
Chaotic Time Series Prediction Using a Photonic
Reservoir Computer with Output Feedback

Piotr Antonik,1† Michiel Hermans,1 Marc Haelterman,2 Serge Massar1
1 Laboratoire d’Information Quantique, Université libre de Bruxelles,
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Reservoir Computing is a bio-inspired computing
paradigm for processing time dependent signals (Jaeger and
Haas 2004; Maass, Natschläger, and Markram 2002). It can
be easily implemented in hardware. The performance of
these analogue devices matches digital algorithms on a se-
ries of benchmark tasks (see e.g. (Soriano et al. 2015) for
a review). Their capacities could be extended by feeding
the output signal back into the reservoir, which would al-
low them to be applied to various signal generation tasks
(Antonik et al. 2016b). In practice, this requires a high-
speed readout layer for real-time output computation. Here
we achieve this by means of a field-programmable gate ar-
ray (FPGA), and demonstrate the first photonic reservoir
computer with output feedback. We test our setup on the
Mackey-Glass chaotic time series generation task and ob-
tain interesting prediction horizons, comparable to numeri-
cal simulations, with ample room for further improvement.
Our work thus demonstrates the potential offered by the out-
put feedback and opens a new area of novel applications for
photonic reservoir computing.

Theory and methods

Reservoir computing. A general reservoir computer is
described in (Lukoševičius and Jaeger 2009). In our imple-
mentation we use a sine transfer function and a ring topol-
ogy to simplify the interconnection matrix, so that only the
first neighbour nodes are connected (Paquot et al. 2012). The
system is trained offline, using ridge regression algorithm.

Mackey-Glass chaotic series generation task. The
Mackey-Glass delay differential equation is given by
(Mackey and Glass 1977)

dx

dt
= β

x(t− τ)

1 + xn(t− τ)
− γx (1)

with τ , γ, β, n > 0. To obtain chaotic dynamics, we set the
parameters as in (Jaeger and Haas 2004): β = 0.2, γ = 0.1,
τ = 17 and n = 10. The equation was solved using the RK4
method with a stepsize of 1.0.

During the training phase, the reservoir computer receives
the Mackey-Glass time series as input and is trained to pre-
dict the next value of the series from the current one. Then,
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the reservoir input is switched from the teacher sequence to
the reservoir output signal, and the system is left running au-
tonomously. To evaluate the system performance, we com-
pute the number of correctly predicted steps.

Experimental setup

Our experimental setup, schematised in figure 1, consists of
two main components: the opto-electronic reservoir and the
FPGA board. The former is based on previously published
works (Paquot et al. 2012). The reservoir size N depends on
the delay created by the fibre spool (Spool). We performed
experiments with two spools of approximately 1.6 km and
10 km and, correspondingly, reservoirs of 100 and 600 neu-
rons.

The FPGA board is used to interface the opto-electronic
setup with a personal computer, running Matlab, and imple-
ments the input and readout layers of the reservoir computer
(Antonik et al. 2016a). As the neurons are processed sequen-
tially, due to propagation delay within the setup, the output
signal can only be computed in time to update the 24-th neu-
ron. For this reason, we set the first 23 elements of the input
mask to zero. That way, all neurons contribute to solving the
task, but the first 23 do not “see” the input signal.

Results

Numerical simulations. While this work focuses on ex-
perimental results, we also developed three numerical mod-
els of the setup in order to have several points of compar-
ison: (a) the idealised model incorporates the core charac-
teristics of our reservoir computer, disregarding experimen-
tal considerations, and is used to define maximal achievable
performance, (b) the noiseless experimental model emulates
the most influential features of the experimental setup, but
neglects the noise, that is taken into account by (c) the noisy
experimental model.

Experimental results. The system was trained over 1000
input samples and was running autonomously for 600
timesteps. We discovered that the noise inside the opto-
electronic reservoir makes the outcome of an experiment in-
consistent. That is, several repetitions of the experiment with
same parameters may result in significantly different predic-
tion lengths. While the system produced several very good
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Figure 1: Schematic representation of the experimental
setup. Optical and electronic components of the photonic
reservoir are shown in grey and black, respectively. It con-
tains an incoherent light source (SLD: Superluminescent
Diode), a Mach-Zehnder intensity modulator (MZ), a 90/10
beam splitter, an optical attenuator (Att), a fibre spool
(Spool), two photodiodes (Pr and Pf), a resistive combiner
(Comb) and an amplifier (Amp). The FPGA board imple-
ments the readout layer and computes the output signal y(n)
in real time. It also generates the analogue input signal u(n)
and acquires the reservoir states xi(n). The computer, run-
ning Matlab, controls the devices, performs the offline train-
ing and uploads all the data – inputs u(n), readout weights
wi and input mask Mi – on the FPGA.

Prediction length N
100 600

experimental 125± 14 344± 64
numerical (noisy) 120± 32 361± 87
numerical (noiseless) 121± 38 637± 252
idealised model 217± 156 683± 264

Table 1: Summary of experimental and numerical results.

predictions, most of the outcomes were rather poor. We ob-
tained similar behaviour with the noisy experimental model,
using the same level of noise as measured experimentally.

Numerical simulations have shown that reducing the noise
does not always increase the maximum performance, but
only makes the outcome more consistent. For this reason,
we measured the performances of our experimental setup by
repeating the autonomous run 50 times for each training, and
reporting results for the best prediction length.

Table 1 sums up the results obtained experimentally with
both reservoir sizes, as well as numerical results obtained
with all three models. The prediction lengths were averaged
over 10 sequences of the MG series (generated from differ-
ent starting points), and the uncertainty corresponds to de-
viations which occurred from one sequence to another. For
a small reservoir N = 100, experimental results agree with
both experimental models, but all three are much lower than
the idealised model. We found that this is due to the 23 ze-
roed input mask elements, as well as the limited resolution
of the analog-to-digital converter (see complementary ma-
terial for details). Prediction lengths obtained with the large
reservoir N = 600 match the noisy experimental model, but
here the noise has a significant impact on the maximal per-
formance achievable.

Perspectives

We report what is, to the best of our knowledge, the first
photonic Reservoir Computer capable of generating chaotic
time series with significant prediction horizon. Our numer-
ical simulations have shown that reducing the noise in-
side the opto-electronic reservoir would significantly im-
prove its performance. This can be done by upgrading the
components by low noise, low voltage models, thus reduc-
ing the effects of electrical noise. Despite these issues, our
work demonstrates, for the first time, that photonic reser-
voir computers are capable of emulating chaotic attractors,
which offers new potential applications to this computa-
tional paradigm.
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