
Improving Performance of Analogue Readout Layers for
Photonic Reservoir Computers with Online Learning

Piotr Antonik,1† Marc Haelterman,2 Serge Massar1
1 Laboratoire d’Information Quantique, Université libre de Bruxelles,
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Reservoir Computing is a bio-inspired computing
paradigm for processing time-dependent signals (Jaeger and
Haas 2004; Maass, Natschläger, and Markram 2002). The
performance of its hardware implementation (see e.g. (So-
riano et al. 2015) for a review) is comparable to state-of-
the-art digital algorithms on a series of benchmark tasks.
The major bottleneck of these implementation is the readout
layer, based on slow offline post-processing. Several ana-
logue solutions have been proposed (Smerieri et al. 2012;
Duport et al. 2016; Vinckier et al. 2016), but all suffered
from noticeable decrease in performance due to added com-
plexity of the setup. Here we propose the online learning
approach to solve these issues. We present an experimen-
tal reservoir computer with a simple analogue readout layer,
based on previous works, and show numerically that online
learning allows to disregard the added complexity of an ana-
logue layer and obtain the same level of performance as with
a digital layer. This work thus demonstrates that online train-
ing allows building high-performance fully-analogue reser-
voir computers, and represents an important step towards ex-
perimental validation of the proposed solution.

Theory and methods

Reservoir computing. A general reservoir computer is
described in (Lukoševičius and Jaeger 2009). In our imple-
mentation we use a sine transfer function and a ring topol-
ogy to simplify the interconnection matrix, so that only the
first neighbour nodes are connected (Paquot et al. 2012). The
system is trained online, using the simple gradient descent
algorithm, as in (Antonik et al. 2016a).

Benchmark tasks. We tested the performance of our sys-
tem on two benchmark tasks, commonly used by the RC
community: wireless channel equalisation and NARMA10.
The first, introduced in (Jaeger and Haas 2004) aims at
recovering the transmitted message from the output of a
noisy nonlinear wireless communication channel. The per-
formance of the equaliser is measured in terms of Symbol
Error Rate (SER), that is, the number of misclassified sym-
bols. The NARMA10 task (Atiya and Parlos 2000) constists
in emulating a nonlinear system of order 10. The perfor-
mance is measured in terms of Normalised Mean Square
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Figure 1: Scheme of the proposed experimental setup. The
optical and electronic components are shown in black and
grey, respectively. The reservoir layer consists of an incoher-
ent light source (SLD), a Mach-Zehnder intensity modulator
(MZ), a 50/50 beam splitter, an optical attenuator (Att), an
approximately 1.6 km fibre spool, a feedback photodiode
(Pf), a resistive combiner (Comb) and an amplifier (Amp).
The analogue readout layer contains another 50/50 beam
splitter, a readout photodiode (Pr), a dual-output intensity
modulator (MZ), a balanced photodiode (Pb) and a capacitor
(C). The FPGA board generates the inputs and the readout
weights, samples the reservoir states and the output signal,
and trains the system.

Error (NMSE).

Experimental setup

Our experimental setup, which we simulate numerically, is
schematised in figure 1. It consists of the opto-electronic
reservoir (a replica of (Paquot et al. 2012)), the analogue
readout layer, based on previous works (Smerieri et al. 2012;
Duport et al. 2016), and the FPGA board, performing the on-
line training (Antonik et al. 2016a). The readout layer uses a
dual-output Mach-Zehnder modulator in order to apply both
positive and negative readout weights, and the integration
(summation) of the weighted states is carried out by a low-
pass RC filter.
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Results

All numerical experiments were performed in Matlab, using
a custom model of a reservoir computer, based on previous
investigations (Paquot et al. 2012; Antonik et al. 2016a).

The performance of our system on the channel equalisa-
tion task, with SERs between 10−4 and 10−3 depending on
the input mask, is comparable to the same opto-electronic
setup with a digital output layer (SER = 10−4 reported
in (Paquot et al. 2012)), as well as the fully-analogue setup
(Duport et al. 2016), also reporting SER of 10−4. However,
it outperforms the first (and, conceptually, simpler) readout
layer by an order of magnitude (Smerieri et al. 2012). As
for the NARMA10 task, we obtain a NMSE of 0.18. This
is slightly worse than what was reported with a digital read-
out layer (0.168 ± 0.015 in (Paquot et al. 2012)), but better
than the fully analogue setup (0.230 ± 0.023 in (Duport et
al. 2016)).

Another goal of the simulations was to check how the on-
line learning approach would cope with experimental diffi-
culties encountered in previous works (Smerieri et al. 2012;
Duport et al. 2016). To that end, we considered several po-
tential experimental imperfection and measured their impact
on the performance.

• The time constant τ = RC of the RC filter determines
its integration period. We’ve shown that both tasks work
well in a wide range of values of τ , and knowledge of
its precise value is not necessary for good performance
(contrary to (Duport et al. 2016)).

• The sine transfer function of the readout Mach-Zehnder
modulator can, in practice, be biased due to temperature
or electronic drifts of the device. This could have a detri-
mential impact on the readout weights. We’ve shown that
precompensation of the transfer function is not necessary,
and that realistic drifts of the bias wouldn’t decrease the
performance of the system.

• The numerical precision of the readout weights, limited
to 16 bits by the DAC, could be insufficient for correct
output generation. We’ve shown that resolution as low as
8 bits is enough for this application.

Perspectives

The present work shows that online learning allows to ef-
ficiently train an analogue readout layer despite its inher-
ent complexity and practical imperfections. The upcoming
experimental validation of this idea would lead to a fully-
analogue, high-performance reservoir computer. On top of
considerable speed increase, due to the removal of the slow
digital post-processing, such device could be applied to peri-
odic or chaotic signal generation by feeding the output signal
back into the reservoir (Antonik et al. 2016b). This work is
therefore an important step towards a new area of research
in reservoir computing field.
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