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Abstract

We propose a novel incomplete cooperative algorithm for dis-
tributed constraint optimization problems (DCOPs) denoted
as Cooperative Constraint Approximation (CoCoA). The key
strategy of the algorithm is to use a semi-greedy approach in
which knowledge is distributed amongst neighboring agents,
and assigning a value only once instead of an iterative ap-
proach. Furthermore, CoCoA uses a unique-first approach to
improve the solution quality. It is designed such that it can
solve DCOPs as well as Asymmetric DCOPS, with only few
messages being communicated between neighboring agents.
Experimentally, through evaluating graph coloring problems,
randomized (A)DCOPs, and a sensor network communica-
tion problem, we show that CoCoA is able to very quickly
find solutions of high quality with a smaller communication
overhead than state-of-the-art DCOP solvers such as DSA,
MGM-2, ACLS, MCS-MGM and Max-Sum. In our asym-
metric use case problem of a sensor network, we show that
CoCoA not only finds the best solution, but also finds this
solution faster than any other algorithm.

Introduction

Distributed Constraint Optimization Problems (DCOPs) is
a class of optimization problems in which discrete vari-
ables are controlled by distributed agents and the optimiza-
tion function itself operates over the complete set of vari-
ables (Hirayama and Yokoo 1997). DCOPs are encountered
in many fields such as in wireless LAN channel alloca-
tion (Yeoh and Yokoo 2012), coordination of mobile sensing
teams (Yedidsion, Zivan, and Farinelli 2014) or coordination
of tasks (Farinelli et al. 2008). By definition of DCOP, the
involved agents are part of a team and need to cooperate in
order to perform well on the global task. Usually in DCOPs,
cooperation between agents is achieved by passing messages
from one agent to another.

A number of complete algorithms have been proposed
to find the optimal solution of a DCOP, amongst which
are ADOPT (Modi et al. 2005), DPOP (Petcu and Falt-
ings 2005), NCBB (Chechetka and Sycara 2006) and Asyn-
chronous Forward Bounding (Gershman, Meisels, and Zivan
2009). However, DCOP problems are NP-hard (Modi 2003),
so the effort to find the optimal solution becomes intractable
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for increasingly large-scale problems. Therefore, incomplete
DCOP algorithms trade a distance from the optimal solution
for convergence speed and are thus more suited for large-
scale problems. Examples of incomplete DCOP solvers are
DBA (Yokoo et al. 1998), DSA (Fitzpatrick and Meertens
2003), Max-Sum (Farinelli et al. 2008), MGM and MGM-
2 (Maheswaran, Pearce, and Tambe 2004).

Recently, an extension on the DCOP framework has been
described in which agents may value a set of constrained
assignments differently. In these Asymmetric DCOPs (AD-
COPs) constraints have different costs for their agents. The
ACLS and MCS-MGM algorithms (Grubshtein et al. 2010;
Grinshpoun et al. 2013) have been proposed to enable solv-
ing this class of problems. More recently it has also been
shown that the Max-Sum ADVP algorithm can solve AD-
COPs (Zivan, Parash, and Naveh 2015).

In this paper, a motivating case study is to find an optimal
configuration of a sensor network, tasked with monitoring
the cargo of a shipping container for an extensive period of
time. Since in sensor networks the communication between
nodes is of the largest influence on the battery lifetime, we
need to minimize the communication between nodes during
the optimization process, and require an algorithm that is
guaranteed to converge to a solution as quickly as possible.
However, most existing DCOP algorithms use an iterative
approach, which requires many rounds of message passing
during the optimization process making them unsuitable for
this case study.

In this paper we introduce a new DCOP algorithm, de-
noted as Cooperative Constraint Approximation (CoCoA),
which uses a non-iterative, semi-greedy approach with a
one-step look ahead. We show that it can not only cope with
asymmetric constraints, but also finds high quality solutions
much faster than other (A)DCOP solvers. Experimentally
we show that in some cases this leads to a reduction of up
to two orders of magnitude number of transmitted messages
and cost function evaluations, thus leading to superior run-
ning times.

DCOP: Problem Statement and Challenges

DCOPs are defined as a tuple T = 〈A,X ,D,R〉 in which A
is a finite set of agents {A1, A2, . . . , An} and X is a finite set
of variables {X1, X2, . . . , Xn} with finite discrete domains
{D1, D2, . . . , Dn} from D such that Xi ∈ Di. Each agent
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Figure 1: Example of a constraint graph in a graph coloring
problem with six agents (vertices), variables (colors), and
nine constraints (edges) between them.

Ai is assigned one variable Xi, and therefore |A| = |X | =
|D|. Then, R is a set of relations (constraints) in which each
constraint C ∈ R defines a non-negative cost. For DCOPs
such costs are defined for every possible value assignment of
a set of variables C: Di1 ×Di2 × . . .×Dik → R≥0, while
for ADCOPs each constraint defines a set of costs for each
involved variable, i.e. C: Di1 ×Di2 × . . . ×Dik → R

k
≥0.

Having all definitions of T , in (A)DCOPs the goal of the
agents is to minimize the global cost function, i.e.

argmin
X

∑
R. (1)

In the rest of this paper we shall only take into account
binary constraints, in which exactly two variables are con-
sidered, of the form Ci,j : Di ×Dj → R

2
≥0.

Definitions We refer to agents as neighbors if there is a
constraint between their corresponding variables. This fol-
lows the real-life situation of limited range between agents,
e.g. communication range in wireless networks. The set of
all neighbors of an agent Mi ⊆ A is called the neighbor-
hood. The set X̂i denotes the set of known assigned values
of the neighbors of Ai and is also referred to as the current
partial assignment (CPA). Note that the constraints between
variables can be shown as an undirected graph, see Figure 1.

DCOP: Existing Solvers

DCOP solvers can be categorized into complete and incom-
plete. Complete solvers search the entire solution space and
are guaranteed to find the optimal solution, while incomplete
solvers try to find a “good” solution in a reasonable time.

Incomplete solvers such as DSA (Fitzpatrick and
Meertens 2003), MGM-2 (Maheswaran, Pearce, and Tambe
2004), ACLS or MCS-MGM (Grubshtein et al. 2010) are lo-
cal search algorithms, trying to approximate the global func-
tion by solving a local problem. DSA is known for its low
communication overhead and its ability to find high quality
solutions for symmetric DCOPs (Pearce and Tambe 2007),
whereas ACLS and MCS-MGM can also solve ADCOPs.

The Max-Sum algorithm (Farinelli et al. 2008) is another
incomplete solver, that works in a completely different man-
ner. It operates on a bipartite graph, separating variable from
constraint nodes, and spreads information through the graph
to estimate the effect of value assignments. It is capable
of finding very high quality solutions, but only when the
graphs contain no cycles. In order to deal with cyclic graphs
and asymmetric costs, variations of the algorithm have been
proposed such as Max-Sum ADVP (Zivan and Peled 2012).
Max-Sum and the local search algorithms apply an iterative

approach; they evaluate their performance, share informa-
tion, update their variable, and repeat until a stopping crite-
rion is met—usually a predetermined number of iterations.

Challenges

In this paper we propose an algorithm that is capable of solv-
ing (A)DCOPs with a minimal communication and compu-
tation overhead. We hypothesize we can achieve this by not
iteratively sending messages and updating the variable, but
instead using a greedy, one-step look ahead approach. This
means that each agent takes a decision based on informa-
tion only from its direct neighbors and will activate agents
sequentially. Under these circumstances we need to address
the following challenges:

Challenge 1: Premature Assignment A non-iterative
DCOP solver assigns a value to a variable only once. In its
most simple form an agent would only look at its local con-
straint costs and the known values of its neighbors. It would
select a value that minimizes its local cost and update its
variable. Greedy algorithms have the advantage of converg-
ing very fast, but early choices may turn out to be suboptimal
when neighbors have assigned their value.

Challenge 2: Synchronization When two neighbor
agents are both deciding for a new value a race condition
may occur, i.e. the outcome of one agent arrives too late
for the other agent’s decision. For iterative algorithms this
is not an issue since in a later iteration one agent can correct
for any incorrect assumptions; for non-iterative solver this is
not possible.

Challenge 3: Asymmetric Costs An incomplete solver
may end up in a local minimum if a local beneficial assign-
ment leads to poor global results. An agent may assign a
variable to decrease its local cost, but potentially increases
the cost of its neighbors. This over-greediness may cause
the global cost to increase or lead to unstable solutions. In
strongly asymmetric constraints for every combination of
value assignments at least one agent can improve its local
cost by shifting to another assignment without decreasing
the global cost. Under these circumstances iterative solvers
may not converge to the minimum where both agents are as-
signed the same value, but agents on either side of the con-
straint will maintain a cycle of assigning different values to
improve their local cost.

CoCoA: A New DCOP Solver
To address the challenges introduced in the previous section
we propose a new incomplete ADCOP algorithm based on
a semi-greedy strategy, denoted as Cooperative Constraint
Approximation (CoCoA), employing three key ideas:

1. A one-step look ahead to consider the effect of an assign-
ment on the cost of neighbors. This is especially effective
when a neighbor is constrained in its choices;

2. A unique-first approach, such that an agent will only as-
sign a value if it is a unique local optimum for its variable.
If it cannot find a unique solution, the decision will be de-
layed until more information is available;

3. A state machine to spread and keep track of the algo-
rithm’s activity, prevent dead-locks or endless loops.
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By minimizing not only the local cost, but also the cost of
its single-hop neighbors, we hypothesize that CoCoA can
find a solution with a low global cost with relatively lit-
tle overhead. When CoCoA is triggered it first inquires its
neighbors what the effect of different assignments would be
for their local cost. The neighboring agents decide the re-
sulting cost effect asynchronously and return to the inquirer
what the minimum effect would be. Upon receiving the es-
timated costs the active agent will assign the value that min-
imizes the sum of all incurred costs, including its own.

During the variable assignment process it is possible that
multiple values suit equally well, especially in an early stage
of the algorithm when multiple neighbors have no assigned
values. In such cases the assignment will be postponed un-
til a neighbor has changed its value. We hypothesize that
this unique-first approach will help in avoiding premature
convergence to a sub-optimal solution. However, this ap-
proach may lead to a deadlock if all the neighbors are wait-
ing for each other. Therefore we partition the algorithm in
four states and have agents inform their neighbors about
their internal state. When all neighbors are in the HOLD state,
a bound denoting the “allowed uniqueness” is increased until
a decision can be made. The proposed algorithm is given in
pseudocode in Algorithm 1, with accompanying set of mes-
sages and agent states in Table 1 and Table 2, respectively
and discussed in detail in the subsequent section.

Remark: Due to its non-iterative approach, it is impossi-
ble to recover from early choices. This may lead to situations
in which a variable must be set to a value that leads to a very
high cost, i.e. it has to break a hard constraint. Therefore we
expect that CoCoA may not perform well in a problem with
many hard constraints.

CoCoA: Algorithm Description

CoCoA assumes that all neighbors Ai can communicate
with, Mi, are known. Also, each Aj ∈ Mi must know its
neighbor’s domain Di. Finally we assume that all nodes are
reachable from any other node, i.e. for every pair of nodes
there must be a set of edges that connects them.

Initially all agents start in the IDLE state and activation
occurs at any random node. As soon as one agents finishes
the algorithm it will trigger the algorithm for its neighbors.
When any Ai has to find an assignment, it will first send
an INQMSG(i, X̂i) message to its neighbors (line 3 of Al-
gorithm 1). This will trigger agents Aj ∈ Mi to calculate
for every possible assignment for Xi what the lowest cost
would be for Aj taking into account the CPA and that as-
signment for Xi. That is, each Aj ∈ Mi calculates for every
Xi,k ∈ Di

Θj,k = min
Xj,l∈Dj

∑
C∈Rj

C
(
X̂j ∩Xi,k ∩Xj,l

)
, (2)

where Xi,k denotes that Xi is assigned the kth value of Di.
If variables are not yet assigned in X̂j , the cost of their

constraints can not be determined and the mean cost is used,
i.e. a one-step look ahead is performed. The resulting cost
map Θj = {Θj,1,Θj,2, . . . ,Θj,|Di|} is sent via a COST-

Algorithm 1 CoCoA Algorithm
When started or upon receiving UPDSTATE(j,DONE) at on Ai:

Require: state:=IDLE or state:=HOLD
1: state← ACTIVE
2: send ∀Aj ∈Mi UPDSTATE(i,ACTIVE)
3: send ∀Aj ∈Mi INQMSG(i, X̂i)
4: wait for all COSTMSG(Θj )
5: find δ using (3)
6: if U(Xi) ≤ β or number of idle/active neighbors is 0 then
7: Xi ← random from Xi,δ

8: state← DONE
9: send ∀Aj ∈Mi UPDSTATE(i,DONE)

10: send ∀Aj ∈Mi SETVAL(i, X̂i)
11: else
12: state← HOLD
13: send ∀Aj ∈Mi UPDSTATE(i,HOLD)
14: end if

Upon receiving INQMSG(i, X̂i) at Aj :
15: for all Xi,k ∈ Di do
16: find Θj,k using (2)
17: end for
18: Send Ai COSTMSG(Θj )

Upon receiving UPDSTATE(i, S):
19: Store state S of neighbor Ai

20: if S is HOLD and my state is HOLD and number of idle/active
neighbors is 0 then

21: β++
22: Repeat algorithm
23: else if S is DONE and my state is HOLD then
24: Repeat algorithm
25: end if

MSG(Θj) back to the inquiring Ai. Then, Ai finds Xi by

δ = argmin
k

|Mi|∑
j=1

Θj,k, (3)

and assigning Xi,δ . The minimizing value may achieve a
minimum for more than one value of Xi since the argmin
operator can return a set of minimizers. The uniqueness
of this minimal cost is the number of distinct values that
achieve this minimum, defined as U(Xi) = |δ|.

This uniqueness will be compared with a bound β to de-
termine if this solution is accepted (line 6 of Algorithm 1).
Initially β = 1, so that only unique solutions are accepted.
If β < U(Xi) and at least one neighbor is ACTIVE or IDLE
the algorithm switches to the HOLD state and waits until an-
other node has updated its state to DONE before the algo-
rithm is run again. If an UPDSTATE(j,HOLD) message is
received, indicating that the last neighbor is in the HOLD
state, then β is increased by one and the algorithm is re-
peated (line 21 of Algorithm 1). This mechanism makes sure
that premature choices are avoided until more information is
available. Initially, when no agents have a value assigned
this may occur frequently, but as more variables are set the
chances of such impasses decrease.

If U(Xi) ≤ β then Xi is chosen randomly from all min-
imizers and is communicated to neighbors Aj ∈ Mi in a
SETVAL(i,Xi) message. This makes the neighbors Aj up-
date their CPA (as they now know the value of Xi) and trig-
gers the algorithm for them.
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Table 1: List of messages sent by CoCoA
Message Description

INQMSG(i, X̂i) Sent by Ai at start of algorithm
COSTMSG(Θj) Neighbors’ reply; contains Θj

SETVAL(i,Xi) Indicator: Ai assigned a value to Xi

UPDSTATE(i, S)* Sent when Ai updates its state to S

Table 2: Agents’ potential states in CoCoA
State Description

IDLE Agent’s default/initial state; indicates agent
is active, but not yet started.

ACTIVE State after agent’s activation; finding an as-
signment for its variable.

HOLD At an impasse; delay variable assignment
and await information from neighbors.

DONE Final CoCoA state; indicates that agent has
assigned a final value to its variable.

CoCoA: Example Run

Let CoCoA solve a graph coloring problem, where each
variable must be assigned value, which can be either blue
(B), green (G), or yellow (Y) such that ∀iDi = {B, G, Y}.
The constraints in the graph coloring problem are that neigh-
boring variables should not have the same color—a cost of
one is induced for every pair of neighbors that are assigned
the same color. In the example in Figure 1 the variables of
A1, A2, and A6 are already assigned a color. Let us assume
that this is the starting condition and we have to find the
best assignment in this situation starting at A3. As we shall
see under these premises the best solution must violate some
constraints—there is no perfect solution with zero cost.

Agent A3 starts by sending UPDSTATE(3,ACTIVE) and
INQMSG(3, X̂3) to all of its single-hop neighbors Aj ∈
M3 = {A1, A2, A4, A5}, where X̂3 = {X1 = G, X2 = Y}.
As these messages arrive at all of the neighbors, they will
save the information that is in the CPA and the state of A3.

Each of the neighbors will then calculate a cost map Θj ,
which contains for every assignment Xi,k ∈ Di, what the
lowest possible local cost is, given the CPA (2). Agent A1

will return a COSTMSG(Θ1) message with the mapping
Θ1 = {G → 1, Y → 0, B → 0} and for agent A2 this map-
ping will be Θ2 = {G → 0, Y → 1, B → 0}. For both A4

and A5 it will be Θ4 = Θ5 = {G → 0, Y → 0, B → 1}, and
agent A3 its own costs are Θ3 = {G → 1, Y → 1, B → 0}.
All cost maps will be received by A3, which sums over the
possible assignments and finds {G → 2, Y → 2, B → 2}.
There are now three potential assignments leading to the
same minimal cost. Since initially β = 1, the choice is de-
layed until more information is available (because β < 3 and
other neighbors are still either ACTIVE or IDLE). Agent A3

sends an UPDSTATE(3,HOLD) to its neighbors.
Since A1 and A2 are already DONE they will not react to

the new information. Agents A4 and A5 are now activated
and after inquiring their neighbors, they gather a combined

mapping Θj = {G → 2, Y → 2, B → 1}. They can both
find a unique minimal solution, so they assign their value to
Xj ← B. Agents A4 and A5 send a SETVAL(j, B) to spread
the algorithm’s activity and their new value. Upon receiving
this information the neighbors update their CPA accordingly.
Immediately after, an UPDSTATE(j,DONE) message is sent,
notifying all neighbors that they are now done.

Activity returns to A3, who receives two UPD-
STATE(j,DONE) messages. After the first message it will
assume that another neighbor is still active and will run the
algorithm again without increasing β. This time, A3 will
find assignment costs {G → 2, Y → 2, B → 3} (assuming
that one of the neighbors is done, otherwise it would contain
B → 4; this is a race condition). As there are two mini-
mizers and the uniqueness bound β = 1, A3 will go to the
HOLD state. After the second UPDSTATE(j,DONE) message
arrives, A3 knows that there are no more active neighbors,
so it will increase its bound β ← 2. Now it will find the cost
of assignments to be {G → 2, Y → 2, B → 4} with two
distinct minima; since the uniqueness bound is now 2, it will
select a random minimizer out of the two.

CoCoA: Termination Guarantees

With the state-mechanism in place, one could run the risk of
entering an endless loop. We have the following Proposition:
Proposition 1. The CoCoA algorithm will converge after a
finite number of messages and function evaluations.

Proof. Assume a situation in which an agent Ai and all of
its neighbors are in the HOLD or DONE state. At some point
Ai receives an UPDSTATE(j, S) message and it will find that
there are no more active neighbors, thus increases its β by
one. CoCoA will run again and either there will be a unique
solution or not. If no solution is found, Ai will set its state
to HOLD, we are again at an impasse, and the process will
repeat. At some point however β = |Di| since the domain is
finite. At this point any assignment must satisfy U(Xi) ≤ β,
so a value will be picked, and an endless loop is avoided.

CoCoA: Privacy

When solving ADCOPs there is always the possibility of
transmitting the full local constraint cost matrix to one
agent’s neighbors. Sharing all constraint information be-
tween neighbors, and adding the received costs to the local
costs, effectively converts any ADCOP into an equivalent
symmetric DCOP. This strategy is also referred to as Private
Events as Variables (Maheswaran et al. 2004), and the main
motivation not to use this strategy is the loss of privacy.
Proposition 2. CoCoA preserves at least as much privacy
as the Max-Sum.

Proof. The Max-Sum algorithm is known to be more pri-
vacy preserving than the local search algorithms ACLS and
MCS-MGM (Zivan, Parash, and Naveh 2015). Only in two
iterations entries from the cost matrices are exchanged be-
tween agents. In other iterations the shared values are de-
rived from multiple entries as information spreads through
the graph. CoCoA, on the other hand, shares cost matrix en-
tries only once, i.e. before any agent has assigned a value
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and after that it is always derived from multiple entries. In
CoCoA, for each assignment, the lowest total cost is sent
taking into account the complete CPA (line 16 of Algo-
rithm 1). As with Max-Sum, in every message to Ai, |Di|
values are transmitted, however since CoCoA does not iter-
ate, the number of exchanged messages is lower.

CoCoA Performance: Experimental Results

CoCoA is tested and compared against state of the art DCOP
solvers, namely: DSA (Fitzpatrick and Meertens 2003)
(variant C, with update probability, p = 0.5), MGM-2 (Ma-
heswaran, Pearce, and Tambe 2004) (with offer probabil-
ity p = 0.5), Max-Sum ADVP (Zivan, Parash, and Naveh
2015) from hereon also referred to as simply Max-Sum,
(switching graph direction after 100 iterations, value propa-
gation after two switches, and using the constraint standard
inner order), ACLS (with update probability p = 0.5) and
MCS-MGM (Grubshtein et al. 2010) (non-parametric). Also
we show the individual effects of one-step lookahead and
the unique-first approach by showing the results for CoCoA
with and without the unique-first (UF) strategy.

For all experiments 100 problems are generated (the type
of problems will be described subsequently) and the pre-
sented results are the average over all problems. To compare
the performance of CoCoA we look at the following per-
formance metrics: (i) the cost of the final solution (S), (ii)
the number of transmitted messages (M), (iii) the number of
cost function evaluations (E), and (iv) running time of the
algorithm (T). A cost function evaluation is defined as com-
puting or looking up the local cost of one constraint, similar
to Non Concurrent Constraint Checks (NCCCs) (Meisels et
al. 2002). These are not necessarily non-concurrent but they
do indicate a non-implementation specific measurement of
computational effort. We keep track of the global cost func-
tion and when no better solutions are found for more than
100 iterations the solver is stopped. Afterwards we report the
performance metrics at the moment where a solver was first
within 1% of the best solution. This approach is similar to
an anytime framework as described in (Zivan, Okamoto, and
Peled 2014), but instead of keeping track of the best state at
every agent, we maintain this information in the experiment
script; this information is only used for evaluation.

The solvers are implementated in Java 1.7, and the ex-
periments are set up in Matlab 2015b, which is also used
to post-process and present the result figures1. The experi-
ments are carried out on a laptop with an Intel Core i7-3720
CPU 2.6 GHz and 8 GB RAM.

Graph Coloring

Experiment Description A common problem for bench-
marking DCOP solvers is the graph coloring problem
e.g. (Maheswaran, Pearce, and Tambe 2004; Modi et al.
2005; Rogers et al. 2011). As in the example run, the val-
ues of X represent the colors of nodes, and the solvers need
to assign colors such that nodes on the ends of edges have

1For a replicability of results and figures, the source code is
available upon request, or at https://github.com/coenvl/mSAM.

Table 3: Graph coloring experiment results
Algorithm I S M E T

CoCoA N/A 183 8827 137820 0.5
CoCoA UF N/A 147 15402 151916 0.8
ACLS 35 189 101029 193588 3.5
DSA 200 129 28281 1176640 18.9
MCSMGM 58 144 127964 213273 6.0
MGM2 80 184 98236 451221 8.1
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Figure 2: Graph coloring experiment: DSA finds the best
solution, but CoCoA UF finds a similar solution in less time.

different colors. In the first experiment every constraint vio-
lation will induce a cost of 1. In the experiment the number
of colors |D| = 3, so the cost matrix for every constraint is
C = I3. The graphs are generated by selecting n = 500 ran-
dom points in two dimensional space using a Poisson point
process, representing the variables, and the constraints are
chosen as the edges of a Delaunay triangulation between
those points—the average density of the graphs is 0.01.

Results In Figure 2 the solution cost is plotted against the
running time for several algorithms, while Table 3 shows the
full set of metrics. CoCoA UF finds a solution of near op-
timal cost in a single iteration, requiring less function eval-
uations than any other algorithm, and second least number
of messages; therefore it is also the fastest algorithm. The
result demonstrates that the unique-first approach definitely
provides a benefit in terms of eventual solution cost, as Co-
CoA UF finds a solution that is 20% better than CoCoA at
the cost of some additional messages and cost function eval-
uations, almost as good as DSA, which finds the best.

In the experiment Max-Sum is left out since it is unable
to converge to a solution. This is because there are |D| “mir-
rorred” solutions that perform equally well, and there is no
local preference of one coloring over the other.

Semi-Randomized Asymmetric Problems

Experiment Description In the second experiment we gen-
erate semi-random asymmetric problems by creating scale-
free graphs according to (Albert and Barabási 2002) with
an initial graph of ten randomly connected nodes, and iter-
atively adding up to four nodes until n = 200, resulting in
graphs with an average density of 0.04. The variable domain
size |Di| = 10, and for every constraint an integer semi-
random cost is generated for both sides of the constraints. A
cost of zero is selected with a probability of p = 0.35 and
uniformly randomly chosen in the domain [1, 100] for the
remainder. This setup recreates the experiment as described
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Table 4: Semi-randomized asymmetric experiment results
Algorithm S M E T

CoCoA 29316 4813 1595067 0.3
CoCoA UF 27426 6873 1334186 0.3
ACLS 26550 153079 1295569 5.0
DSA 32337 40820 1250377 3.8
MCSMGM 22200 1349161 5396643 59.8
MGM2 35062 91805 3287152 11.5
Max Sum 27077 1709434 51220868 133.9
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Figure 3: Semi-randomized asymmetric experiment: CoCoA
finds a Pareto-optimal solution, but MCS-MGM eventually
finds the best solution after more than 60 seconds.

in (Grinshpoun et al. 2013, Section 5.2).
Results Figure 3 presents the solution costs of different

algorithms as they converge to a solution. CoCoA and Co-
CoA UF quickly converge to a good solution, more than 10
times faster than any other algorithm. The symmetric DCOP
solvers DSA and MGM-2 fail to find a solution. The Max-
Sum algorithm also converges to a reasonable solution, but
only after more than two minutes (not visible in Figure 3).
The MCS-MGM algorithm shows a “discovery” phase in the
first 25 seconds, after which it finds a global optimum, which
is better than any other algorithm finds. The added overhead
of the MCS-MGM algorithm can clearly be seen in Table 4.
The better solution is found by sending nearly 200 times the
amount of messages, evaluating 4 times the number of cost
functions and running 200 times longer than CoCoA UF.

Sensor Planning

Experiment Description The final experiment is motivated
by an example in which a sensor network is used to moni-
tor the cargo state of a shipping container. The sensors have
to maintain a good quality estimation of the cargo such that
they can either warn the cargo owner in case the shipping
circumstances unexpectedly change, or provide a trace of
the cargo state upon arrival. In this scenario the cargo es-
timation has to be optimized, but is constrained by lim-
ited battery life. The scenario is explained in more detail
in (van Leeuwen et al. 2014), from which we use the out-
come to model the effect of the communication frequency
on the estimation quality, and on the battery lifetime. In
this problem X are communication rates between sensors,
and hard constraints make sure that the agents (nodes) will
meet the minimum required battery life time. Asymmetric
constraints between agents are used to model the effect that
more shared information does not reduce the local estima-
tion error, but it does improve the performance of neighbor-

Table 5: Sensor planning experiment results
Algorithm S M E T

CoCoA 2365 1219 388874 0.1
CoCoA UF 2365 1763 331576 0.1
ACLS 3934 7018 43516 0.3
DSA 3332 13084 426799 1.3
MCSMGM 2379 197262 951732 10.7
MGM2 2917 24487 1161487 3.9
Max Sum 1246306 12013 1299567 0.9
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Figure 4: Sensor planning experiment: CoCoA finds the op-
timal solution and converges the fastest out of all evaluated
algorithms.

ing nodes. The domains D are integer communication fre-
quencies of [1, 11]Hz, and the networks are generated by
connecting n = 50 nodes, connected in randomly generated
graphs with an average density of 0.17.

Results The results are show in Figure 4 and Table 5.
They show that CoCoA is not only capable of finding the
best solution, but also does so in the least amount of time and
using the fewest messages from all considered algorithms—
only in terms of computational effort, ACLS is more effi-
cient. However, ACLS is unable to find a better solution than
the symmetric solvers DSA and MGM-2. This may con-
tribute to its low evaluation count—it is simply considered
as “converged” after a small number of evaluations.

Conclusions

We have proposed and investigated a new ADCOP solver:
CoCoA. We compared its performance with state of the art
solvers by using (i) three-color graph coloring, (ii) random-
ized asymmetric problems and (iii) a sensor network use
case problem. We showed that CoCoA finds high quality
solutions, with a similar overhead for symmetric problems,
and a much smaller overhead for asymmetric problems. The
MCS-MGM algorithm found better solutions for random-
ized asymmetric problems, but required up to 200 times
more messages, and over 4 times more cost function evalu-
ations. In the sensor planning problems CoCoA finds better
solutions, and does so faster than the benchmarks. We also
conclude that preferring unique solutions whenever possi-
ble, yields a clear advantage in terms of solution cost.

Because CoCoA requires no iterative approach, it can be
used in applications where fast convergence is required, or
when the communication capabilities is a limiting factor.
However, because it cannot recover from early choices, in
the presence of hard constraints, it may not perform well.
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The work is not complete—it is important to investigate how
CoCoA performs under various circumstances, e.g. graph
structures and densities, or different constraint functions.
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