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Abstract

We introduce new anytime search algorithms that combine
best-first with depth-first search into hybrid schemes for
Marginal MAP inference in graphical models. The main goal
is to facilitate the generation of upper bounds (via the best-
first part) alongside the lower bounds of solutions (via the
depth-first part) in an anytime fashion. We compare against
two of the best current state-of-the-art schemes and show
that our best+depth search scheme produces higher quality
solutions faster while also producing a bound on their accu-
racy, which can be used to measure solution quality during
search. An extensive empirical evaluation demonstrates the
effectiveness of our new methods which enjoy the strength
of best-first (optimality of search) and of depth-first (memory
robustness), leading to solutions for difficult instances where
previous solvers were unable to find even a single solution.

Introduction

Graphical models provide a powerful framework for rea-
soning about conditional dependency structures over many
variables. The Maximum a Posteriori Probability (MAP)
query over probabilistic graphical models, asks for the mode
of the joint probability distribution, while the Marginal MAP
(MMAP) generalizes MAP by allowing a subset of the vari-
ables to be marginalized. MMAP is known to be notori-
ously challenging, having complexity NPPP-complete (Park
2002). MMAP distinguishes between maximization vari-
ables (called MAP variables) and summation variables, and
it is more difficult than either max- or sum- inference tasks
alone primarily because summation and maximization opera-
tions do not commute, forcing processing along constrained
variable orderings that may have significantly higher in-
duced widths (Dechter 1999; 2013). This implies larger
search spaces (when using search algorithms) or larger mes-
sages (when using message-passing schemes). In particular,
MMAP can be NP-hard even on tree structured graphs (Park
2002). Still, MMAP is often the appropriate task where there
exist hidden variables or uncertain parameters. It can be
also treated as a special case of the more complicated frame-
works of decision networks (Howard and Matheson 2005;
Liu and Ihler 2013).
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Current state-of-the-art schemes focus on solvers that are
based on either depth-first or best-first search over AND/OR
search spaces (Marinescu, Dechter, and Ihler 2014; 2015;
Lee et al. 2016) and were shown to dominate the earlier
generation of search-based MMAP algorithms (Park and
Darwiche 2003; Yuan and Hansen 2009). Since the problem
is inherently hard, recent focus has been on anytime schemes
that can hopefully find a suboptimal solution quickly and
then improve it if more time/memory is available.

Our focus here is on advancing anytime schemes so that
they will produce, not only a solution, but also an upper and
a lower bound on the optimal MMAP value that get tighter
when provided more time. The idea is that the depth-first
branch and bound scheme is inherently anytime and provides
a lower bound on the optimal solution. Best-first schemes, on
the other hand, can be viewed as anytime methods for gener-
ating an upper bound. Therefore, a hybrid of best+depth-first
search can facilitate both. In addition, depth-first search is
memory efficient, while best-first is memory expensive but
has superior performance, therefore a best+depth hybrid may
yield a cost-effective tradeoff between time, memory and
accuracy, improving with more time.

One of the most effective anytime MMAP search schemes
to date, which we will compare against, is based on the
well known idea of weighted-heuristic in best-first search
(Pohl 1970), which transforms best-first search into an any-
time scheme. This class of best-first search algorithms
were shown to be particularly attractive for MMAP (be-
cause it minimizes the number of conditional summations
during search), yielding an algorithm called WRBFAOO
(Lee et al. 2016). Most significantly, they yield a bound
on the solution accuracy using the weight value. An-
other, successful anytime AND/OR depth-first search scheme
which was shown to particularly handle memory effec-
tively for MMAP is BRAOBB (Otten and Dechter 2011;
Lee et al. 2016), against which we will also compare. The
only other competing approach to anytime MMAP that pro-
duces both upper and lower bounds is the factor set elimina-
tion introduced recently by (Maua and Campos 2012).

Contribution In this paper we will present several
best+depth-first search hybrids for MMAP and show that
they can be more competitive against the current state-of-
the-art in yielding both superior anytime performance and
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effective anytime accuracy bounds. Specifically, we propose
three best+depth-first variants for exploring the search space.
LAOBF (best-first AND/OR search with depth-first looka-
heads) traverses the search space in a best-first manner and
performs explicit depth-first dives (or lookaheads) below the
leaf nodes of the best partial solution tree. AAOBF (alternat-
ing best-first with depth-first AND/OR search) is a parameter-
free scheme that interleaves an outer best-first loop with an
aggressive depth-first loop that aims at finding improved sub-
optimal solutions as quickly as possible. LnDFS (learning
depth-first AND/OR search) consists of a sequence of depth-
first search iterations to find improved feasible solutions that
yield tighter lower bounds. Upon encountering a solution,
the heuristic node values in the explicated search graph are
updated in a best-first manner thus providing improved upper
bounds.

Our empirical evaluation on various difficult benchmarks
demonstrates the effectiveness of the new schemes compared
with state-of-the-art anytime pure depth-first and with the
current best version of weighted best-first search solvers as
well as the factor set elimination method (Maua and Campos
2012). Notably, our proposed search-based approach can
potentially exploit and improve over any approximate bound-
ing algorithm for MMAP, by using it as a heuristic to guide
search. In our work we illustrate this methodology when us-
ing the weighted mini-bucket bounding scheme (Marinescu,
Dechter, and Ihler 2014).

Background

A graphical model is a tuple M = 〈X,D,F〉, where X =
{Xi : i ∈ V } is a set of variables indexed by set V and
D = {Di : i ∈ V } is the set of their finite domains of values.
F = {ψα(Xα) : α ∈ F} is a set of discrete positive real-
valued factors indexed by set F , where each ψα is defined on
a subset of variables Xα ⊆ X, called its scope. Specifically,
ψα : Ωα → R+, where Ωα is the Cartesian product of the
domains of each variable in Xα. The scopes of the factors
yield a primal graph whose vertices are the variables and
whose edges connect any two variables that appear in the
scope of the same factor. The model M defines a factorized
probability distribution on X, P (x) = 1

Z

∏
α∈F ψα(xα).

The partition function, Z, normalizes the probability.
Let XM = {X1, ..., Xm} be a subset of X called MAP

variables and XS = X \ XM be the complement of XM ,
called sum variables. The Marginal MAP (MMAP) task
seeks an assignment x∗

M to variables XM having maximum
probability. This requires access to the marginal distribution
over XM , which is obtained by summing out variables XS :
Therefore, x∗

M = argmaxxM

∑
xS

∏
α∈F ψα(xα).

AND/OR Search Spaces

A significant recent improvement in search for MMAP infer-
ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods (Marinescu, Dechter, and Ihler 2014;
Dechter and Mateescu 2007). The AND/OR search space is
defined relative to a pseudo tree of the primal graph, which
captures problem decomposition.

(a) Primal graph (b) Pseudo tree

(c) Context minimal AND/OR search graph

Figure 1: A simple graphical model.

Definition 1 (pseudo tree, start). A pseudo tree of an undi-
rected graph G = (V,E) is a directed rooted tree T =
(V,E′) such that every arc of G not in E′ is a back-arc in
T connecting a node in T to one of its ancestors. The arcs
in E′ may not all be included in E. A directed rooted tree
Ts = (V ′, E′′), V ′ ⊆ V , is called a start pseudo tree of T if
it has the same root and is a connected subgraph of T .

For MMAP we need to restrict the collection of pseudo
trees to valid ones only.
Definition 2 (valid pseudo tree). Let M = 〈X,D,F〉 be
a graphical model with primal graph G and XM ⊆ X. A
pseudo tree T of G is valid for the MAP variables XM if T
restricted to XM forms a connected start pseudo tree having
the same root as T .

Given a graphical model M = 〈X,D,F〉 with primal
graph G and valid pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes corre-
sponding to the variables, and AND nodes corresponding to
the values of the OR parent’s variable, with edge weights ex-
tracted from the original functions F (for details see (Dechter
and Mateescu 2007)). Identical sub-problems, identified by
their context (the partial instantiation that separates the sub-
problem from the rest of the problem graph), can be merged,
yielding an AND/OR search graph. Merging all context-
mergeable nodes yields the context minimal AND/OR search
graph, denoted CT . The size of CT is exponential in the
induced width of G along a depth-first traversal of T (also
known as the constrained induced width).
Definition 3 (solution subtree). A solution subtree x̂M of
CT relative to the MAP variables XM is a subtree of CT
restricted to XM that: (1) contains the root of CT ; (2) if an
internal OR node n∈CT is in x̂M , then n is labeled with a
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MAP variable and exactly one of its children is in x̂M ; (3)
if an internal AND node n ∈ CT is in x̂M then all its OR
children which denote MAP variables are in x̂M .

Each node n in CT can be associated with a value v(n)
capturing the optimal marginal MAP value of the conditioned
sub-problem rooted at n, while for a sum variable it is the
likelihood of the partial assignment denoted by n. Clearly,
v(n) can be computed recursively based on the values of n’s
successors: OR nodes by maximization or summation (for
MAP or sum variables, respectively), and AND nodes by
multiplication.
Example 1. Figure 1 shows a simple graphical model. Fig-
ure 1(a) is the primal graph of 8 bi-valued variables and
10 binary factors, where the MAP and sum variables are
XM = {A,B,C,D} and XS = {E,F,G,H}, respectively.
Figure 1(b) is a valid pseudo tree whose MAP variables form
a start pseudo tree (dashed lines denote back-arcs). Fig-
ure 1(c) displays the context minimal AND/OR search graph
based on the pseudo tree (the contexts are shown next to the
pseudo tree nodes). A solution subtree corresponding to the
MAP assignment (A=0,B=1,C=1,D=0) is shown in red.

Current Anytime Search for MMAP

Current state-of-the-art anytime search methods for MMAP
are based on either depth-first or best-first AND/OR search
(Marinescu, Dechter, and Ihler 2014; 2015; Lee et al. 2016).
We provide below details of the best current schemes.

Breadth Rotating Depth-First AND/OR Branch and Bound
(BRAOBB-MMAP) is a recent anytime search algorithm
that explores in a depth-first manner the context minimal
AND/OR search graph (Lee et al. 2016; Otten and Dechter
2011). During search, BRAOBB-MMAP keeps track of the
value of the best solution found so far (a lower bound on the
optimal MMAP value) and uses this value and the heuristic
function to prune away portions of the search space that are
guaranteed not to contain the optimal solution. The algorithm
also rotates through the independent subproblems rooted at
AND nodes in a round-robin manner to generate anytime
solutions quickly.

Weighted Recursive Best-First AND/OR Search
(WRBFAOO-MMAP), transforms the recursive best-first
AND/OR search algorithm RBFAOO-MMAP (Marinescu,
Dechter, and Ihler 2015) into an anytime scheme by using
the principle of weighted search (Pohl 1970). Specifically,
the method generates suboptimal solutions by employing
an inadmissible heuristic which is obtained by inflating the
original heuristic with a weight (≥ 1). The weight is then
decreased by a fixed amount at the subsequent iterations
in the attempt to improve the best solution found so far.
WRBFAOO operates within restricted memory and restarts
the search after each weight update. Our recent extensive
empirical evaluations on various benchmarks showed that
BRAOBB-MMAP and WRBFAOO-MMAP are the overall
best performing anytime search algorithms both in terms of
solution quality as well as responsiveness (Lee et al. 2016).

Weighted Mini-Bucket Heuristics The effectiveness of
all the above search algorithms greatly depends on the quality

of the upper bound heuristic function that guides the search.
The MMAP search algorithms use the weighted mini-bucket
(WMB) based heuristic (Dechter and Rish 2003; Liu and
Ihler 2011) which can be pre-compiled along the reverse
order of the pseudo tree.

The weighted mini-bucket improves the naïve mini-bucket
bound (Dechter and Rish 2003) with Hölder’s inequality.
For a given variable Xk, the mini-buckets Qkr associated
with Xk are assigned a non-negative weight wkr ≥ 0, such
that

∑
r wkr = 1. Then, each mini-bucket r is processed

using a powered sum, (
∑

Xk
f(X)1/wkr )wkr . It is useful

to note that wkr can be interpreted as a “temperature”; if
wkr = 1, it corresponds to a standard summation, while if
wkr → 0, it instead corresponds to a maximization over Xk.
In addition, a cost shifting scheme (or reparameterization)
can be applied across mini-buckets to match the marginal
beliefs (or “moments”) to further tighten the bound (Ihler
et al. 2012). The single-pass message passing algorithm
that combines weighted mini-bucket and moment matching
reparameterization yields a scheme denoted by WMB-MM(i),
where i is called the i-bound and controls the accuracy of
mini-bucket approximation (Dechter and Rish 2003; Liu and
Ihler 2011; Marinescu, Dechter, and Ihler 2014).

Anytime Best+Depth-First AND/OR Search

While weighted best-first search schemes are favorable for
MMAP because they can save on the number of conditional
likelihood summation problems compared with depth-first
search (Lee et al. 2016), their anytime performance still de-
pends on the initial weight value as well as on the weight
update schedule. Some of their drawbacks are: (i) the algo-
rithms sometime spend significant computational resources
(time, memory) struggling to find even the first suboptimal
solution; (ii) depending on the weight update schedule either
very few solutions are generated or there is no improvement
in the solution quality; (iii) most of all, the suboptimality
bound produced by the weight is often very loose.

In this paper, we take a different approach and introduce
new schemes that combine best-first and depth-first search
into several best+depth hybrid anytime search algorithms that
not only produce superior anytime solutions (better quality
solutions and significantly faster) than state-of-the-art, but
they also provide anytime upper and lower bounds on the
optimal MMAP value that improve and can be used to better
gauge the solution quality during search.

Notations Let G′
T denote the explicated context minimal

AND/OR search graph relative to pseudo tree T . Each node
n ∈ G′

T maintains two values q(n) and l(n). The quantity
q(n) represents an upper bound provided by the heuristic
evaluation function at the node n (i.e., the weighted mini-
bucket value), while l(n) is the cost of the current best solu-
tion found below the node n, and is therefore yielding also a
lower bound on the best solution in the search space below n
(we solve a maximization task). We use U and L to denote
the current best global upper and lower bounds on the optimal
MMAP value. For node n ∈ G′

T , ch(n) denote its children
in G′

T , while w(n,m) is the weight labeling the arc n → m
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Algorithm 1 Expanding a node by generating its successors
Require: node n, pseudo tree T
1: function EXPAND(n)
2: if n is OR node labeled by 〈Xi〉 and Xi ∈ XM then
3: for all values xi ∈ Di do
4: Create AND child c labeled by 〈Xi, xi〉
5: if c is terminal then
6: q(c) ← 1 and l(c) ← 1
7: else
8: q(c) ← h(c) and l(c) ← −∞
9: end if

10: end for
11: else if n is AND labeled by 〈Xi, xi〉 and Xi ∈ XM then
12: for all successors Xj of Xi in T do
13: Create OR child c labeled by 〈Xj〉
14: if Xj ∈ XM then
15: q(c) ← h(c) and l(c) ← −∞
16: else if Xj ∈ XS then
17: q(c) = l(c) ← eval(M|x̄)
18: end if
19: end for
20: end if
21: end function

Algorithm 2 Updating the node q- and l-values
Require: node n, explicated search graph G′

T , pseudo tree T
1: function UPDATE(n)
2: for all ancestor p of n in G′

T , including n do
3: if p is OR node then
4: l(p) ← maxm∈ch(p)(w(p,m) · l(m))
5: q(p) ← maxm∈ch(p)(w(p,m) · q(m))
6: m′ ← argmaxm∈ch(p)(w(p,m) · q(p))
7: Mark with symbol � the arc p → m′

8: else if p is AND node then
9: l(p) ←

∏
m∈ch(p) l(m)

10: q(p) ←
∏

m∈ch(p) q(m)

11: end if
12: end for
13: end function

in G′
T . Algorithm 1 describes the node expansion procedure

during search, while Algorithm 2 shows how the q- and l-
values are updated bottom-up based on the corresponding
values of their children in the search graph. Note that during
the update of q-values, we also mark with a � symbol the arc
corresponding to the best child m′ of an OR node n.

LAOBF: Best-First AND/OR Search with
Depth-First Lookaheads

As noted before, the rationale behind best+depth based search
is to alternate in some manner between the two styles of
search space exploration, where the best-first component
progresses towards improved upper bounds and depth-first
progresses towards improved potential solutions and their
accompanied lower bounds.

A simple way to augment best-first search with a mech-
anism that generates solutions is to do explicit depth-first
lookahead dives under some nodes in the best-first search
frontier (Stern et al. 2010). Our first best+depth hybrid,

Algorithm 3 LAOBF
Require: Graphical model M = 〈X,D,F〉, pseudo tree T ,

heuristic function h(·), XM = X \XS , cutoff θ
1: Create an OR node s labeled by the root of T and
2: Initialize U = q(s) = h(s), L = l(s) = −∞, GT = {s},

Tb = {s}
3: counter ← 0
4: while U 	= L do
5: Let cost(Tb) =

∏
(n,m)∈arcs(Tb)

w(n,m)

6: if counter mod θ = 0 then
7: for all node m in tips(Tb) do
8: l(m) ← dfs-lookahead(m)
9: end for

10: end if
11: if cost(Tb) ·

∏
m∈tips(Tb)

l(m)) > L then

12: L ← cost(Tb) ·
∏

m∈tips(Tb)
l(m))

13: U ← q(s) and print〈U ,L〉
14: end if
15: Select non-terminal tip node n in Tb

16: EXPAND(n); UPDATE(n)
17: Select new Tb by tracing down �-marked arcs from root s
18: counter ← counter + 1
19: end while
20: return U

called Best-First AND/OR Search with Depth-First Looka-
heads (LAOBF), is described in Algorithm 3. Specifically, it
generates anytime solutions (lower bounds) by having depth-
first dives below the current best partial solution tree to find
a (suboptimal) solution. We elaborate on these dives next.

DFS and BFS Iterations Let Tb be the current best par-
tial solution tree determined by the best-first search scheme,
tips(Tb) be the set of tip nodes of Tb, and m be one of these
tips. The algorithm performs a depth-first dive at the subtree
rooted at m, recording the conditioned lower bound found
as l(m). Once all the tips of Tb are explored in such a depth-
first manner, a global lower bound L of Tb can be obtained
by multiplying the generated lower bounds l(m) by their
corresponding weights of the arcs in Tb. Once such a full
dive is accomplished, best-first search takes over as usual,
expanding a tip node n from the current Tb, updating the
q-values of n’s ancestors, and selecting the next best partial
solution tree. Then, a new depth-first dive can be performed,
and so on. The updated q-value of the root node provides an
anytime (and often improved) upper bound U on the optimal
MMAP value.

Performing the depth-first lookaheads at every single it-
eration can often incur significant overhead. To bound this
overhead, we use a cutoff parameter θ to trigger the depth-
first lookaheads every θ best-first iterations. It is also impor-
tant to note that the cache information is shared between the
depth-first and best-first iterations, so that the solutions to the
summation subproblems could be reused.

AAOBF: Alternating Best-First with Depth-First
AND/OR Search

LAOBF restricts the depth-first exploration to the subspaces
below the tip nodes of the current best partial solution tree
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Algorithm 4 AAOBF
Require: Graphical model M = 〈X,D,F〉, pseudo tree T ,

heuristic function h(·), XM = X \XS

1: Create an OR node s labeled by the root of T
2: Initialize U = q(s) = h(s), L = l(s) = −∞, G′

T = {s},
Tl = {s}, Tb = {s}, flag = false

3: while U 	= L do
4: if tips(Tl) 	= ∅ then
5: Select non-terminal tip node n in Tl

6: EXPAND(n); UPDATE(n)
7: if n is OR node then
8: m′ ← argmaxm∈ch(n)(w(n,m) · q(m))

9: Mark with symbol � the arc n → m′

10: end if
11: Select new Tl using �-marked arcs from s
12: flag ← true
13: else
14: if l(s) > L then
15: U ← q(s), L ← f(s) and print〈U ,L〉
16: end if
17: if flag = true then
18: for all OR nodes n in G′

T do
19: if l(n) 	= −∞ then

20: m′ ← argminm∈ch(n)
l(n)

w(n,m)·q(m)

21: else
22: m′ ← argmaxm∈ch(n)(w(n,m) · q(m))
23: end if
24: Mark with symbol � the arc n → m′

25: end for
26: Select new Tb using �-marked arcs from s
27: flag ← false
28: end if
29: Select non-terminal tip node n in Tb

30: EXPAND(n); UPDATE(n)
31: Select new Tb using �-marked arcs from s
32: Select new Tl using �-marked arcs from s
33: end if
34: end while
35: return U

Tb, and, as we will show in the experimental section, this
may not always lead to improved lower bounds. Moreover,
LAOBF requires tuning the cutoff parameter, and finding
a good value for it can be challenging. Therefore, our sec-
ond approach called Alternating Depth-First and Best-First
AND/OR Search (AAOBF) is a parameter-free best+depth hy-
brid that aims at diversifying more the depth-first exploration
(thus allowing it to explore feasible solutions in a greedier
manner rather than restricting it to specific regions dictated
by best-first search).

Specifically, AAOBF (Algorithm 4) alternates between a
depth-first and a best-first stage and maintains two indepen-
dent partial solution trees for each. In its depth-first stage it
expands, depth-first, a current feasible partial solution tree
Tl (lines 4–12), where Tl is a partial assignment that can be
extended to a feasible (often suboptimal) solution, to improve
the global lower bound. In its best-first stage it expands, best-
first, a current best partial solution tree Tb (lines 14–32) to
improve the global solution and an associated upper bound
and guide the exploration closer to the region containing the

optimal solution. At any stage during search, the partial solu-
tion trees Tl and Tb can be identified by tracing down �- and
respectively �-marked arcs from the root s of G′

T .
The algorithm begins by expanding non-terminal tip nodes

from the current Tl. Each node expansion is followed by a
bottom-up revision of the q- and l-values (line 6). An OR
node which was just expanded also marks with a � symbol
the arc to its best AND child (lines 7–9). Notice that the
�-markings do not change during this stage, and therefore Tl
is extended depth-first to a solution tree.

When a solution is found (i.e., Tl has no tips), AAOBF
attempts to give control to best-first search. Before turning
to best-first search, it revises the �-markings along the arcs
in G′

T so that a new feasible partial solution tree could be
selected later. Specifically, if there is a lower bound l(n)
at node n (i.e., l(n) 	= −∞) then AAOBF marks with a �
symbol the arc to the AND child that minimizes the ratio
between the current l(n) and the successor’s updated q-value,
and therefore is the most likely to increase l(n). Otherwise, it
selects the best AND child having the largest heuristic (upper
bounding) value.

AAOBF continues by expanding nodes from Tb in the
usual best-first manner. However, if during this stage a new
feasible partial solution tree Tl is identified (line 32), the
algorithm switches immediately to the depth-first expansion
of the new Tl. Search terminates with the optimal MMAP
value when the global lower and upper bounds are equal.

LnDFS: Learning Depth-First AND/OR Search

Algorithm 5 describes a different approach for anytime
MMAP which belongs to the family of learning depth-first
search algorithms (Bonet and Geffner 2005). It is also a
parameter-free scheme, like AAOBF, however it maintains a
single best partial solution tree Tb.

Specifically, LnDFS expands the current best partial so-
lution tree Tb in a depth-first manner while selecting the
best child of an OR node by sorting the up-to-date q- values
backed up from the previous iterations. Unlike best-first ex-
pansion, it postpones updating node values until either Tb
extended to a solution tree (lines 20–24) or the current Tb
cannot be extended to a better solution than the one given by
the current best lower bound L, namely, ub(Tb) ≤ L (lines
15–19). In either case, LnDFS backtracks to the root and
updates the q- and l-values of the nodes that are ancestors in
G′

T of the leaf nodes of Tb. This step corresponds to learning
better heuristic upper bounds of the nodes in G′

T . Therefore,
LnDFS improves the current best upper bound (given by the
q-value of the root node) in an anytime fashion, and produces
(often improved) anytime lower bounds (given by the l-value
of the root node) at the same time.

Notice that during the node expansion process (lines 7–
13) the �-markings along the arc of Tb do not change and
therefore Tb is expanded depth-first until it switches to the
next iteration after revising the �-markings during the updates.
Therefore, LnDFS interleaves smoothly best-first and depth-
first search.

Since the proposed best+depth-first search algorithms for
MMAP traverse the context minimal AND/OR search graph,
we have that:
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Algorithm 5 LnDFS
Require: Graphical model M = 〈X,D,F〉, pseudo tree T ,

heuristic function h(·), XM = X \XS

1: Create an OR node s labeled by the root of T
2: Initialize U = q(s) = h(s), L = l(s) = −∞, GT = {s},

Tb = {s}
3: while U 	= L do
4: if tips(Tb) 	= ∅ then
5: Select non-terminal tip node n in Tb

6: EXPAND(n)
7: if n is OR node then
8: q(n) ← maxm∈ch(n)(w(n,m) · q(m))
9: m′ ← argmaxm∈ch(n)(w(n,m) · q(m))

10: Mark with symbol � the arc n → m′

11: else if n is AND node then
12: q(n) ←

∏
m∈ch(n) q(m)

13: end if
14: ub(Tb) ←

∏
(n,m)∈arcs(Tb)

w(n,m) ·
∏

m∈leaves(Tb)
q(m)

15: if ub(Tb) ≤ L then
16: for all nodes m ∈ leaves(Tb) do
17: UPDATE(m)
18: end for
19: end if
20: else
21: for all nodes m ∈ leaves(Tb) do
22: UPDATE(m)
23: end for
24: end if
25: Let U = q(s), L = max(L, l(s)) and print〈U ,L〉
26: Select new Tb by tracing down �-marked arcs from root s
27: end while
28: return U

Theorem 1 (complexity). Algorithms LAOBF, AAOBF, and
LnDFS are sound and complete (namely, they will find an
optimal solution if given enough time and space). Their
complexity is time and space O(n · kw∗

c ), where n is the
number of variables, k bounds the domain size, and w∗

c it
the induced width of the valid pseudo tree (i.e., constrained
induced width).

Finally, we note that the hybrids of depth-first and best-first
search can switch to using only depth-first search as soon as
memory fills up, thus continuing to improve the lower bound.
For example, LnDFS can be turned into an iterative deepen-
ing A* search over the AND/OR search tree as it discards
updated nodes and re-expands nodes following the standard
depth-first search with the updated global upperbound U .

Experiments

We compare empirically the anytime performance of our pro-
posed best+depth-first search algorithms (LAOBF, AAOBF,
and LnDFS) with the best-first (WRBFAOO) and the depth-
first search algorithm (BRAOBB) on benchmark problems
generated from the PASCAL2 Inference Challenge (Elidan,
Globerson, and Heinemann 2012). For reference, we also
compare with the recent factor-set elimination scheme of
(Maua and Campos 2012) which we denote by AFSE. The
competing MMAP search algorithms are provided with the
same heuristic function, WMB-MM(i) where we used the

i-bound of 20 or the largest i-bound that fits 4 GB of mem-
ory. Four of the algorithms require tuning parameters to
optimize the anytime performance, as follows: the cutoff
parameter θ of LAOBF that triggers the depth-first lookahead
was set to 1000 (this value was determined experimentally),
the subproblem rotation parameter of BRAOBB was set to
1000, and the initial weight and overestimation parameter of
WRBFAOO were set to 64 and 1, respectively. The weight
reduction schedule of WRBFAOO was wi+1 =

√
wi. The

step size used by AFSE to control the partitioning of the
factor sets propagated was set to 1 (we tried larger values
without any significant difference in performance). The al-
gorithms were allotted up to 1 hour time limit within 24 GB
of memory, where all but BRAOBB had an additional 4 GB
memory limit on the size of the cache table that primarily
stores the exact solutions of conditional likelihoods under
summation variables.

Our benchmark set includes 3 problem domains from grid
network (grid), genetic linkage analysis (pedigree), and
medical diagnosis expert systems (promedas). Since the
original problems are pure MAP tasks, we generated 4 syn-
thetic MMAP instances from each of the pure MAP tasks
by randomly selecting 50% of the variables as MAP vari-
able. We created 128 grid , 88 pedigree , and 100
promedas MMAP instances. Their parameters ranged as
follows: n number of variables (144-2500), k maximum do-
main size (2-7),wc constrained induced width (11-834). Note
that, this paper illustrates much harder MMAP problem in-
stances compared to previous papers (Yuan and Hansen 2009;
Maua and Campos 2012; Lee et al. 2016).

Responsiveness The responsiveness characterizes how fast
an algorithm can discover any solution. Figure 2(a) compares
the responsiveness from 1 second to 1 hour. For each time
bound, the plot shows a group of 6 vertical bars. Within each
group, the stacked bars from left to right correspond to al-
gorithms AAOBF, LAOBF, LnDFS, BRAOBB, WRBFAOO
and AFSE, respectively. For each algorithm, the height of the
bottom bar (darker color) shows the percentage of instances
solved optimally within the corresponding time bound, while
the height of the stacked bar (lighter color) shows the percent-
age of instances with any solution. We can see that AAOBF
and LnDFS significantly outperform AFSE, BRAOBB, and
WRBFAOO as they discover at least one solution for all prob-
lem instances in 5 seconds. Notice the poor performance of
AFSE which couldn’t solve optimally any of the instances,
and ran out of memory on 73%, 81%, and 75% of the grid,
pedigree, and promedas instances, respectively.

Average Solution Quality Figure 2(b) plots the average
solution quality for each domain as a function of time. The
solution quality of a problem instance is the best cost discov-
ered within the time bound divided by the optimal cost of the
problem instance. When the optimal cost is unknown, the
best-known cost was used instead. Clearly, for any given time
bound, larger values of the solution quality indicate superior
solutions (i.e., larger lower bounds). We can observe that
AAOBF and LnDFS produced high-quality anytime solutions
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Figure 2: Anytime performance measures for grid, pedigree, and promedas benchmarks.

across all different domains, yet LnDFS performed slightly
worse than AAOBF on the promedas domain. On the other
hand, AFSE completely failed on all domains, and BRAOBB
or WRBFAOO showed worse quality on either pedigree
or promedas domain. Notably, BRAOBB was the best on
the promedas domain.

Average Gap between Upper and Lower Bounds Fig-
ure 2(c) plots the average gap between the upper and lower
bounds. The gap of a problem instance is computed in log
space by normalizing the difference between the upper and
the lower bound by the upper bound, where the upper bound
is the best known anytime solution in log space. When
the gap becomes 0, it guarantees optimality. If no solu-
tion is available at all, we define the gap to be 1. Clearly,
both AAOBF and LAOBF improve significantly the gap of
WRBFAOO at all time bounds, especially at the smaller
ones. LnDFS produced a slightly larger gap than the other
search-based algorithms on the grid and promedas do-
main. Again, AFSE hardly improved the gap over time.

Related Work

The idea of combining depth-first and best-first search was
first described in (Pearl 1984). A similar idea was also em-
ployed in mixed integer programming algorithms as a plung-
ing strategy in (Achterberg 2007). The work that is closest
in spirit to our LAOBF is that by (Stern et al. 2010) who
developed an A* with depth-first lookaheads in the context
of generic path-finding. More recently, (Allouche et al. 2015)
introduced a hybrid best-first search algorithm for solving
Weighted CSPs that can be guided by a tree decomposition. It
selects a node in the best-first manner and performs standard
depth-first search with an adaptive number of backtracks to
expand the frontier. LnDFS is closely related to the bounded
learning depth-first search (Bonet and Geffner 2005) which
was originally developed for non-deterministic planning and
MDP planning.

Approximation algorithms for MMAP, including varia-
tional methods, have also been introduced (Jiang, Rai, and
Hal 2011; Cheng et al. 2012; Liu and Ihler 2013). Upper and
lower bound versions of these methods are closely related
to the WMB heuristic we use to guide the search. How-
ever, unlike our search based algorithms, these schemes do
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not guarantee eventual optimality of their solutions without
significant memory requirements.

The anytime MMAP algorithm introduced recently by
(Maua and Campos 2012) is another approach that can pro-
vide upper and lower bounds. It is an iterative join-tree based
algorithm that propagates sets of messages (called factor sets)
between the clusters of the join tree. These messages, how-
ever, tend to grow very large and therefore the method is
limited to solving relatively easy problems with small in-
duced widths.

Conclusions
We proposed new hybrid best+depth-first search algorithms
for anytime MMAP. These schemes are able to compute not
only anytime lower bounds, but also anytime upper bounds
on the optimal MMAP value, and the gap between the two
can be used to better gauge the solution quality during search.
Our extensive empirical evaluation on various benchmarks
demonstrates the effectiveness of the new algorithms com-
pared with existing state-of-the-art depth-first and weighted
best-first search as well as anytime factor set elimination.
Our new best+depth-first search approach produces superior
quality solutions more quickly than both best-first and depth-
first search, and it also guarantees tighter gap compared to
the weighted best-first and factor set elimination schemes.
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