Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Grounded Action Transformation for Robot Learning in Simulation

Josiah P. Hanna and Peter Stone
{jphanna,pstone } @cs.utexas.edu
The University of Texas at Austin
2317 Speedway, Austin, TX 78712 USA

Abstract

Robot learning in simulation is a promising alternative to
the prohibitive sample cost of learning in the physical world.
Unfortunately, policies learned in simulation often perform
worse than hand-coded policies when applied on the physical
robot. This paper proposes a new algorithm for learning in
simulation — Grounded Action Transformation — and applies
it to learning of humanoid bipedal locomotion. Our approach
results in a 43.27% improvement in forward walk velocity
compared to a state-of-the art hand-coded walk.'

Introduction

An alternative to learning robotic skills directly on the physi-
cal robot is learning in simulation and transferring the learned
skills. However, the value of simulation learning is limited by
the inherent inaccuracy of simulators in modeling the dynam-
ics of the physical world. As a result, learning that takes place
in a simulator is unlikely to increase real world performance.
Grounded Simulation Learning (GSL) is a framework for
modifying a simulator such that learning transfers to the
physical robot (Farchy et al. 2013). We introduce a new
GSL algorithm — Grounded Action Transformation (GAT)
for simulation-transfer. The algorithm is evaluated on the
task of bipedal robotic walking. Our evaluation of GAT starts
from a state-of-the-art walk engine as the base policy and
improves the walk velocity by over 43%, leading to what
may be the fastest known walk on the SoftBank NAO robot.

Problem Statement

At discrete time-step ¢ the robot takes action A; ~ 7(+|.S%)
according to 7 which is a distribution over actions, A; € A,
conditioned on the current state, S; € S. The environment,
E, responds with S;11 ~ P(-|S, A¢) according to the dy-
namics, P : S x A xS — R>(which is a probability density
function over next states conditioned on the current state and
action. A trajectory of length L is a sequence of states and

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'An extended version of this work is published in
AAAI 2017. Videos of learned walk policies can be found
at https://www.cs.utexas.edu/users/AustinVilla/?p=research/real
and_sim_walk_learning.

4931

actions, 7 := Sy, Ag, ..., S, Ar. The cost function, ¢, as-
signs a scalar cost to each (s, a) pair. The value of policy, 7,

is defined as J(7) := E,_pp(.|n) Zf:o ¢(St, At)| where

Pr(7|m) is the probability of 7 when selecting actions ac-
cording to 7. The policy 7 is parameterized by a vector 6.
Since 6 determines the policy distribution we overload nota-
tion and refer to 7g as 6. Given initial parameters 6, the goal
of policy improvement is to find @’ such that J(0") < J ().

In this paper, learning takes place in a simulator, Es;y, that
models E. Specifically E;, has the same state-action space
as F but inevitably a different dynamics distribution, Ps;y,.
The different dynamics distribution mean that for any policy,
0, J(0) # Jsin(0) since 6 induces a different trajectory
distribution in E than in Egs,. Thus 6" with Jg,(0") <
Jsin(00) does notimply J(8') < J(8) —in fact J(8") could
even be worse than J(6)). This paper explores methods for
learning in F;, that lower expected cost.

Grounded Action Transformation

The Grounded Simulation Learning (GSL) framework (Farchy
et al. 2013) improves robot learning in simulation by us-
ing state transition data from the physical system to ground
FEin such that it is a better model of E. The GSL frame-
work assumes there is an imperfect simulator, Fgi, =
(S, A, Pgip,), that models E. Furthermore, Es;, must be
modifiable. A modifiable simulator has parameterized tran-
sition probabilities Py (-|s,a) := Psin(-|s, a; ¢) where the
vector ¢ can be changed to produce, in effect, a different
simulator.
GSL grounds E;, by finding ¢* such that:

¢* = argmin Z d (Pr(7|0), Prsin(7]0, @))
T€ED

where Pr(7]0) is the probability of observing trajectory

T in E, Prsin(7|6, ¢) is the probability of 7 in Eg;, with
dynamics parameterized by ¢, d is a measure of similarity
between these probabilities, and D is a data set of trajectories
recorded on the physical robot. When a policy improvement
method is used to optimize 0 in Eg;, with ¢* the improved
policy, 8’ is expected to perform better on the physical robot.
Our principle algorithmic contribution, GSL with
Grounded Action Transformation (GAT) improves ground-
ing by correcting differences in the effects of actions between

(D

a
t
Policy —| 9| f(s,8)
St+1 §t
Simulated f(s8)
Environment —
at

Figure 1: GAT induces a modifiable simulator.

FE and E;,. Since it is often easier to minimize error in the
one step dynamics distribution, GAT uses:

L
D > d(P(siylstial), Po(sti st ap)

7,€D t=0
@)

as a surrogate loss function for (1) which can be minimized
with transitions observed in D.

To find ¢* efficiently, GAT uses a parameterized action
transformation function which takes the agent’s state and
action as input and outputs a new action which — when taken
in simulation — will result in the robot transitioning to the
same next state it would have in . We denote this function,
gp + S x A — A; the parameters of g serve as ¢ under
the GSL framework. GAT constructs g with parameterized
models of the robot’s dynamics and the simulators inverse
dynamics. Assuming a dataset Dg;, of simulated experience,
GAT reduces (2) to a supervised learning problem.

GAT defines g = g4 by a deterministic forward model
of the robot’s dynamics, f and a deterministic model of the
simulator’s inverse dynamics, f.;.. Let x; be the robot’s
joint configuration at time ¢. The function, f maps (s, a;)
to the maximum likelihood estimate of x;,; under P. The
function f_;> maps (s;,s;,1) to the action that is most likely
to produce this transition in simulation. When executing 6 in
simulation, the robot selects a; ~ 7g(+|s;) and then uses f
to predict what the resulting configuration, x; 1, would be
in F. Then a; is replaced with &; := f;;1(s¢, f(s¢,a;)). The
result is the robot achieves the exact x; 1 it would have on
the physical robot. In practice f and fs_li are represented with
supervised regression models (neural networks in this work)
and learned from D and Dy, respectively. Figure 1 illustrates
the GAT-modified Fsi,. GAT then proceeds to improve 6 with
optimize within the grounded simulator.

¢* = argmin
o

Empirical Results

We evaluate GAT on the task of bipedal robot walking us-
ing the SoftBank NAO. For walking, our NAO uses an open
source walk engine developed at the University of New South
Wales (UNSW) (Ashar et al. 2015). This walk engine has been
used by at least one team in each of the past three RoboCup
Standard Platform League (SPL) championship games in
which teams of five NAOs compete in soccer matches. On
the physical robot a trajectory terminates once the robot has
walked four meters or falls. A trajectory generated with 8
lasts ~ 20.5 seconds on the robot. We use two different sim-
ulators in this work: the open source SimSpark and Gazebo

4932

00
19.52 (cm/s)
0.0 (%)

GAT with SimSpark GAT with Gazebo
26.27 26.89
34.58 37.76

Table 1: This table gives the maximum learned velocity and
percent improvement over 8 (left column).

simulators. In simulation a trajectory terminates after a fixed
time. We use the Covariance Matrix Adaption-Evolutionary
Strategy (CMA-ES) algorithm (Hansen 2006) for policy im-
provement within simulation. To clarify terminology, a gener-
ation refers to a single update of CMA-ES; an iteration refers
to a complete cycle of GSL.

We evaluate GAT for transferring simulation learning to
the physical NAO using both SimSpark and Gazebo as Fgjy.
The data set D consists of 15 trajectories collected with 8
on the physical NAO. For each iteration, we optimize 6 for
10 generations of the CMA-ES algorithm. We evaluate the
best policy from each generation with 5 trajectories on the
physical robot. If the robot falls in any of the 5 trajectories
the policy is considered unstable.

Experimental Results

Table 1 gives the walk velocity of the best 8’ returned by
GAT in each simulator. GAT with SimSpark and GAT with
Gazebo both improved walk velocity by over 30%. This result
demonstrates generality of GAT across different simulators.
Two iterations of GAT with SimSpark (not shown) increased
the walk velocity of the NAO by 43.27% compared to 6.
Policy improvement with CMA-ES required 30,000 trajec-
tories per iteration to find the 10 policies that were evaluated
on the robot. In contrast the total number of trajectories ex-
ecuted on the physical robot is 65 (15 trajectories in D and
5 evaluations per 8"). This result demonstrates GAT can use
sample-intensive simulation learning to optimize real world
skills with a low number of trajectories on the physical robot.

Conclusion

We proposed and evaluated the Grounded Action Transforma-
tion (GAT) algorithm for grounded simulation learning. Our
method led to a 43.27 % improvement in the walk velocity
of a state-of-the-art bipedal robot. Furthermore, this exper-
iment demonstrated the benefits of GAT are independent of
the choice of simulator.

References

Ashar, J.; Ashmore, J.; Hall, B.; and Harris, S. e. a. 2015. Robocup
spl 2014 champion team paper. In RoboCup 2014: Robot World
Cup XVIII, volume 8992 of Lecture Notes in Computer Science.
Springer International Publishing. 70-81.

Farchy, A.; Barrett, S.; MacAlpine, P.; and Stone, P. 2013. Hu-
manoid robots learning to walk faster: From the real world to simu-
lation and back. In Twelth International Conference on Autonomous
Agents and Multiagent Systems, AAMAS.

Hansen, N. 2006. The CMA evolution strategy: a comparing review.
In Lozano, J.; Larranaga, P.; Inza, I.; and Bengoetxea, E., eds.,
Towards a new evolutionary computation. Advances on estimation
of distribution algorithms. Springer. 75-102.

