
Coalition Structure Generation Utilizing Graphical
Representation of Partition Function Games

Kazuki Nomoto, Yuko Sakurai, Makoto Yokoo
Graduate School and Faculty of Information Science and Electrical Engineering

Kyushu University
744 Motooka Nishi-ku Fukuoka, 819-0395, Japan

{nomoto@agent., ysakurai@, yokoo@} inf.kyushu-u.ac.jp

Introduction

Forming effective coalitions is a central research challenge
in AI and multi-agent systems. The coalition structure gener-
ation (CSG) problem, which is a well-known major research
topics in coalitional games (Sandholm et al. 1999), is to par-
tition a set of agents into coalitions to maximize the sum of
utilities.

We study the CSG problem for partition function games
(PFGs), where the value of a coalition differs depending on
the formation of other coalitions generated by non-member
agents. For example, consider restructuring and the consol-
idation of multiple companies in a market. If several com-
petitors are merged into a single entity, the competitor of
this new large company might lose sales. The market must
consider the best way of restructuring the merged companies
to maximize the expected sales. Such a problem is repre-
sented as a PFG. In PFGs, the input of a coalitional game is
a black-box function called a partition function that maps an
embedded coalition (a coalition and the coalition structure)
to its value. Representing an arbitrary partition function ex-
plicitly requires Θ(nn) numbers, which are prohibitive for
large n.

Recently, several concise representation schemes for a
partition function have been proposed (Skibski et al. 2015;
Rahwan et al. 2015). Among them, a partition decision tree
(PDTs) is a graphical representation based on multiple rules.
In this paper, we propose new algorithms that can solve
CSG problems by PDTs representation. More specifically,
we modify PDTs representation to effectively handle nega-
tive rules and apply the depth-first branch-and-bound algo-
rithm. We experimentally show that our algorithm can solve
CSG problems reasonably well1.

CSG Problem

Let A = {a1, a2, . . . , an} be the set of agents and let
C ⊆ A be a coalition. Coalition structure CS is a parti-
tion of A into disjoint and exhaustive coalitions. To be more
precise, CS = {C1, C2, . . .} satisfies the following condi-
tions: ∀i, j (i �= j), Ci ∩ Cj = ∅,⋃Ci∈CS Ci = A. A PFG

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.dropbox.com/sh/ckg88smxuglgyd1/
AADie7Xy6cDE70IbLMCzq5CZa?dl=0w

Tree 1 Tree 2

a3

[2]

[3, 4]

1

a4

a1

1 2

2

[-2, -1][4] [1, 1, 1]

1

a1

a2
2

a3

1

1

a4

1 3

Figure 1: Partition Decision Trees

generates a positive/negative value w(C,CS).
The value of coalition structure CS, denoted as W (CS),

is given by: W (CS) =
∑

Ci∈CS w(Ci, CS). Optimal
coalition structure CS∗ satisfies the following condition:
∀CS,W (CS∗) ≥ W (CS).

Partition Decision Trees

We utilize a graphical representation of PFGs called parti-
tion decision trees (PDTs) (Skibski et al. 2015). Intuitively,
multiple rules are graphically represented by using rooted
directed trees. Each rule consists of a condition for the par-
titioning agents and their positive/negative values. We sepa-
rate a set of rules into several groups and concisely represent
a group of rules using a tree. PDTs are based on rooted di-
rected trees, where non-leaf nodes are labeled with agents’
identities, leaf nodes are labeled with payoff vectors, and
the edges indicate the membership of the agents in the coali-
tions. Each path indicates a single rule. For example, we as-
sume that there exit 4 agents. Consider the following 2 rules.
The first rule is that when agents a3 and a4 belong to an iden-
tical coalition, 2 is added to the value of the coalition that in-
cludes a3 and a4. The second rule is that when a3 and a4 are
in different coalitions, but a4 and a1 are in an identical coali-
tion, 3 is added to the value of the coalition that includes a3
and 4 is added to the value of the coalition including a4 and
a1. Fig. 1 shows an example of PDTs. Tree 1 represents the
rules shown in this example. The value of coalition structure
W (CS) is calculated as the sum of the values of the compat-
ible rules to CS. When CS is {{a1, a2, a3, a4}}, W (CS)
becomes 2 + 4 = 6 by applying the rules indicated by the
right-hand path in Tree 1 and the left-hand path in Tree 2.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4977



Tree 1 Tree 2
a3

[2]

[3, 4]

1

a4

a1

1 2

2

[-2, -1][4] [1, 1, 1]

1

a1

a2
2

a3

1

1
a4

1
3

[0,0]

2 2

[0,0]

Figure 2: Modified Partition Decision Trees

CSG Algorithm

In this section, we propose new CSG algorithms utilizing
PTDs. As shown in Fig. 1, some rules could have negative
values in PDTs. For an optimization/maximization problem,
we must carefully consider how to deal with negative rules.
If there exists no negative rule, we can straightforwardly
solve a CSG problem.

Naive algorithm for positive rules

When all rules are positive, we look for as many compat-
ible rules as possible. Thus, a CSG problem is a dilemma
to find a set of compatible rules that maximizes the sum of
the values by selecting at most a rule from each tree. Here,
the obtained result does not imply a concrete coalition struc-
ture, since some agents might not appear in the set of rules.
Since adding non-member agents does not affect the coali-
tion’s values, we randomly add them to the coalitions to gen-
erate the optimal coalition structure.

Difficulty for negative rules

However, if there exist a negative rule in PDTs, finding an
optimal coalition structure is not straightforward. When a
PDT has a negative rule, we need to examine whether the
negative rule is incompatible with the other obtained rules.
As a naive method, we first find an optimal set of rules that
maximize the sum of the values by ignoring the existence
of negative rules. If there exists a tree with negative rules
in which a positive rule is not selected in an optimal set of
rules, we examine whether the obtained rules are incompat-
ible with every negative rule in the tree. Thus, we examine
whether the set of obtained rules is compatible with all pos-
sible negations of the negative rules. This operation is very
complicated, since the computational complexity depends
on the number of agents included in the negative rules.

Algorithm using Modified PDTs

To solve the above difficulty, we modify the description of
the PDTs and explicitly represent the rules with a value of 0
when a tree has a negative rule. If the original PDT is con-
cisely represented, the negations of the negative rules are
also concisely represented. Fig. 2 shows our modified PDTs.
In tree 2, there exist negative rules and thus we add two rules
with the values of 0.

Figure 3 shows a search tree generated by the modified
PDTs shown in Fig. 2. Since Tree 1 has only positive rules,
we add an empty node that indicates a set of rules with a

Tree 1

Tree 2

11 10 7 7 4

{a3}{a1,a4}

{a1}{a2}{a4} {a1,a2}{a3}{a1,a2,a3} {a1,a4}{a2}{a1}{a2,a4}

{a3,a4}

Figure 3: Search Tree

value of 0. In a search tree, a node indicates a rule. We sort
the nodes by decreasing the node value. For this search tree,
we apply a depth-first branch-and-bound algorithm. When-
ever we go down to a child node, we examine the compatibil-
ity between the obtained nodes on a path and the child node.
If they are compatible, we expand the grandchild node. Oth-
erwise, we move to a sibling node next to the child node. If
there exits no sibling node, we expand the sibling node next
to the node. If we reach the lead node, the rules on the path
imply a condition satisfied by the optimal coalition structure.

Experimental Results

We evaluate our new algorithms for 100 agents. Table 1
shows the average computational times (ms) for 100 in-
stances. The algorithm utilizing modified PDTs is faster than
the naive algorithm. We set q to the probability that a nega-
tive rule will occur.

Table 1: Average Computational Time
q 0 0.1 0.2

Naive 3.7× 103 over 1 hour
MPDT 2.6× 102 1.6× 104 6.0× 103

Conclusion and Future Work

We developed a new CSG algorithm for partition function
games utilizing a concise graphical representation. Existing
works did not consider the existence of embedded coalitions
with negative values. Our future work includes comprehen-
sive computational experiments with various problem set-
tings.

Acknowledgement

This research was partially supported by JSPS KAKENHI
Grant Numbers 24220003, 15H02751, and 15K12101.

References

Rahwan, T.; Michalak, T. P.; Wooldridge, M.; and Jennings,
N. R. 2015. Coalition structure generation: A survey. Arti-
ficial Intelligence 229:139–174.
Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; and
Tohmé, F. 1999. Coalition structure generation with worst
case guarantees. Artificial Intelligence 111(1-2):209–238.
Skibski, O.; Michalak, T. P.; Sakurai, Y.; Wooldridge, M.;
and Yokoo, M. 2015. A graphical representation for games
in partition function form. In The 29th AAAI Conference on
Artificial Intelligence (AAAI2015).

4978




