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Abstract

Automatic annotation of 3D objects in cluttered scenes shows
its great importance to a variety of applications. Nowadays,
3D point clouds, a new 3D representation of real-world ob-
jects, can be easily and rapidly collected by mobile LiDAR
systems, e.g. RIEGL VMX-450 system. Moreover, the mo-
bile LiDAR system can also provide a series of consecutive
multi-view images which are calibrated with 3D point clouds.
This paper proposes to automatically annotate 3D objects of
interest in point clouds of road scenes by exploiting a mul-
titude of annotated images in image databases, such as La-
belMe and ImageNet. In the proposed method, an object de-
tector trained on the annotated images is used to locate the
object regions in acquired multi-view images. Then, based
on the correspondences between multi-view images and 3D
point clouds, a probabilistic graphical model is used to model
the temporal, spatial and geometric constraints to extract the
3D objects automatically. A new dataset was built for eval-
uation and the experimental results demonstrate a satisfied
performance on 3D object extraction.

Introduction
Nowadays, along with the booming of deep learning used in
3D applications, such as 3D object classification and detec-
tion, the need for large amounts of annotated 3D data be-
comes increasingly urgent for model learning. Commonly,
the acquisition of such annotations is time-consuming and
labor-intensive. Fortunately, web image databases, such as
LableMe and ImageNet, provide abundant annotations for a
multitude of digital images which cover a variety of scenar-
ios. Exploiting these tagged image databases to accomplish
automatic annotation of 3D objects in cluttered scenes shows
a bright prospect in many applications.

In recent years, with the rapid development of Light De-
tection and Ranging (LiDAR) technologies, large-scale road
scenes are now depicted by large volumes of highly dense
and accurate 3D point clouds that are collected by mo-
bile LiDAR systems. By smoothly integrating laser scan-
ners with position and orientation systems, mobile LiDAR
systems can rapidly capture undistorted 3D point clouds
with real-world coordinates (See Fig. 1). Moreover, with
complementary onboard multi-view high-resolution digital
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Figure 1: (a) mobile LiDAR system with four high-
resolution cameras and two laser scanners; (b) multi-view
images taken from distinctive angles and distances.

cameras, a series of consecutive images (calibrated with 3D
point clouds) are captured to provide textual/color informa-
tion of objects in a scene from different viewpoints and dis-
tinctive points in time.

This paper presents a method to automatically annotate
3D objects from point clouds by building a bridge to con-
nect the image databases with 3D point clouds. More specif-
ically, we firstly use Faster-RCNN (Ren et al. 2015) to train
an object-specific detector on ImageNet for transferring cat-
egory labels from ImageNet to reference images (the multi-
view images registered with 3D point clouds). Then, the
trained object detector is used to locate the object regions in
the reference images. After that, through correspondences
between superpixels from reference images and the super-
voxel from 3D point clouds, we impose the temporal, spa-
tial and geometric constraints on labels of 3D objects by ex-
ploiting a probabilistic graphical model. Finally, the graphi-
cal model is effectively solved to generate the annotated 3D
objects.

Method
The whole processing flow of our proposed method is illus-
trated in Fig. 2. The remaining section focuses on building a
probabilistic graphical model among the superpixels and su-
pervoxels. Let P and L denote the set of superpixels gener-
ated from reference images and the set of supervoxels gener-
ated from point clouds scenes, respectively. For each super-
pixel i ∈ P and each supervoxel l ∈ L, we denote variables
si and sl taking values from the category labels S = {1, 0}.
Here, 1 and 0 represent the category of object of interest and
background, respectively. Let s = {si|i ∈ P}⋃{sl|l ∈ L},
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Figure 2: Processing flow of our proposed methods.

we model the temporal, spatial and geometric constraints by
a Markov Random Field (MRF) model and its energy func-
tion is formalized as follows:

E(s) =
∑

i∈P
ϕP
i (si) + α

∑

i,j∈P
φP,P
i,j (si, sj)

+β
∑

l,k∈L
φL,L
l,k (sl, sk) + γ

∑

i∈P,l∈L
φP,L
i,l (si, sl)

(1)

where ϕ(·) and φ(·) represent the unary and pairwise poten-
tials, respectively. α, β, and γ are the parameters controlling
the weight of pairwise potentials.

The superpixel unary potential ϕP
i (si) encodes the possi-

bility of superpixel i taking the category label si

ϕP
i (si) = − log pPi (si) (2)

where pPi (si), obtained by applying the object detector, rep-
resents the probability whether the supervixel i belongs to
the object of interest.

The superpixel pairwise potential φP,P
i,j (si, sj) encodes

category relations between superpixels i and j. We adpot
the Potts model (Kohli, Kumar, and Torr 2007) to encourage
the neighboring superpixels taking the identical category if
they own the similar texture

φP,P
i,j (si, sj) = [si �= sj ] · (1−D2d(i, j)) (3)

where [·] is indicator function whose value is 1 if its argu-
ment is true, otherwise 0. D2d(i, j) determines the similarity
of texture of two superixels in 2D images.

Similarly, we formulate the supvoxel pairwise potential
φL,L
l,k (sl, sk) to encourage category consistency of spatially

neighboring supervoxels based on the geometric features

φL,L
l,k (sl, sk) = [sl �= sk] · (1−D3d(l, k)) (4)

where D3d(l, k) measures the geometrical similarity be-
tween supervoxel l and k.

The 2D/3D pairwise potential φP,L
i,l (si, sl) encourages

that supervoxel should take the identical category with its
corresponding superpixel. The corresponding relation can be
obtained by projecting the points of supervoxel onto the ref-
erence image plane. we formulate φP,L

i,l as follows:

φP,L
i,l (si, sl) = exp(−Dist(l, i)

σ
) · [OD(l)] (5)

where Dist(l, i) computes the spatial distance between the
positions of supervoxel, l, and the viewpoint where the mo-
bile LiDAR system records the image which the superpixel,
i belongs to. Therefore, Eq. (5) encourages that the super-
pixel should own more confidence to take the same category
with the supervoxel if the position of its viewpoint is near to
the supervoxel. Here, σ is a scale factor which makes the po-
tential comparable. The OD(l) obtained by calculating the
visibility of point clouds (Katz and Tal 2015), determines
whether supervoxel, l, is occluded by the other 3D points.
In the proposed method, no penalty will be imposed on the
energy function (1), if the supervoxel is occluded. The en-
ergy function (1) meets the semimetric condition and can be
efficiently minimized by the Graph Cuts algorithm (Boykov,
Veksler, and Zabih 2001).

Experiments
Our proposed method was evaluated on a dataset collected
by a RIEGL VMX-450 mobile LIDAR system on Xia-
men Island, China. This dataset contains the point clouds
and high-resolution optical images which is calibrated with
the point clouds. In this dataset, the vehicles in point
clouds were manually annotated for evaluating the proposed
method. Here, the amount of vehicles is 113.

The parameters α, β, and γ were determined by imple-
menting a grid search on a small validation set. The similar-
ity metrics were defined by computing χ2 distance in feature
spaces. In images, the mean RGB value was used to describe
a superpixel. In point clouds, the FPFH and spectral features
are used to describe the geometric feature for a supervoxel.

To verify the validity of our proposed method, we design
a Unary method by removing the pairwise potentials φP,P

i,j

and φL,L
l,k from energy function (1). As the experimental re-

sults exhibits in Table 1, our proposed method achieves a
satisfying performance on annotation of 3D vehicles in the
evaluation.

Table 1: Annotation results on vehicle dataset
Precision Recall F1-score

Unary 0.851 0.628 0.722
Full Model 0.964 0.721 0.825
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