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Abstract

Latent tree analysis seeks to model the correlations among
a set of random variables using a tree of latent variables. It
was proposed as an improvement to latent class analysis — a
method widely used in social sciences and medicine to iden-
tify homogeneous subgroups in a population. It provides new
and fruitful perspectives on a number of machine learning
areas, including cluster analysis, topic detection, and deep
probabilistic modeling. This paper gives an overview of the
research on latent tree analysis and various ways it is used in
practice.

Much of machine learning is about modeling and utilizing
correlations among variables. In classification, the task is to
establish relationships between attributes and class variables
so that unseen data can be classified accurately. In Bayesian
networks, dependencies among variables are represented as
directed acyclic graphs and the graphs are used to facilitate
efficient probabilistic inference. In topic models, word co-
occurrences are accounted for by assuming that all words are
generated probabilistically from the same set of topics, and
the generation process is reverted via statistical inference to
determine the topics. In deep belief networks, correlations
among observed units are modeled using multiple levels of
hidden units, and the top-level hidden units are used as a
representation of the data for further analysis.

Latent tree analysis (LTA) seeks to model the correlations
among a set of observed variables using a tree model, called
latent tree model (LTM), where the leaf nodes represent ob-
served variables and the internal nodes represent latent vari-
ables.The dependence between two observed variables is ex-
plained by the path between them.

Despite their simplicity, LTMs subsume two classes of
models widely used in academic research. The first one is
latent class models (LCMs) (Lazarsfeld and Henry 1968),
(Knott and Bartholomew 1999), which are LTMs with a sin-
gle latent variable. They are used for categorical data clus-
tering in social sciences and medicine. The second class is
probabilistic phylogenetic trees (Durbin et al. 1998), which
are a tool for determining the evolution history of a set
of species. Phylogenetic trees are special LTMs where the
model structures are binary (bifurcating) trees and all the
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variables have the same number of possible states.
LTA also provides new and fruitful perspectives on a num-

ber of machine learning areas. One area is cluster analy-
sis. Here finite mixture models such as LCMs are com-
monly used. A finite mixture model has one latent vari-
able and consequently it gives one soft partition of data.
An LTM typically has multiple latent variables and hence
LTA yields multiple soft partitions of data simultaneously.
In other words, LTA performs multidimensional clustering
(Chen et al. 2012), (Liu et al. 2013). It is interesting because
complex data usually have multiple facets and can be mean-
ingfully clustered in multiple ways.

Another area is topic detection. Applying LTA to text
data, we can partition a collection of documents in multi-
ple ways. The document clusters in the partitions can be in-
terpreted as topics. Furthermore, it is possible to learn hi-
erarchical LTMs where the latent variables are organized
into multiple layers. This leads to an alternative method for
hierarchical topic detection (Liu, Zhang, and Chen 2014;
?), which has been shown to find more meaningful topics
and topic hierarchies than the state-of-the-art method based
on latent Dirichlet allocation (Paisley et al. 2015).

The third area is deep probabilistic modeling. Hierarchi-
cal LTM and deep belief network (DBN) (Hinton, Osindero,
and Teh 2006) are similar in that they both consist of mul-
tiple layers of variables, with an observed layer at the bot-
tom and multiple layers of hidden units on top of it. One
difference is that, in DBN, units from adjacent layers are
fully connected, while HLTM is tree-structured. It would be
interesting to explore the middle ground between the two
extreme and develop algorithms for learning what might be
called sparse DBNs. Learning structures for deep models is
an interesting open problem. Extension of LTA might offer
one solution (Chen et al. 2017).

The concept of latent tree models was introduced
in (Zhang 2002), (Zhang 2004), where they were referred
to as hierarchical latent class models. The term “latent tree
models” first appeared in (Zhang et al. 2008), (Wang, Zhang,
and Chen 2008). (Mourad et al. 2013) surveyed the research
on latent tree models as of 2012 in details. This paper pro-
vides a concise overview of the methodology. The exposi-
tion are more conceptual and less technical than (Mourad et
al. 2013). Developments after 2012 are also included.
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Preliminaries

A latent tree model (LTM) is a tree-structured Bayesian
network (Pearl 1988), where the leaf nodes represent ob-
served variables and the internal nodes represent latent vari-
ables. An example is shown in Figure 1 (a). All variables
are assumed to be discrete. The model parameters include a
marginal distribution for the root Y1 and a conditional dis-
tribution for each of the other nodes given its parent. The
product of the distributions defines a joint distribution over
all the variables.

By changing the root from Y1 to Y2 in Figure 1 (a), we
get another model shown in (b). The two models are equiv-
alent in the sense that they represent the same set of dis-
tributions over the observed variables X1, . . . , X5 (Zhang
2004). It is not possible to distinguish between equivalent
models based on data. This implies that edge orientations
in LTMs are unidentifiable. It therefore makes more sense
to talk about undirected LTMs, which is what we do in this
paper. One example is shown in Figure 1 (c). It represents
an equivalent class of directed models, which includes the
two models shown in (a) and (b) as members. In implemen-
tation, an undirected model is represented using an arbitrary
directed model in the equivalence class it represents.

In the literature, there are variations of LTMs where some
internal nodes are observed (Choi et al. 2011) and/or the
variables are continuous (Poon et al. 2010), (Kirshner 2012),
(Song et al. 2014). In this paper, we focus on basic LTMs as
defined in the previous two paragraphs.

We use |W | to denote the number of possible states of a
variable W . An LTM is regular if, for any latent node Z,

we have that |Z| ≤
∏k

i=1
|Zi|

maxk
i=1

|Zi| , where Z1, . . . , Zk are the
neighbors of Z, and that the inequality holds strictly when
k = 2. For any irregular LTM, there is a regular model that
has fewer parameters and represents that same set of distri-
butions over the observed variables (Zhang 2004). Conse-
quently, we focus only on regular models.

Learning Latent Tree Models

To fit an LTM to a dataset, one needs to determine: (1) the
number of latent variables, (2) the number of possible states
for each latent variable, (3) the connections among all the
variables, and (4) the probability distributions.

There are three commonly used algorithms for learn-
ing LTMs: EAST (Expansion, Adjustment and Simplifica-
tion until Termination) (Chen et al. 2012), BI (Bridged Is-
lands) (Liu et al. 2013), and CLRG (Chow-Liu and Recur-
sive Grouping) (Choi et al. 2011). EAST is a search-based

Figure 1: The undirected latent tree model in (c) represents
an equivalent class of directed latent tree models, which in-
cludes (a) and (b) as members.

algorithm and it aims to find the model with the highest BIC
score. It is the slowest among the three and finds better mod-
els, as measured by held-out likelihood, than the other two
algorithms (Liu et al. 2013). It is often used to analyze sur-
vey data from medicine and social sciences, which typically
contain dozens of observed variables.

BI first divides the observed variables into unidimensional
subsets. A set of variables is unidimensional if the correla-
tions among them can be properly modeled using a single la-
tent variable, which is determined using a test that compares
the best one-latent-variable model and the best two-latent-
variable. BI then introduces a latent variable for each unidi-
mensional subset to form a LCM. The LCMs are metaphor-
ically called islands. The latent variables in the islands are
linked up using Chow-Liu’s algorithm (Chow and Liu 1968)
to form a global model.

CLRG first constructs a tree over the observed variables
using Chow-Liu’s algorithm. It then recursively transforms
patches of the model by adding latent variables and/or re-
arranging the edges. Here a patch consists of an internal
node and its neighbors. Information distances, as defined
in (Erdos et al. 1999), between pairs of variables in the
patch are estimated from data. They are used to transform
the patch into a latent tree based on a theorem which states
that, if the variables are indeed from a tree model, informa-
tion distances between them are additive w.r.t. the tree.

Empirical results reported in (Liu et al. 2013) show that
BI consistently yields better models than CLRG in terms
of held-out likelihood. BI scales up well if progressive EM
is used to estimate the parameters of the intermediate mod-
els, and was able to handle a text dataset with 10,000 dis-
tinct words (variables) and 300,000 documents in around 11
hours on a single machine (Chen et al. 2016). CLRGC also
scales up well if parameter learning is based on the method
of moments and tensor decomposition, and was able to pro-
cess a medical dataset with around 1,000 diagnosis cate-
gories (variables) and 1.6 million patient records in around
4.5 hours on a single machine (Huang et al. 2015).

Improving Latent Class Analysis
As mentioned before, a latent class model (LCM) is an LTM
with a single latent variable, and LCA refers to the process
of fitting an LCM to a dataset. The latent variable gives a
soft partition of data and its states represent clusters in the
partition. LCA is hence a technique for cluster analysis and
it is widely used in social, behavioral and health sciences
(Collins and Lanza 2010). In medical research, it is used to
identify subtypes of diseases, for instance major depression,
where good standards are not available (van Smeden et al.
2013), (Li et al. 2014).

A major issue with LCA is the assumption that all the
observed variables are mutually independent given the latent
variable. In other words, the observed variables are assumed
to be independent in each cluster of data. The assumption
is hence known as the local independence assumption. It is
easily violated in practice and casts doubts on the validity of
the clustering results (van Smeden et al. 2013).

LTMs provide a natural framework where the local inde-
pendence assumption can be relaxed. We illustrate the point
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Figure 2: Models produced on a dataset by LCA (a) and
LTA (b). Numbers next to latent variables are the numbers
of possible states. Edge widths indicate mutual information
between variables.

first using an example from (Fu et al. 2016), where the task is
to divide a collection of patients with vascular mild cognitive
impairment (VMCI) into subclasses based on 27 symptoms
that are related to the concept of Qi Deficiency in traditional
Chinese medicine. Figure 2 (a) shows the LCM learned for
the task and (b) shows the LTM. In the LTM, intermediate la-
tent variables are introduced between the observed variables
at the bottom and the clustering variable Z at the top. We
refer to such models as LTM-based unidimensional cluster-
ing models. The local independence assumption is relaxed
because, given the clustering variable Z, the observed vari-
ables are no longer mutually independent.

The relaxation of the local independence leads to better
model fit. As a matter of fact, the BIC score of the LTM
is -10,022, which is higher than that of the LCM, which is
-10,164. It also leads better clustering results as will be ex-
plained later in this section. In addition, the LTM is also in-
tuitively more reasonable than the LCM. For example, the
symptoms “dry stool or constipation” and “asthenia of defe-
cation” are both about difficulties with defecation. It is hence
reasonable to connect them to Z via an intermediate variable
(Y01), which can be interpreted as the impact of Qi Defi-
ciency on defecation.

LTM-based clustering models can be obtained by first fit-
ting an LTM to data using EAST or BI. This divides the
observed variables into groups, called sibling clusters, each
consisting of the variables directly connected to a latent vari-
able. All sibling clusters are unidimensional and the corre-
lations among the members are properly modeled by cor-
responding latent variables. The latent variables, with one

possible exception1, are then used as features for clustering
instead of the individual observed variables, resulting in a
model similar to the one shown in Figure 2 (b).

A standard way to evaluate a clustering algorithm is to
start with a labeled dataset, remove the class labels, run the
algorithm to partition the resulting unlabeled dataset, and
measure the performance using mutual information between
the partition obtained with the partition induced by the class
labels. Following this practice, (Liu, Poon, and Zhang 2015)
have compared LTM-based cluster analysis with LCA on 30
datasets from UCI, and found that the LTM-based method
outperforms LCA in most cases and often significantly.

Multidimensional Clustering

Complex data usually have multiple facets and can be mean-
ingfully partitioned in multiple ways. For example, a student
population can be clustered in one way based on academic
performances and another based on extracurricular activi-
ties. Movie reviews can be clustered based on sentiment
(positive or negative) or genre (comedy, action, war, etc.).
The respondents in a social survey can be clustered based
on demographic information or views on social issues.

There are efforts on developing clustering algorithms that
produce multiple partitions of data, with each partition be-
ing based, solely or primarily, on a different subset of at-
tributes. We call them multidimensional clustering meth-
ods. (This is not to be confused with multi-view clustering,
which combines information from different views of data
to improve the quality of one single partition.) There are
sequential methods that aim at obtaining additional parti-
tions of data that are novel w.r.t a previous partition, which
can, for instance, be obtained using K-means (Cui, Fern, and
Dy 2007), (Gondek and Hofmann 2007), (Qi and Davidson
2009), (Bae and Bailey 2006). There are also methods that
produce multiple partitions simulataneously (Jain, Meka,
and Dhillon 2008), (Niu, Dy, and Jordan 2010). Those meth-
ods try to optimize the quality of each individual partition
while keeping different partitions as dissimilar as possible.
All of the methods are limited in the number of different
partitions they produce, which is typically 2.

An LTM typically has multiple latent variables, and each
of them can be interpreted as representing one soft partition
of data. As such, LTA is a natural tool for multidimensional
clustering (Chen et al. 2012), (Liu et al. 2013). LTA can de-
termine the number of partitions automatically and it is not
limited in the number of partitions.

We illustrate the use of LTA for multidimensional clus-
tering using an example from (Chen et al. 2012), where a
survey dataset from ICAC — Hong Kong’s anti-corruption
agency — was analyzed using the EAST algorithm. The
structure of the resulting model is shown in Figure 3. There
are 9 latent variables. It is clear that the latent variable Y2

represents a partition of the respondents primarily based on
demographic information; Y3 represents a partition based on

1This is determined by search (Liu, Poon, and Zhang 2015).
If a latent variable is not used as a feature, then all the observed
variables in its sibling cluster are.
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Figure 3: The structure of the LTM obtained from the ICAC
data and some of the probability distributions. Abbrevia-
tions: C – Corruption, I – ICAC, Y – Year, Gov – Gov-
ernment, Bus – Business Sector. Meanings of variables:
Tolerance-C-Gov – ‘tolerance towards corruption in the gov-
ernment’; C-City – ‘level of corruption in the city’; C-
NextY – ‘change in the level of corruption next year’; I-
Effectiveness – ‘effectiveness of ICAC’s work’; I-Powers –
‘ICAC powers’; Confid-I – ‘confidence in ICAC’; etc.

people’s tolerance toward corruption; Y4 represents a par-
tition based on people’s view on ICAC’s performance; Y6

represents a partition based on people’s view on the level of
corruption; Y5 represents a partition based on people’s view
on the trend of corruption; and so on. It makes sense that
there are direct dependencies between Y2 (demographic in-
formation) and Y3 (tolerance toward corruption); between
Y4 (ICAC performance) and Y6 (corruption level); and be-
tween Y4 (ICAC performance) and Y5 (corruption trend).

The conditional distributions of two observed variables
given Y3 are given in Figure 3. The states of the observed
variables are s0 (totally intolerable), s1 (intolerable), s2 (tol-
erable), and s3 (totally tolerable). Based on the distributions,
the three states of Y3 are interpreted as classes of people
who find corruption totally intolerable (Y3 = s0), intoler-
able (Y3 = s1), and tolerable (Y3 = s2) respectively. The
distributions also suggest that people who are tough on cor-
ruption (Y3 = s0) are equally tough toward corruption in
the government and corruption in the business sector, while
people who are lenient towards corruption are more lenient
toward corruption in the business sector than corruption in
the government.

Based on the conditional distributions of the demographic
variables given Y2, the four states of the latent variable are
interpreted as: Y2 = s0 – low income youngsters; Y2 = s1
– women with no/low income; Y2 = s2 – people with good
education and good income; Y2 = s3 – people with poor
education and average income. The conditional distribution
P (Y3|Y2) is also given in Figure 3. It suggests that people
with good education and good income (Y2 = s2) are the
toughest toward corruption, while people with poor educa-
tion and average income ( Y2 = s3) are the most lenient.
This is intuitively appealing and can be a hypothesis for so-

Figure 4: Hierarchical model obtained on a toy text dataset
by HLTA (a) and intermediate models (b, c) created by
HLTA.

cial scientist to verify further.
(Liu et al. 2013) quantitatively compared LTA with the

alternative methods for multidimensional clustering men-
tioned above on the WebKB dataset, which has two ground-
truth partitions (class labels). The class labels were first re-
moved and all algorithms were run to recover the ground-
truth partitions. LTA significantly outperforms all the alter-
native methods.

Hierarchical Topic Detection

(Liu, Zhang, and Chen 2014) propose a method to analyze
text data and obtain models such as the one shown in Figure
4 (a). There is a layer of observed variables at the bottom,
and multiple layers of latent variables on top. Such models
are called hierarchical latent tree models (HLTMs) and the
process of learning HLTMs is called hierarchical latent tree
analysis (HLTA).

The observed variables are binary variables that repre-
sent the absence/presence of words in documents. The level-
1 latent variables model patterns of probabilistic word co-
occurrence, and latent variables at higher levels model co-
occurrences of patterns at the level below. For example, Z14

captures the co-occurrence of the words “card”, “video” and
“driver”; Z15 captures the co-occurrence “windows” and
“dos”; Z22 captures the co-occurrence of the patterns rep-
resented by Z14, Z15, Z16 and Z17; and so on.

The latent variables are also binary. Each of them par-
titions the documents into two clusters. Information about
some of the partitions is given below.

s0 s1
Z14 (0.88) (0.12)
card 0.01 0.47
video 0.02 0.32
driver 0.03 0.20

s0 s1
Z15 (0.85) (0.15)
windows 0.01 0.67
dos 0.01 0.30

s0 s1
Z22 (0.76) (0.24)
windows 0.04 0.34
card 0.02 0.22
graphics 0.02 0.17
video 0.01 0.15
dos 0.02 0.16
computer 0.05 0.21
display 0.02 0.10
drive 0.02 0.10

We see that the two clusters given by Z14 consists of 88%
and 12% of the documents respectively. In the second clus-
ter, the words “card”, “video” and “driver” occur with rel-
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atively high probabilities. It is interpreted as a topic, i.e.,
“video-card-driver”. The words occur with very low prob-
abilities in the first cluster. It is regarded as a background
topic. Similarly, Z15 gives us the topic “windows-dos” and
it consists of 15% of the documents. The topic given by Z22

involves many words related to computers and hence can be
simply understood as a topic about computers.

Latent variables at low levels of the hierarchy capture
“short-range” word co-occurrences and hence they give top-
ics that are relatively more specific in meaning. Latent vari-
ables at high levels of the hierarchy capture “long-range”
word co-occurrences and hence they give topics that are rel-
atively more general in meaning. Hence the model gives us
a hierarchy of topics, part of which is listed below. HLTA is
therefore considered a tool for hierarchical topic detection.

Z22: windows card graphics video dos
Z14: card video driver
Z15: windows dos
Z16: graphics display image
Z17: computer science

To build a hierarchical model, HLTA first learns a model
similar to the one shown in Figure 4 (b). It is a flat LTM in
the sense that every latent variable is directly connected to
at least one observed variable. Next, HLTA converts the la-
tent variables in the flat model (Z11, Z12, . . . , Z111) into ob-
served variables via data completion, and learns a flat model
for them (c). Then, the second flat model is stacked on top
of the first one to get the hierarchical model. In general, the
process is repeated multiple times to get multiple layers of
latent variables.

(Liu, Zhang, and Chen 2014) use the BI algorithm to learn
flat models, which does not scale up. (Chen et al. 2016) im-
proves HLTA by using progressive EM (PEM) to estimate
parameters of the intermediate models. The idea is to esti-
mate the parameters in steps and, in each step, EM is run
on a submodel that involves only 3 or 4 observed variables.
PEM is efficient because a dataset, when projected onto 3 or
4 binary variables, consists of only 8 or 16 distinct cases no
matter how large it is.

Topic detection has been one of the most active research
areas in machine learning. Nested hierarchical Dirichlet pro-
cess (nHDP) (Paisley et al. 2015) is the state-of-the-art
method for hierarchical topic detection. Empirical results re-
ported in (Liu, Zhang, and Chen 2014), (Chen et al. 2016)
show that HLTA significantly outperforms nHDP in terms of
topic quality as measured by the topic coherence score pro-
posed by (Mimno et al. 2011), and HLTA finds more mean-
ingful topic hierarchies. Figure 5 shows a part of the topic
hierarchy that HLTA obtains from all papers published at
AAAI/IJCAI from 2000 to 2015. It is clearly meaningful.
Interested readers can also browse and compare the topic
hierarchies obtained by HLTA and nHDP from 300,000
New York Times articles at http://home.cse.ust.hk/˜
lzhang/topic/ijcai2016/.

Deep Probabilistic Modeling

Deep learning has achieved great successes in recent years.
It has produced superior results in a range of applications,

Figure 5: A part of the topic hierarchy obtained by HLTA
from AAAI/IJCAI (2000 – 2015) papers.

including image classification, speech recognition, language
translation and so on. Now it might be the time to ask
whether it is possible and beneficial to learn structures for
deep models.

To learn the structure of a deep model, we need to deter-
mine the number of hidden layers and the number of hidden
units at each layer. More importantly, we need to determine
the connections between neighboring layers. This implies
that we need to talk about sparse models where neighbor-
ing layers are not fully connected.

Sparseness is desirable and full connectivity is unneces-
sary. In fact, (Han et al. 2015) have shown that many weak
connections in the fully-connected layers of Convolutional
Neural Networks (CNNs) (LeCun and Bengio 1995) can be
pruned without incurring any accuracy loss. The convolu-
tional layers of CNNs are sparse, and the fact is considered
one of the key factors that lead to the success of CNNs.
Moreover, it is well known that overfitting is a serious prob-
lem in deep models. Overfitting is caused not only by exces-
sive amount of hidden units, but also excessive amount of
connections. One method to address the problem is dropout
(Srivastava et al. 2014), which randomly drops out units
(while keeping full connectivity) during training. Sparseness
offers an interesting alternative. It amounts to deterministi-
cally drop out connections.

How can one learn sparse deep models? One method is to
first learn a fully connected model and then prune weak con-
nections (Han et al. 2015). A drawback of this method is that
it is computationally wasteful. Moreover, it does not offer a
way to determine the number of hidden units. We would like
to develop a method that determines the number of hidden
units and the connections between units automatically. The
key intuition is that a hidden unit should be connected to a
group of strongly correlated units at the level below. This
idea is used in convolutional layers of CNNs, where a unit
is connected to pixels in a small patch of an image. In image
analysis, spatial proximity implies strong correlation.
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To apply the intuition to applications other than image
analysis, we need to identify groups of strongly correlated
variables for which latent variables should be introduced.
HLTA offers a plausible solution. As explained in the previ-
ous section, HLTA first learns a flat LTM. To do so, it par-
titions all the variables into groups such that the variables
in each group are strongly correlated and the correlations
can be properly modeled using a single latent variable (Liu,
Zhang, and Chen 2014), (Chen et al. 2016). It introduces
a latent variable for each group and links up the latent vari-
ables to form a flat LTM. Then it converts the latent variables
into observed variables via data completion and repeats the
process to produce a hierarchy.

The output of HLTA is a deep tree model with a layer
of observed variables at the bottom and multiple layers of
latent variables on top (see Figure 4 (a)). To obtain a non-tree
sparse deep model, we can use the tree model as a skeleton
and introduce additional connections to model the residual
correlations not captured by the tree.

(Chen et al. 2017) have developed and tested the idea
in the context of RBMs, which have a single hidden layer
and are building blocks of Deep Belief Networks (Hinton,
Osindero, and Teh 2006) and Deep Boltzmann Machines
(Salakhutdinov and Hinton 2009). The target domain is un-
supervised text analysis. They have worked out an algorithm
for learning what are called Sparse Boltzmann Machines.
The method can determine the number of hidden units and
the connections among the units. The models obtained by
the method are significantly better, in terms of held-out like-
lihood, than RBMs where the hidden and observed units
are fully connected. This is true even when the number of
hidden units in RBMs is optimized by held-out validation.
Moreover, they have demonstrated that Sparse Boltzmann
Machines are also more interpretable than RBMs.

Other Applications
LTMs can be used as a tool for general probabilistic infer-
ence over discrete variables. Here one works with a joint
distribution over a set of variables and makes inference to
compute the posterior distribution of query variables given
evidence variables. It is technically challenging because ex-
plicit representation of the joint distribution takes space ex-
ponential in the number of variables, and inference takes ex-
ponential time.

Bayesian networks (Pearl 1988) alleviate the problem by
representing the joint distribution in a factorized form. LTMs
offer an alternative method. The idea is to build an LTM with
the variables in question as observed variables, and make
inference with the LTM. LTMs have two attractive proper-
ties. On one hand, they are computationally simple to work
with because they are tree structured. On the other hand, they
can represent complex relationship among the observed vari-
ables. Those two properties are exploited in (Wang, Zhang,
and Chen 2008), (Kaltwang, Todorovic, and Pantic 2015),
(Yu, Huang, and Dauwels 2016) for efficient probabilistic
inference in various domains.

LTMs also have a role to play in spectral clustering (Poon
et al. 2012). In spectral clustering (Von Luxburg 2007), one
defines a similarity matrix for a collection of data points,

transforms the matrix to get a Laplacian matrix, finds the
eigenvectors of the Laplacian matrix, and obtains a partition
of the data using the leading eigenvectors. The last step is
sometimes referred to as rounding.

Rounding amounts to clustering the data points using the
eigenvectors as features.What is unique about the problem is
that one needs to determine how many leading eigenvectors
to use. To solve the problem using LTMs, (Poon et al. 2012)
binarize the eigenvectors and build a collection of LTMs.
Each LTM is built in two steps. In the first step, an LCM is
constructed using the first k leading vectors and a partition
of data is obtained by LCA. In the second step, subsequent
vectors and latent variables are added to the model. The con-
struction of the model is motivated by some theoretical re-
sults about the ideal case where between cluster similarity is
0. According to the results, the LTM should fit the data the
best when the choice of k is optimal. The problem of choos-
ing among different k is hence turned into the problem of
choose among different LTMs.

Unlike alternative methods, this LTM-based method does
not require the number of clusters equal the number of lead-
ing eigenvectors included, and determines both the number
of eigenvectors and the number of clusters automatically.
Empirical results show that it outperforms the alternative
methods. It works correctly in the ideal case and degrades
gracefully as one moves away from the ideal case, which is
a desirable behavior for spectral clustering methods.

Conclusions

Latent tree analysis is a novel tool for correlation model-
ing. It have been shown to be useful in unidimensional clus-
tering, multidimensional clustering, hierarchical topic de-
tection, deep probabilistic modeling, probabilistic inference
and spectral clustering. It is potentially useful also in other
areas because modeling correlations among variables is a
fundamental task in data analysis.
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