete search, by itself, does not solve as many prob-
lems as the complete BFWS(f5) planner (151 vs. 192), but
it succeeds or fails very fast. Interestingly, FF’s front-end
algorithm EHC solves 71 problems only.

As the back-end of Dual-BFWS, we use an extension of
BFWS(f4) with f4 = 〈w, hL, hff〉, where the landmark and
FF heuristics are used as tie breakers, in that order, for a
novelty measure w = whL,hff

. The extension introduces
delayed evaluation and a distinction between helpful and
non-helpful actions. Actually, the evaluation function used
is f6 = 〈w, help, hL, w

′, hff〉 where help is a function that
is 1 or 2 according to whether the action leading to the state
is helpful or not, and w′ is a second novelty measure. While
w is computed given the two heuristics hL and hff , w′ is
computed given hff only; i.e. w′ = w′

hff
. Also in both cases,

the novelty measures are computed with a 3-level precision;
thus, they can be 1, 2, or greater than 2.

Table 2 compares Dual-BFWS with the 2014 IPC plan-

ners LAMA, Jasper, Mercury, BFS(f), and the Ibacop2 port-
folio. For reference the best BFWS planner from Table 1,
BFWS(f5), is also included. LAMA and Mercury do not
solve as many problems as BFWS(f5), but Jasper and Iba-
cop2 solve 193 and 198 problems each. The Dual-BFWS
algorithm, that performs two searches in a row, solves 225
problems, with 151 of them being solved by the first incom-
plete search. The curves showing the number of problems
solved as a function of time are displayed in Fig. 1. Dual-
BWFS solves more problems than pruned BFWS(f5) even
for short time windows; those are problems where the in-
complete search fails quickly that are then solved quickly
by the following complete BFWS(f6) search.

Figure 1: Coverage as a function of time for different plan-
ners. Top line is for Dual-BFWS. Bottom line is for its front
end given by the pruned and polynomial BFWS(f5) search.

3594

BFWS(f5) BFS(f) LAMA-11 Mercury Jasper IBACOP2 Dual-BFWS
S Q S Q S Q S Q S Q S S Q

Barman (20) 20 178.83 20 160.89 19 209.89 19 250.83 20 297.00 20 20 160.83
CaveDiving (20) 7 27.29 8 23.57 7 23.00 7 23.00 8 24.86 7 8 23.29
Childsnack (20) 2 0.00 10 0.00 0 0.00 6 0.00 0 0.00 20 (1) 10 0.00
CityCar (20) 5 22.67 20 26.33 3 28.67 5 38.33 5 68.67 9 (1) 20 26.33
Floortile (20) 2 39.50 3 40.00 2 38.50 2 40.50 2 45.00 20 2 41.00
GED (20) 20 114.00 13 127.69 20 116.85 20 88.77 20 122.62 20 (20) 20 119.92
Hiking (20) 8 45.80 12 46.40 16 56.80 12 79.20 20 99.20 20 11 45.00
Maintenance (20) 16 96.67 17 85.67 7 128.67 10 121.17 11 129.17 17 (17) 17 85.67
Openstacks (20) 20 663.83 6 680.50 20 684.67 18 667.33 20 683.67 6 (20) 20 661.50
Parking (20) 20 90.62 8 114.12 20 79.38 13 114.25 20 123.75 7 (20) 20 88.38
Tetris (20) 15 51.33 4 50.00 8 43.33 13 43.67 14 82.67 5 (17) 17 52.33
Thoughtful (20) 17 78.45 20 92.73 15 87.91 12 85.27 18 91.91 19 (15) 20 80.91
Transport (20) 20 312.18 16 339.27 14 302.91 20 232.82 15 320.27 13 (20) 20 312.36
Visitall (20) 20 2916.85 20 2859.70 20 3628.60 20 2882.40 20 3834.35 15 (20) 20 2916.85
Overall (280) 192 331 (109s) 177 332 (291s) 171 388 (111s) 177 333 (151s) 193 423 (108s) 198 (151) 225 330 (49s)

Table 2: Coverage (S) and Avg. Plan Quality (Q) of BFWS(f5) and Dual-BFWS planners in relation to IPC-2014 planners
and domains. Dual-BFWS involves two searches; number of problems solved by first incomplete search shown in parenthesis.
Averages computed over problems solved by all planners except IBACOP2. Overall average time in seconds shown in paren-
thesis. Best coverage shown in red, best quality in bold. BFS(f), LAMA-11, Jasper, and Mercury are state-of-the-art algorithms.
BFWS algorithms and BFS(f) implemented using LAPKT toolkit. Results for IBACOP2 portfolio taken from the IPC-8 report
using an AMD 2.40GHz Processor. All experiments performed on 2.40GHz Intel Processor, with time and memory outs after
30 min and 8GB resp. as in last IPC.

Discussion
The reason that BFWS with evaluation function f2 = 〈w, h〉
works better than with function f1 = 〈h,w〉, where the or-
der between the heuristic and the novelty function w = wh

is swapped, is that the latter is too greedy: once a state s
is generated with minimum heuristic value hmin, the search
becomes focused on the successors of s with heuristic value
equal to hmin or smaller, even if states with higher heuristic
values need to be considered for leaving a plateau. The nov-
elty function w in f1 doesn’t make the search less greedy,
but just structures the search within the plateaus. On the
other hand, the best first-search with evaluation function
f2 = 〈w, h〉 is not greedy, as it prefers a state s to a state
s′ in OPEN if h(s) > h(s′) and w(s) < w(s′). The re-
sult of this is that the search will not become focused on the
first state that achieves a min heuristic value in OPEN. At
the same time, smaller heuristic values are not ignored for-
ever. First, heuristic values are used as tie breakers, and sec-
ond and more importantly, heuristic values become the main
drivers of the search when the OPEN list runs out of novelty
1 and 2 nodes, as all other nodes are then assumed to have
the same novelty (actually, when w(s) is computed with 2-
level precision; only novelty 1 nodes are distinguished from
the rest). Moreover, the total number of novelty 1 or nov-
elty 2 nodes for w = wh1,h2,...,hm

is polynomial for fixed m
and functions hi taking a polynomial number of values. So,
while exploration plays the primary role in the search, the
total amount of exploration remains polynomially bounded.

The way heuristics like hL and hff are ordered, e.g., in
BWFS with f5 = 〈w, hL, hff〉, takes advantage of the view
of landmark heuristics as goal and subgoal serialization de-
vices (Lipovetzky and Geffner 2011; 2012). In the ordering
f4 = 〈hL, hff〉, the landmark heuristic tracks the number

of subproblems that are yet unsolved, while the hff heuris-
tic is used to solve them. GBFS(f4) improves GBFS(hff)
by the same ratio as the novelty exploration in BFWS(f5)
improves GBFS(f4). The algorithm SIW, Serialized Iterated
Width, also exploits goal serialization and novelty-based ex-
ploration, but its performance doesn’t compete because it
doesn’t use heuristic estimators at all.

The Type-GBFS-LS algorithm used in Jasper (Xie,
Müller, and Holte) uses a local search when the global
search gets stuck, but uses Type-GBFS instead of GBFS for
the local and global search levels. Type-GBFS (Xie et al.
2014) uses a dual multi-bucket data structure along with the
standard queue sorted by the heuristic. Each bucket clusters
together states with the same hi values when more than one
function is used. For example, h1 can be the hff heuristic,
while h2 can the accummulated cost function g. Type-GBFS
will then interleave expansions from the open queue and the
buckets, randomly picking a bucket, and from that bucket, a
node. These random selections result in non-greedy choices.
BFWS using f = 〈w, h〉 achieves a similar behavior but
without appealing to randomizations.

Conclusions
Heuristic search planning is the main computational ap-
proach in classical satisficing planning. The initial success
of the approach rested on the derivation and use of heuris-
tics for guiding the search for plans. Since then other ideas
have been found crucial for performance and they belong
to the palette of any planning user or researcher interested
in performance and scalability. These include relaxed plans,
helpful actions, landmark heuristics, delayed evaluation, and
multiple search queues and architectures. In this work, we
have tried to show that width-based exploration in the form

3595

of simple novelty-based preferences or filters, provide an ef-
fective complement to goal-directed heuristics, open up new
possibilities for structuring the search, and lead in fact to
new state-of-the-art algorithms. One lesson of the work is
that when lost in the search for the goal, it is useful not
only to get away from the states that have been visited, but
to move to states that are as different from those as much
as possible, as revealed by the structure of the states, even
if this means to move away from the goal. Best-first width
search delivers this through the use of domain-independent
novelty measures. We have shown that this combination of
exploitation and structured exploration pays off computa-
tionally, yet this does not exclude that there may be other
combinations that are more effective.

Acknowledgements. The authors thank M. Ramirez and G.
Francès for useful comments. The work by N. Lipovetzky
is partially supported by the Australian Research Council
linkage grant LP11010015, H. Geffner is partially supported
by grant TIN2015-67959-P, MEC, Spain.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2):235–256.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B., and Geffner, H. 2012. Action selection for MDPs:
Anytime AO* vs. UCT. In Proc. AAAI, 1749–1755.
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2014. IBA-
COP and IBACOP2 planner. In Proc. IPC-8.
Edelkamp, S., and Schroedl, S. 2011. Heuristic search:
theory and applications. Elsevier.
Geffner, H., and Bonet, B. 2013. A concise introduction
to models and methods for automated planning. Morgan &
Claypool Publishers.
Geffner, T., and Geffner, H. 2015. Width-based planning for
general video-game playing. In Proc. AIIDE.
Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28:267–297.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works:
local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In Proc. of the 8th Int
Planning Competition.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proc. ECML, 282–293. Springer.

Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proc. ICAPS, 154–161.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. ECAI, 540–
545.
Lipovetzky, N., and Geffner, H. 2014. Width-based algo-
rithms for classical planning: New results. In Proc. ECAI,
88–90.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Clas-
sical planning with simulators: Results on the atari video
games. In Proc. IJCAI-2015.
Pearl, J. 1983. Heuristics. Addison Wesley.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Accessed: 2016-09-15.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:122–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI, 975–982.
Shleyfman, A.; Tuisov, A.; and Domshlak, C. 2016. Blind
search for atari-like online planning revisited. In Proc. IJ-
CAI.
Sutton, R., and Barto, A. 1998. Introduction to Reinforce-
ment Learning. MIT Press.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts,
M.; and Sanner, S. 2015. The 2014 international planning
competition: Progress and trends. AI Magazine 36(3):90–98.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proc. AAAI, 2395–2402.
Xie, F.; Müller, M.; and Holte, R. Jasper: the art of explo-
ration in greedy best first search. In Proc. IPC-8.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Proc. AAAI, 2388–2394.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via
random walk-driven local search. In Proc. ICAPS.

3596

