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Introduction   
We explore the promise of employing machine learning 
and inference to assist with the care of patients in intensive 
care units (ICU). Such patients are acutely ill and have the 
highest mortality rates of hospitalized patients. Predictive 
models and planning systems could forecast and guide 
interventions to prevent the hazardous deterioration of pa-
tients’ physiologies. Such analyses are supported by the 
relatively large amounts of data available about ICU pa-
tients, stemming from the use of specialized monitoring 
equipment and the intensive clinical workflow.  

Identifying patients who are at high risk of death may be 
useful for guiding focus of attention on patients, including 
proactive monitoring and interventions. As the cost per day 
is typically higher in the ICU than for the general wards 
(Barrett et al. 2014), caregivers seek to move patients out 
of the ICU as soon as they believe that they are stable.  
Inferences about risk of death can guide decisions about 
retaining patients in the ICU or moving patients from gen-
eral wards to the ICU.  
Prior work on data-centric approaches has demonstrated 
boosts in performance for predicting the risk of death for 
ICU patients (Johnson et al. 2012) over the use of more 
widely used heuristic scores (Zimmerman et al. 2006). We 
report on the construction of a prediction pipeline that es-
timates the probability of death by inferring rates of hazard 
over time, based on patients’ physiological measurements. 
The inferred models can provide insights to physicians 
about the contribution of each variable and information 
about the influence of sets of observations on the overall 
risks and expected trajectories of patients. 

Data Description 
We base our predictions on the PhysioNet ICU challenge 
dataset (Silva et al. 2012). This data was collected during 
the first 48 hours of observation after ICU admission for 
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4,000 patients, including clinical measurements, demo-
graphic information, and outcome-related information (i.e., 
in-hospital death, SAPS, length of stay). 13.85% of the 
patients died in hospital. For the study, we merged the non-
invasive and invasive measurements for each blood pres-
sure measurement (mean arterial pressure, systolic arterial 
blood pressure, diastolic arterial blood pressure) into single 
features. Fraction of inspired oxygen, FiO2, and partial 
pressure of oxygen in arterial blood, PaO2, were merged to 
constitute the PaO2/FiO2 ratio (PFR), a widely used clini-
cal variable to estimate pulmonary function. Since a clear 
indication of when patients are weaned from a ventilator 
machine could not be obtained from the data, mechanical 
ventilation, MechVent, was used as a demographic feature 
to present whether or not the patient had been mechanical-
ly ventilated within the first 48 hours following admission. 

Method 
With an eye to parsimony and associated interpretability of 
the model, we explore the power of employing a cumula-
tive hazard function with a single governing parameter. We 
learn the parameter from data and then perform inference 
with the parametric function.  A higher lambda drives the 
function to reach a higher probability of death earlier, so a 
learned lambda can be regarded as a quantitative summary 
of a patient’s physiological stability. 
 We determine the probability of a patient death 48 hours 
after admission to the ICU. For each patient, time series 
data for each 48-hour period were divided into multiple 
time intervals , and 
the lambda for each interval was predicted using the 
trained model. Thereafter, the probability of death for each 

 was calculated using the cumulative hazard function of 
. The probabil-

ity of death at the 48th hour of ICU admission was then 
calculated with an absorbing Markov chain (Figure 1). 

 
Figure 1. Absorbing Markov chain 
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 Each patient-  instance is prepared in a way that sum-
marizes the physiological condition of a patient during .  
We calculated summarizing statistics (minimum, maxi-
mum, and average) as key observations within . In addi-
tion, we performed statistical tests and resulting p values 
were used to quantify atypical values and the instability of 
variables (Table 1). 

Table 1. Atypia sustainment and instability quantification 

 As we aim to predict the lambda based on the feature 
vector, we need to estimate the label for each training in-
stance. The lambda for instances of deceased patients was 
calculated assuming the probability of death converged to 
1 on the last date of ICU (LOS): 

 

To estimate the lambda for instances of surviving patients, 
K-means clustering was conducted for all patient-  in-
stances to group instances with similar physiology. Then, 
the lambda for each group was calculated based on given 
outcome variables as follows: 

 

The estimated lambda, , was assigned to each train-
ing instance of surviving patients within each cluster. Giv-
en the heterogeneity of ICU patients (i.e., different source 
of admission and different prognosis after ICU admission), 
we used an ensemble model. We used a regression random 
forest to train the model because the approach can present 
the distinct contributions of features to the model. 
The hyper-parameters for the final model were selected 
from the model with best AUC from 10-fold cross-
validation on training data. We performed evaluations on 
held-out test data using the predicted lambdas for each 
patient- . The probability of death for these instances was 
computed using the predicted lambda. Thereafter, the re-
sulting probabilities were aggregated using the absorbing 
Markov chain. For each validation trial, 90% of the pa-
tients were used as the training set, while 10% were allo-
cated to the test set. 

Results 

Table 2. Cross-validation results, K-means 20 group,                                               
*Score = min (Sensitivity, PPV) 

Discussion 

The results (Table 2) show higher performance compared 
to the heuristic score (SAPS, 0.3125), with performance 
comparable to the top 10 scores reported in the PhysioNet 
competition (0.4513~0.5353). The maximum score was 
achieved in a 24-hour-window, which suggests a tradeoff 
between  width and model performance. Narrower  
width might be able to detect local patterns while wider  
width might be associated with fewer missing values.  
Variables selected as most informative by the methodology 
overall aligned with observations employed in the heuristic 
score (See Table 3). However, we found that both instabil-
ity and sustainment quantifiers were selected as top-ranked 
features.  The latter results underscore the importance of 
capturing temporal dynamics for inferences about the risk 
of death from physiological measures. 

Table 3. Top 5 contributing features based on information gain 

Conclusion 
We constructed a predictive model for the risk of death of 
ICU patients via learning and inferring patient-specific 
mortality hazard rates. We found that the hazard model 
performed comparably with top data-centric models. The 
proposed method frames a promising direction of work on 
using an inferred hazard rate to characterize the trajectory 
of patients’ deterioration over time and to build insights 
about the influence of specific observations on the risk of 
mortality.  
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Feature Statistical Test Alternative Hypothesis 
[Variable]_TT Two-tailed t-test  
[Variable]_LT One-tailed t-test  
[Variable]_GT One-tailed t-test  
[Variable]_FT f-test  

 Width Max score* Threshold AUC 
8 hrs 0.4862±0.0587 0.4287±0.0587 0.8381±0.0267 
12 hrs  0.4872±0.0340 0.4425±0.0340 0.8369±0.0231 
24 hrs 0.4950±0.07103 0.4630±0.0368 0.8235±0.0294 
48 hrs 0.4711±0.0548 0.4502±0.0469 0.8170±0.0269 

Rank 8 hrs 12 hrs 24 hrs 48 hrs 
1 Age Age Age GCS_GT 
2 GCS_MAX GCS_MAX SysABP_AVG Urine_AVG 
3 Urine_AVG HR_MIN GCS_MAX SysABP_AVG 
4 HR_MIN Temp_FT BUN_AVG Age 
5 HR_AVG HR_AVG HR_TT HR_MIN 
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