Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Fast SSP Solvers Using Short-Sighted Labeling

Luis Pineda, Kyle Hollins Wray, Shlomo Zilberstein
College of Information and Computer Sciences
University of Massachusetts Amherst
Amberst, MA 01003, USA
{Ipineda,wray,shlomo} @cs.umass.edu

Abstract

State-of-the-art methods for solving SSPs often work by lim-
iting planning to restricted regions of the state space. The
resulting problems can then be solved quickly, and the pro-
cess is repeated during execution when states outside the re-
stricted region are encountered. Typically, these approaches
focus on states that are within some distance measure of the
start state (e.g., number of actions or probability of being
reached). However, these short-sighted approaches make it
difficult to propagate information from states that are closer
to a goal than to the start state, thus missing opportunities
to improve planning. We present an alternative approach in
which short-sightedness is used only to determine whether a
state should be labeled as solved or not, but otherwise the set
of states that can be accounted for during planning is unre-
stricted. Based on this idea, we propose the FLARES algo-
rithm and show that it performs consistently well on a wide
range of benchmark problems.

Introduction

Markov decision processes (MDP) offer a highly-expressive
model for probabilistic sequential decision making. One
class of MDP problems that has received significant atten-
tion by the planning community is the Stochastic Short-
est Path problem (SSP), where the objective is to min-
imize the expected cost of reaching a goal state from
the start state (Bertsekas and Tsitsiklis 1991). In fact,
it has been shown that the SSP model is more general
than other MDP classes (finite-horizon and infinite-horizon
discounted-reward MDPs) (Bertsekas and Tsitsiklis 1995).

Solving large MDPs and SSPs optimally is a computa-
tionally intensive task. Although they can be solved in poly-
nomial time in the number of states, many problems of in-
terest have a state-space whose size is exponential in the
number of variables describing the problem (Littman 1997).
This has led to the development of a range of model reduc-
tion techniques (Dean, Givan, and Leach 1997) as well as
heuristic search algorithms, such as LAO* (Hansen and Zil-
berstein 2001) and LRTDP (Bonet and Geffner 2003b), that
attempt to focus on states that are relevant to an optimal pol-
icy. Unfortunately, even considering just states reachable by
an optimal policy could be computationally prohibitive.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3629

Recent algorithms try to cope with this challenge by
reducing the size of the reachable state-space. Exam-
ples include determinization-based methods such as FF-
Replan (Yoon, Fern, and Givan 2007) and RFF (Teichteil-
Konigsbuch, Kuter, and Infantes 2010), and model reduction
approaches such as SSiPP (Trevizan and Veloso 2014) and
Mf—reductions (Pineda and Zilberstein 2014). However,
these methods have some shortcomings: some are restricted
to particular problem representations (e.g., FF-Replan and
RFF use PPDDL (Younes and Littman 2004)), while oth-
ers require some form of pre-processing (Mf-reductions)
or substantial parameter tuning (SSiPP). Moreover, plan-
ning in these methods is typically constrained to states that
are within some distance measure of the start state (e.g.,
number of actions, possible outcomes, or probability of be-
ing reached), making it hard to propagate information from
states that are closer to a goal than to the start state, and po-
tentially missing opportunities to improve planning.

Building on these earlier efforts, we introduce a new al-
gorithm for action selection in MDPs—FLARES (Fast La-
beling from Residuals using Samples)—that can find high-
performing policies orders of magnitude faster than optimal
algorithms. FLARES does not require any specific model
representations, and can efficiently propagate information
from states closer to the goal. Moreover, it can be tuned to
find approximate or optimal policies, as desired. We show
that FLARES is guaranteed to terminate in a finite amount
of time, and can outperform other short-sighted state-of-the-
art planning algorithms, performing consistently well across
a variety of benchmark domains.

Related Work

Determinization-based approaches saw a surge in popularity
after the success of FF-Replan on the IPPC’04 probabilis-
tic competition (Younes et al. 2005). FF-Replan works by
creating a deterministic version of an MDP, solving this de-
terministic problem quickly using the FF planner, and then
re-plan if a state outside the current plan is reached during
execution. This algorithm is extremely fast but performance
may be poor for certain classes of probabilistic planning
problems (Little and Thiebaux 2007).

A variety of extensions of this idea offer performance
improvements. For instance, RFF (Teichteil-Konigsbuch,
Kuter, and Infantes 2010), the winner of the IPPC’08 plan-

ning competition (Bryce and Buffet 2008), works by creat-
ing a high-probability envelope of states and finding a plan
for each of these using determinization and FF. Another no-
table extension is FF-Hindsight (Yoon et al. 2008), which
works by sampling different deterministic realizations of the
transition function, solve each of these using FF, and then
aggregating the result. These methods work well in practice,
but, unlike the method presented in this work, they are con-
strained to problems described in PPDDL format.

More recent methods have explored other forms of
state-space reduction besides determinization. For instance,
SSiPP (Trevizan and Veloso 2014) is a method that creates
reduced problems containing states reachable with at most ¢
actions, where ¢ is an input parameter. The reduced problems
can be solved quickly using optimal MDP solvers, providing
a short-sighted method for action selection. Another variant
of SSiPP reduces the model by pruning states with low prob-
ability of being reached (Trevizan and Veloso 2014).

This latter variant also has some similarities with the
HDP(,j) algorithm (Bonet and Geffner 2003a). HDP in-
corporates Tarjan’s connected component algorithm into a
heuristic search probabilistic algorithm, by labeling states
in the same strongly connected component as solved once
some error criterion is met. HDP(i,j) is a variant that only
considers states up to some plausibility ¢ (a measure of like-
lihood of reachability) away from the start state; the param-
eter j represents the plausibility value used for re-planning.
A key difference between SSiPP/HDP and the approach pre-
sented here is that planning in these methods is constrained
to states that are “close” to the start state, and can thus re-
quire large horizons to propagate information from states
closer to the goal. In contract, the approach presented here
does not restrict the search only to states close to the start.

Finally, another form of reduction is the Mf-reduction,
which generalizes determinization (Pineda and Zilberstein
2014). In an M7 -reduction some of the outcomes of each
action schema are labeled as exceptions, and the transi-
tion function is modified so that exceptions are ignored
once k of them occur; the parameter [represents the max-
imum number of the non-exception outcomes allowed per
action. While this approach is more robust than simpler de-
terminization, it requires some preprocessing to find the best
reduction and finding good reductions is an open problem.

Problem Definition

We consider a special class of MDPs called Stochastic
Shortest Path (SSP) problems (Bertsekas and Tsitsiklis
1991). An SSP is a tuple (S, A, T, C, so, s4), where S is a
finite set of states, A is a finite set of actions, T'(s'|s,a) €
[0, 1] represents the probability of reaching state s’ when
action a is taken in state s, C(s, a) € (0, o0) is the cost of ap-
plying action a in state s, s is an initial state and s is a goal
state satisfying Ya € A, T'(sy4|sq,a) =1 A C(sg,a) = 0.
A solution to an SSP is a policy, a mapping 7 : S — A,
indicating that action 7(s) should be taken at state s. A pol-
icy 7 induces a value function V™ : S — R that represents
the expected cumulative cost of reaching s, by following
policy 7 from state s. An optimal policy 7* is one that min-

3630

imizes this expected cumulative cost; similarly, we use the
notation V'* to refer to the optimal value function.

We restrict our attention to problems in which a policy
exists such that the goal is reachable from all states with
probability 1. Under this assumption, an SSP is guaranteed
to have an optimal solution, and the optimal value function is
unique. This optimal value function can be found as the fixed
point of the so-called Bellman update operator (Equation 1).

{C(s,a) + Z T(s’|s,a)V(s’)} (1)

s’'eS

BU(s) = min

acA

A greedy policy for value function V' is the one that chooses
actions according to Equation 2. Importantly, a greedy pol-
icy over V* is guaranteed to be optimal.

7(s) = argmin { C(s,a) + . T(s}s,a)V(s)} @

s'eS

The residual error for state s under value function V' is de-
fined as R(s) = |BU(s) — V(s)|.

Finally, we define a trial of policy 7 as the process of sam-
pling a trajectory (s, 51, - .., SN) S.t. P(Si+1]84,7(s:)) > 0
and sy = sg.

The FLARES Algorithm

Heuristic search algorithms offer some of the best methods
for solving SSPs optimally, particularly LAO* (Hansen and
Zilberstein 2001) and LRTDP (Bonet and Geffner 2003b).
These algorithm are characterized by the use of an initial
estimate for the optimal value function (a heuristic denoted
h) to guide the search to the more relevant parts of the prob-
lem. Typically the heuristic is required to be admissible (i.e.,
a lower bound on the optimal value function). Moreover, of-
ten the heuristic is required to be monotone, satisfying:

{C’(s,a) + Z T(s’\s,a)h(s’)}

s'eS

3)

h(s) < min
acA

Although heuristic search can result in significant com-
putational savings over Value Iteration and Policy Iteration,
their efficiency is highly correlated with the size of the re-
sulting optimal policy. Concretely, in order to confirm that
a policy is optimal, a solver needs to ensure that there is no
better action for any of the states that can be reached by this
policy. Typically, this involves performing one or more Bell-
man backups on all reachable states of the current policy,
until some convergence criterion is met.

However, it is common to have an optimal policy in which
many of the covered states can only be reached with very
low probability. Thus, their costs have minimal impact on
the expected cost of the optimal policy. This raises the ques-
tion of how to better exploit this property to design faster
approximate algorithms for SSPs.

We present the FLARES algorithm that leverages this
property by combining short-sightedness and trial-based
search in a novel way. Concretely, FLARES works by
performing a number of trials from the start to the goal,
while trying to label states as solved according to a short-
sighted labeling criterion. The key property of FLARES,
which distinguishes it from other short-sighted approaches,

is that it can propagate information from the goal to the
start state while simultaneously pruning the state-space, and
do so without requiring a large search horizon. Intuitively,
FLARES works by attempting to construct narrow corridors
of states with low residual error from the start to the goal.

Readers familiar with heuristic search methods for solv-
ing MDPs will notice similarities between FLARES and the
well-known LRTDP algorithm (Bonet and Geffner 2003b).
Indeed, FLARES is based on LRTDP with a particular
change in the way states are labeled. For reference, LRTDP
is an extension of RTDP that includes a procedure to label
states as solved (CHECKSOLVED). In RTDP, trials are run re-
peatedly and Bellman backups are done on each of the states
visited during a trial. This procedure can be stopped once the
current greedy policy covers only states s s.t. R(s) < ¢, for
some given tolerance e. In LRTDP, this is improved by push-
ing to a stack the states seen during a trial, and then calling
CHECKSOLVED on each as they are taken out of the stack.

The CHECKSOLVED labeling procedure has the follow-
ing property: it only labels a state s as solved if all states s’
that can be reached from s following a greedy policy satisfy
R(s’) < e. The main advantage is that, once a state is labeled
as solved, the stored values and actions can be used if this
state is found during future trials or calls to CHECKSOLVED.

While such a labeling approach could result in large com-
putational savings, clearly CHECKSOLVED suffers from the
same problem that affects optimal solvers—it may have to
explore large low-probability sections of the state space be-
cause it must check all reachable states before labeling.

To address this problem, we introduce the following
depth-limited labeling property as a way to accelerate
heuristic search methods: a state s is considered depth-t-
solved only if all states s' that can be reached with t or less
actions following the greedy policy satisfy R(s") < e.

Algorithm 1 shows the procedure DLCHECKSOLVED
that implements this idea: a call with state s and horizon
t visits all states that can be reached from s by following
at most 2¢ actions under the current greedy policy. If all
states s’ visited during this search satisfy R(s’) < e, the
method then proceeds to label as depth-t-solved only those
states found up to horizon ¢. Note that doing the search up to
horizon 2t allows DLCHECKSOLVED to label several states
during a single call, instead of only the root state if the resid-
uals were only checked up to depth ¢.

The FLARES algorithm incorporates DLCHECKSOLVED
into a trial based action selection mechanism (shown in Al-
gorithm 2). Propositions 1 and 2 show the conditions under
which FLARES, and more specifically DLCHECKSOLVED,
maintains the labeling properties described above.

Proposition 1. DLCHECKSOLVED labels a state s with
$.SOLV = true only if all states s’ that can be reached from
s following the greedy policy satisfy R(s") < e.

Proof Sketch. Proof by contradiction. If a state x is labeled
x.SOLV = true incorrectly, then two things happen: i) all =
true at line 23, ii) there exists a descendant y in the greedy
graph s.t. R(y) > e and y ¢ closed. However, this implies
some ancestor u # x of y in the graph satisfies —u.SOLV A
u.D-SOLV (line 18), which implies all = false (line 20). [

3631

Algorithm 1: A depth limited procedure to label states.

DLCHECKSOLVED

input : st

solved = true

open = EMPTYSTACK

closed = EMPTYSTACK

all = true

if —(s.SOLV v 5.D-SOLV) then
| open.PUSH({s,0))

while open # EMPTYSTACK do
8 (s,d) = open.POP()

9 if d > 2t then

10 L all = false

1

1= K7 T ORI SR

=

continue

closed.PUSH((s, d))
if s.RESIDUAL() > € then
| solved = false
a = GREEDYACTION(s)
for s’ € {s' € S|P(s'|s,a) > 0} do
if —(s'.SOLV v §'.D-SOLV) A s’ ¢ closed then
| open.pusH((s',d + 1))
else if s'.D-SOLV A —s’.SOLV then
| all = false
ifiwlved then
P7) for (s',d) € closed do
23 if all then
2 s'.SOLV = true
25 s'.D-SOLV = true
26 else if d < ¢ then
27 | §'.D-SOLV = rrue

21

28 else
29
30

31

while closed # EMPTYSTACK do
{s',dy = closed.POP()
BELLMANUPDATE(s)

32 return solved

Proposition 2. If no call to BELLMANUPDATE(s') with
R(s") <€ results in R(s') = ¢, then DLCHECKSOLVED la-
bels a state s with s.D-SOLV only if s is depth-t-solved.

Proof Sketch. Proof by induction. For the induction step,
note that calling DLCHECKSOLVED on state « with all pre-
vious labels being correct, results in new labels set correctly
in line 27; this is because the unlabeled descendants of
reachable within 2t steps will still be added to closed, but
only those reachable within ¢ steps are labeled. The base
case, when no states have been previously labeled, is triv-
ial, because in this case all descendants up to depth 2¢ are
added to open (line 18).]

The assumption of Proposition 2 requires some explana-
tion. State s can be labeled with s.D-SOLV while some
of its low residual descendants within depth ¢ are not
(DLCHECKSOLVED only labels states up to depth t after
checking the residual on all states up to depth 2t). Since
FLARES can perform Bellman backups of unlabeled states,

Algorithm 2: The FLARES algorithm.
FLARES
input : sg,t
output: action to execute
while —s7.SOLVED v s(.D-SOLV do
s§=35
visiteg = EMPTYSTACK
while —(s.SOLVED v s.D-SOLV) do
visited PUSH(S)
if GOAL(s) then break
BELLMANUPDATE(s)
a = GREEDYACTION(s)
| s = RANDOMSUCCESSOR(s, a)
while visited # EMPTYSTACK do
s = visited.POP()
if ~-DLCHECKSOLVED(s, t) then
| break

o X AN R W -

e
W =D

-
'S

return GREEDYACTION(s)

and because residuals are not guaranteed to be monotoni-
cally decreasing, it is possible for the residual of an unla-
beled state to increment above e during a trial, breaking the
depth-limited labeling guarantee of its ancestors.

Unfortunately, there is no simple way to get around this
issue without resorting to some cumbersome backtracking,
and no way to predict whether such an increment will hap-
pen on a given run of FLARES. However, our experiments
suggest that this event is uncommon in practice (it was never
observed). Moreover, we can obtain a revised labeling er-
ror guarantee during planning, by keeping track of all states
for which a Bellman backup increased the residual above e,
and use the maximum of those residuals as the revised error.
Next we prove that FLARES is guaranteed to terminate in a
finite number of iterations.

Theorem 1. With admissible & monotone heuristic, FLARES
terminates after at most 1/e Y, _o[V*(s)=V (s)] trials.

Proof Sketch. The proof follows from a similar argument to
the proof of LRTDP’s termination. O

Even though this is the same bound as LRTDP’s, in prac-
tice convergence will happen much faster because the fi-
nal values computed by FLARES are only lower bounds on
the optimal values. Unfortunately, like other methods that
choose actions based on lower bounds, it is possible to con-
struct examples where the final policy returned by FLARES
can be arbitrarily bad. On the other hand, it is easy to see
that FLARES is asymptotically optimal as ¢ — oo because
it simply turns into the LRTDP algorithm.

In fact, as the following theorem shows, there exists a fi-
nite value of ¢ for which FLARES returns the optimal pol-
icy. It is then easy to construct an optimal SSP solver using
FLARES, by running FLARES with increasing values of ¢
until so.SOLV = true, and clearing all D-SOLV labels before
each run.

3632

Goal 2

25 x 100 cells

25 x 100 cells

Start Goal 1

Figure 1: Grid world illustrating the advantages of FLARES.

Theorem 2. With an admissible and monotone heuristic,
there exists a finite t for which FLARES converges to the
e-optimal value function.

Proof Sketch. Since the state space is finite, there exists a
finite value of ¢ for which all calls to DLCHECKSOLVED
cover the same set of states as CHECKSOLVED (a trivial so-
lution is ¢ > |S|). Under these conditions, the algorithm
becomes equivalent to LRTDP, and is thus optimal. O

Experiments

In this section we compare FLARES to an optimal algo-
rithm, LRTDP, and two other short-sighted solvers, HDP(,j)
and SSiPP. We start by illustrating some of the advantages
of FLARES over these approaches by applying them to
a simple grid world problem that is easy to analyze. The
remaining experiments, on the racetrack domain (Barto,
Bradtke, and Singh 1995), the sailing domain (Kocsis and
Szepesvari 2006), and the triangle-tireworld domain (Little
and Thiebaux 2007), aim to show that FLARES can per-
form consistently well across a variety of planning domains,
in terms of solution quality and computation time. Unless
otherwise specified, we used the following settings for our
experiments:

e All algorithms were implemented by us and tested on a
Intel Xeon 3.10 GHz computer with 16GB of RAM.

e We used a value of e = 1075.

e We used the hy,;, heuristic, computed as needed using a
labeled version of LRTA* (Bonet and Geffner 2003b).

e All results are averaged over 100 runs of complete plan-
ning and execution simulations.

e Estimated values are stored for re-planning within the
same run, but they are reset after each run.

e Average times include the time spent on re-planning.

A simple grid world problem

Consider the grid world shown in Figure 1. The agent can
move in any of the four grid directions (up, down, right, left).
After moving, there is a 0.7 probability of succeeding or a
0.3 probability of moving in another direction (chosen uni-
formly at random). The cost of moving is 1, except for some

algorithm cost time
LRTDP 135 34.02
FLARES(0) | 134.43 £+ 0.88 1.28
HDP(3.,0) 135.28 £ 0.82 0.62
SSiPP(64) 136.85 £ 0.96 | 10.53

Table 1: Results on the grid world shown in Figure 1.

“dangerous” cells (highlighted in gray) with cost 20; addi-
tionally, some cells have obstacles that cannot be crossed
(shown in black). The grid has width 100 and height 51, for
a total of 5100 states. The start state is at the bottom left
corner, and there are two goals, one at the top-left corner
and one at the bottom-right. The optimal policy attempts to
reach the goal state to the right, so that the agent avoids the
dangerous states in the top part of the map.

Table 1 shows the expected cost (mean and standard er-
ror) and average planning time for each of the algorithms;
the cost shown for LRTDP is the optimal cost estimated by
the algorithm. Notably, FLARES with ¢ = 0 already returns
essentially the optimal policy, while being on average two
orders of magnitude faster than LRTDP. Although HDP(i,j)
is even faster on this problem, it required some parameter
tuning to find appropriate values for ¢ and j. The parame-
ter settings shown are the lowest value of 7 for which results
comparable to FLARES(0) are obtained.

On the other hand, SSiPP is slower than the other approx-
imate methods, and substantial parameter tuning was also
required. Table 1 shows only results obtained with t = 64,
which is the first value of ¢ (in powers of 2) that results in
comparable expected costs to FLARES(0). Note the large
horizons required to find a good policy, resulting in a very
large running time, which is close to 8 times slower than
FLARES(0).

This simple problem highlights several qualities of
FLARES. First, although an optimal policy for this problem
must cover the entire state space, every state outside the nar-
row corridor at the bottom is only reached with low probabil-
ity. This is an example of a problem where an optimal solver
would be unnecessarily slow. On the other hand, FLARES
only needs to realize that the policy going up leads to a high
cost, which happens during the first few trials. Then, once
the algorithm switches to the policy that moves to the right,
it quickly stops when all states in the corridor reach a low
residual error.

Second, since the algorithm is only short-sighted during
labeling, but its trials are unrestricted, it can quickly account
for the dangerous states far away from the start. This is the
reason why ¢ = 0 can already generate good policies. On
the other hand, limiting the search to states close to the start,
requires much larger horizons to achieve comparable results.

Racetrack domain

We experimented with the racetrack domain described
by (Barto, Bradtke, and Singh 1995). We modify the prob-
lem so that, in addition to a 0.35 probability of slipping,
there is a 0.20 probability of randomly changing the in-
tended acceleration by one unit; similar modifications have

3633

algorithm square-4 ring-5
LRTDP 13.83 36.48
FLARES(0) | 14.18 +0.40 | 43.56 + 1.21
FLARES(1) | 13.84 +£0.33 | 37.81 +0.99
HDP(0) 13.85+0.28 | 37.18 £ 1.05
HDP(0,0) 13.68 £0.30 | 36.86 £0.95
SSiPP(2) 15.30 + 0.50 | 40.17 + 1.03
SSiPP(4) 14.16 + 0.36 | 37.15+ 1.29
Table 2: Average cost on several racetrack domain problems.
algorithm square-4 | ring-5
LRTDP 69.16 | 16.96
FLARES(0) 0.43 2.38
FLARES(1) 1.37 | 4.51
HDP(0) 27.00 | 7.74
HDP(0,0) 24.52 8.99
SSiPP(2) 029 | 0.16
SSiPP(4) 1.33 | 1.29

Table 3: Average planning time (seconds) on several race-
track domain problems.

been used before to increase the difficulty of the prob-
lem (McMahan, Likhachev, and Gordon 2005).

Tables 2 and 3 show average costs and times, respectively,
obtained with the different algorithms in two racetracks. The
table also shows the optimal cost obtained with LRTDP for
reference. In terms of expected cost, FLARES(1), HDP, and
SSiPP(4) all have near-optimal performance, with FLARES
being considerably faster than HDP (up to 20 times in prob-
lem square-4), but SSiPP being faster than FLARES in prob-
lem ring-5. In general, FLARES was able to find near-
optimal policies significantly faster than an optimal algo-
rithm, with times competitive to state-of-the-art SSP solvers.

Sailing domain

We next present results on four instances of the sailing do-
main, described by (Kocsis and Szepesvari 2006). The prob-
lems vary in terms of grid size (all grids are squares) and
where the goal is located in the grid (opposite corner or mid-
dle of the grid). Tables 4 and 5 show average costs and times,
respectively.

In this domain, FLARES(1) and HDP have similar results
in terms of average cost, although HDP is around 5-10%
better in all cases. However, FLARES(1) was significantly
faster, with running times between 30% to 100% shorter. On
the other hand, SSiPP required larger horizons (t = 4) to get
reasonable results (still significantly worse than optimal) and
in most instances had running times longer than FLARES.

Triangle-tireworld domain

We experimented on the triangle-tireworld, a so-called prob-
abilistically interesting problem (Little and Thiebaux 2007),
in order to study FLARES’ ability to handle very-large prob-
lems. We varied our experimental settings to follow an ap-
proach similar to the one used during IPPC’08 (Bryce and

. size=20 size=40 size=20 size=40
algorithm goal=corner goal=corner goal=middle goal=middle
LRTDP 89.47 178.21 47.23 93.27
FLARES(0) 125.13 £ 6.88 228.45 + 6.55 74.39 £ 47.13 140.4 + 6.66
FLARES(1) 94.31 +£2.98 181.45 + 3.56 49.68 + 2.05 94.57 +£2.94
HDP(0) 88.13 +£2.62 178.03 + 4.20 46.21 + 1.87 93.78 £2.25
HDP(0,0) 88.99 £ 3.00 177.57 + 4.29 46.13+1.73 94.38 £ 2.75
SSiPP(2) 226.9 £12.45 410.98 £ 10.26 125.08 £+ 8.34 259.96 + 14.31
SSiPP(4) 123.9 + 5.92 282.53 + 11.32 64.95 £ 3.54 156.03 + 8.34
Table 4: Average cost on several sailing domain problems.
. s=20 s=40 s=20 s=40 50 T
algorithm g=corner | g=corner | g=middle | g=middle
LRTDP 2.20 15.11 1.32 11.10 a0 |
FLARES(0) 0.33 2.96 0.16 1.22
FLARES(1) 0.99 7.47 0.42 2.97 10|
HDP(0) 1.25 10.58 0.79 6.13
HDP(0,0) 1.25 10.56 0.79 5.83
SSiPP(2) 0.41 1.34 0.20 0.62 20}
SSiPP(4) 2.33 7.00 1.19 3.89
10}
Table 5: Average planning time (seconds) on several sail-
ing domain problems. Problems are labeled as s=(size) and

g=(goal location).

Buffet 2008), where the problems were obtained from. We
give planners 20 minutes to solve each problem 50 times,
and report the number of successes that were obtained within
that time. Note that due to the large size of the problems, we
used the inadmissible FF heuristic provided by the mGPT
planner (Bonet and Geffner 2005). Although this invalidates
some of the theoretical properties of FLARES, our goal is to
empirically evaluate its performance on a large problem for
which an admissible heuristic doesn’t scale well.

Figure 2 shows the number of successes obtained by the
planners in the first ten problems of this domain. Note that,
with few exceptions, FLARES with ¢ = 4 is able to achieve a
high success rate in all problems, with 100% success rate in
7 out of 10 problems. This performance is comparable with
RFF (Teichteil-Konigsbuch, Kuter, and Infantes 2010), the
best planner in the IPPC’08 competition, but, remarkably,
it doesn’t rely on the FF classical planner (Hoffmann and
Nebel 2001) to speed up computation time .

On the other hand, the rest of the planners had signifi-
cantly worse performance. HDP(0) achieves 100% success
rate in problems up to p07, but fails completely on the re-
maining problems. Note that, in this domain, HDP(0) be-
comes equivalent to the optimal HDP algorithm; thus, it ei-
ther successfully completes all runs, or it spends all the time
during the initial planning without moving on to execution.

Finally, SSiPP can successfully handle instances up to
p04, with a horizon of ¢ = &, but its performance quickly de-

'While FLARES is indeed using the FF heuristic, the speed-up
obtained by RFF through direct use of the FF planner on much
simpler determinized problems is significantly larger.

3634

p0l p02 p03 p04 pO5 pl6 pd7 p08 pd9 plo

Figure 2: Number of successes in the first ten instances of
the triangle-tireworld domain.

grades with larger instances. The reason is the large horizon
needed, increasing planning time considerably. Note that
SSiPP can be coupled with the FF planner to obtain better
performance (Trevizan and Veloso 2014), but that relies on
the PPDDL representation of the domain, while FLARES is
not tied to any particular problem representation.

Conclusions

We present a novel approach to short-sightedness for SSPs,
employing a new mechanism for labeling states as solved.
In contrast to previous approaches, which focus computa-
tion on states that are close to the initial state, our approach
allows larger sections of the state space to be explored and
enables states close to the goal to quickly propagate informa-
tion. As a consequence, this strategy requires smaller short-
sighted horizons to be effective, and can thus significantly
accelerate running times.

Following this idea, we introduce the FLARES algorithm,
a modified version of LRTDP that incorporates a short-
sighted labeling procedure to produce a fast approximate
mechanism for action selection. We prove that FLARES is
guaranteed to terminate with a policy in a finite amount of
time, and that it can be easily extended to produce an optimal
algorithm. Experimental results in four different planning
domains show that FLARES can produce a near-optimal
policy faster than state-of-the-art algorithms, and performs

consistently well across a variety of domains.

Although we implemented our reduced labeling approach
as an extension of LRTDP, we note that the key ideas can be
used in conjunction with other search-based methods. Re-
duced labeling can be combined with other action or out-
come selection mechanism for planning, using a framework
like THTS (Keller and Helmert 2013). We are working on
new algorithms based on this idea.

Finally, in this work we focused on a short-sightedness
based on the number of actions, but a version that uses
trajectory probabilities, similar to work by Trevizan and
Veloso (2014) is a straightforward extension.

Acknowledgement

We thank Sandhya Saisubramanian for fruitful discussions
of this work. Support for this work was provided in part by
the National Science Foundation under grant I1S-1524797.

References

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1-2):81-138.

Bertsekas, D. P, and Tsitsiklis, J. N. 1991. An analysis of

stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580-595.

Bertsekas, D. P., and Tsitsiklis, J. N. 1995. Neuro-dynamic
programming: An overview. In Proceedings of the 34th
IEEE Conference on Decision and Control, 560-564.

Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, 1233—-1238.

Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proceedings of the 13th International Conference on Auto-
mated Planning and Scheduling, 12-21.

Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic
planner based on heuristic search. Journal of Artificial In-
telligence Research 24:933-944.

Bryce, D., and Buffet, O. 2008. 6th international planning
competition: Uncertainty part. In Proceedings of the 6th In-
ternational Planning Competition.

Dean, T.; Givan, R.; and Leach, S. 1997. Model reduction
techniques for computing approximately optimal solutions
for Markov decision processes. In Proceedings of the 13th

Conference on Uncertainty in Artificial Intelligence, 124—
131.

Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35-62.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14(1):253-302.

Keller, T., and Helmert, M. 2013. Trial-based heuristic
tree search for finite horizon MDPs. In Proceedings of the

3635

23rd International Conference on Automated Planning and
Scheduling, 135-143.

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning, 282-293.

Little, I., and Thiebaux, S. 2007. Probabilistic planning vs.
replanning. In Proceedings of the ICAPS’ 07 Workshop on
the International Planning Competition: Past, Present and
Future.

Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. In Proceedings of the 14th
National Conference on Artificial Intelligence, 748-754.

McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proceedings of the 22nd International Conference on Ma-
chine Learning, 569-576.

Pineda, L., and Zilberstein, S. 2014. Planning under uncer-
tainty using reduced models: Revisiting determinization. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling, 217-225.

Teichteil-Konigsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems, 1231-1238.

Trevizan, F. W., and Veloso, M. M. 2014. Depth-based
short-sighted stochastic shortest path problems. Artificial
Intelligence 216:179-205.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the 23rd National Conference on Artificial
Intelligence, 1010-1016.

Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling, 352-359.

Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-162.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and As-
muth, J. 2005. The first probabilistic track of the Interna-

tional Planning Competition. Journal of Artificial Intelli-
gence Research 24(1):851-887.

