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Abstract

Machine Learning and Inference methods have become ubiq-
uitous in our attempt to induce more abstract representations
of natural language text, visual scenes, and other messy, nat-
urally occurring data, and support decisions that depend on
it. However, learning models for these tasks is difficult partly
because generating the necessary supervision signals for it is
costly and does not scale.
This paper describes several learning paradigms that are de-
signed to alleviate the supervision bottleneck. It will illus-
trate their benefit in the context of multiple problems, all
pertaining to inducing various levels of semantic representa-
tions from text. In particular, we discuss (i) Response Driven
Learning of models, a learning protocol that supports induc-
ing meaning representations simply by observing the model’s
behavior in its environment, (ii) the exploitation of Incidental
Supervision signals that exist in the data, independently of the
task at hand, to learn models that identify and classify seman-
tic predicates, and (iii) the use of weak supervision to com-
bine simple models to support global decisions where joint
supervision is not available.
While these ideas are applicable in a range of Machine Learn-
ing driven fields, we will demonstrate it in the context of sev-
eral natural language applications, from (cross-lingual) text
classification, to Wikification, to semantic parsing.

Introduction
The fundamental issue underlying natural language under-
standing is that of Semantics. There is a need to move to-
ward understanding the text at an appropriate level of ab-
straction, beyond the word level, in order to support access,
knowledge extraction and communication.

In all these cases there is a need to get around the inherent
ambiguity in natural language expressions – every utterance
might carry multiple meanings, depending on the context
in which it is being used, the audience, the producer of the
utterance, etc. – and the variability in natural language – a
desired meaning can be expressed in a very large number of
quite different surface forms.

This necessitates the use of machine learning and infer-
ence methods to support inducing the desired level of ab-
straction. Inducing models and semantic representations and
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making decisions that depend on these require learning and,
in turn, supervision. Given a task, the standard machine
learning methodology suggests to collect annotated data for
this task, and then train a model for it. However, we believe
that this methodology is not scalable – we will never have
enough annotated data to train all the models we need this
way. Annotating data for complex tasks is difficult, costly,
and sometimes impossible, especially when a required inter-
mediate representation is ill-defined, but the outcome build-
ing on it is. The popular direction of using crowd-sourcing,
while often important and helpful in relatively small tasks,
is not a realistic solution when an annotation of a single in-
stance takes an expert 5 minutes – a common situation when
dealing with annotating involved meaning representations
for semantic parsing, or relations between events for an in-
formation extraction task.

This paper suggests to re-think the current annotation-
heavy approaches to Natural Language Processing and many
other areas that make use of machine learning methods to
deal with messy, naturally occurring data. Specifically, we
argue that in many realistic cases learning should be (and
is) driven by incidental signals. Incidental Signals refer to a
collection of weak signals that exist in the data and the envi-
ronment, independently of the tasks at hand. These signals
are co-related to the target tasks, and can be exploited, along
with appropriate algorithmic support, to provide sufficient
supervision and facilitate learning.

Consider, for example, the task of Named entity (NE)
transliteration – the process of transcribing a NE from a
source language to some target language based on pho-
netic similarity between the entities (e.g., determine how to
write ”Obama” in Hebrew). Identifying transliteration pairs
is an important component in many linguistic applications
which require identifying out-of-vocabulary words, such as
machine translation and multilingual information retrieval.
Naturally, to know how to write the word Hussein in Rus-
sian, say, one needs to train a model that requires as input
a long list of pairs: NEs in English and their correspond-
ing transliteration in Russian. These resources do not ex-
ists for many pairs of languages. However, (Klementiev and
Roth 2006) showed that it is possible to automatically dis-
cover NEs in low resource languages, given bilingual cor-
pora that are weakly temporally aligned. This is a much eas-
ier resource to come by, given that multiple news services
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Figure 1: Temporal Alignment of NEs. A strong signal
(Hussein (E); Hussein (R)) and no signal (Hussein, Russia).

generate comparable news data in many languages. More-
over, this resource is independent of the task at hand and
can be used to aid supervising multiple related tasks. Men-
tions of NEs that correspond to the same entity, in different
languages, would then have similar temporal distributions
across such corpora, and this similarity is a strong signal
that a pair of NEs could be a transliteration of each other.
Figure 1 illustrates this situation by showing the temporal
histogram of the NE ”Hussein” over the same time period in
a comparable English-Russian corpus, along with the lack
of a signal when considering a different NE.

Clearly, this signal by itself is not sufficient to supervise
the learning of a transliteration model since the temporal dis-
tribution of Hussein might be quite similar to that of Iraq
too. However, along with other weak signals such as pho-
netic similarity, it would support learning a good model.

This example provides an illustration of what we mean by
an incidental supervision signal in this paper. The temporal
signal is there, independently of the transliteration task at
hand. It is co-related to the task at hand and, together with
other signals and some inference, could be used to supervise
it without the need for any significant annotation effort.

We note that our notion of supervision is different from
that of distant supervision (Mintz et al. 2009) where a model
is learned given a labeled training set, as in “standard” su-
pervised machine learning, but the training data is labeled
automatically based on heuristics. In the example above, a
complete training set never exists, and the algorithm needs
to make use of multiple weak signals.

The rest of the paper will provide examples of incidental
supervision from several lexical and structural tasks in natu-
ral language semantics, and argue for the need and the possi-
bility of an incidental supervision framework by describing
several dimensions of it. Specifically, we will present three
types of incidental supervision scenarios: (i) Exploiting in-
cidental cues in the data, unrelated to the task, as sources
of supervision; (ii) Learning complex models in the absence
of complete annotation, by reasoning over the outcomes of
simpler, easier to learn, models (with the aid of some declar-

ative knowledge); and (iii) Supervising models indirectly,
by providing feedback based on the behavior of the model
in the world.

Understanding the Label Space
In this section we discuss several text classification tasks, at
varying levels of complexity. In each case, we illustrate how
to induce models for these without directly training on the
target task. Instead, we show that a good understanding of
the label space can be acquired independently of the task
at hand, and that this understanding can be used to develop
high quality learning models.

The simplest example of this can be shown in the task
of text categorization. Traditionally, text categorization has
been studied as a problem of training a multiclass classifier
using labeled data (Sebastiani 2002). However, humans can
categorize documents into named categories without any ex-
plicit training, relying on their understanding of the meaning
of category names. However, with the vast amount of infor-
mation on the web it is possible today, given an taxonomy
of labels (possibly coupled with label definitions that disam-
biguate it if needed), to generate a good semantic represen-
tation for each label in a given taxonomy.

A series of papers by multiple authors (Chang et al.
2008b; Song and Roth 2015; Chen et al. 2015) has devel-
oped this idea within a framework called Dataless Classi-
fication. Given a single document along with a taxonomy
of labeled categories into which one wants to classify the
document, the dataless procedure proceeds as follows:
• Let Φ(li) be the semantic representation of label li.
• Let Φ(d) be the semantic representation of document d.
• Select the most appropriate category label according to:

l∗i = argminid(Φ(li),Φ(d)),

where d(·) denotes an appropriate metric in the semantic
space. It is important to note that this is not an unsuper-
vised learning scenario. Unsupervised learning assumes a
coherent collection of data points, and that similar labels are
assigned to similar data points (Zhu et al. 2009). It cannot
work on a single document as the aforementioned dataless
process suggests. However, if the dataless method is given,
instead, a collection of documents that is assumed to be co-
herent, it is possible to follow the initial classification step
above with the standard semi-supervised learning procedure
and bootstrap from the basic dataless classifier. The data-
less process is similar, but not identical, to related proposals
that were developed at about the same time and were used
mostly in the computer vision community, namely zero-shot
and one-shot learning. In the former (e.g. (Palatucci et al.
2009)), the goal is to learn a multiclass classifier with a range
Y = {1, . . . , k} where only some of the labels are given in
the training set. In the latter (Fei-Fei, Fergus, and Perona
2006), one gets only a few training examples per-category
and is expected to learn a multiclass classifier. Dataless clas-
sification is similar to one-shot, if one wants to view the la-
bels’ definitions as a small number of examples, and to zero-
shot since no training data is given, but in dataless the target
labels could be independent.
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The key question underlying the success of dataless clas-
sification and the other related methods is: “How can one
generate good semantic representations?” While there has
been a lot of renewed interest over the last few years in se-
mantic representations it turns out that, in the context of top-
ical classification, the most successful representation (e.g.,
(Song and Roth 2014)) is the Extended Semantic Analysis
(ESA) representation, a Wikipedia based representation de-
veloped in (Gabrilovich and Markovitch 2009). In this rep-
resentation, each word is represented as a weighted (sparse)
vector of Wikipedia titles that mention it.

The resulting learning approach thus requires no direct
supervision for the task. It relies on the modeler to make use
of incidental signals that exist independently of the learning
task; in this case, the existence of Wikipedia, and the fact
that the accumulation of Wikipedia pages a word appears in
provides a good understanding of the meaning of this word.

This approach has been quite successful in supporting
(hierarchical) topic classification. Moreover, other inciden-
tal supervision signals can be added to augment this func-
tionality. For example, the existence of cross-lingual links
between similar Wikipedia titles – a Wikipedia page titled
“Basketball” has a link to a corresponding Italian page “Pal-
lacanestro”, and another one to a Spanish page “Balon-
cesto”, allows one to augment the dataless classification ap-
proach and classify documents in multiple languages into an
English taxonomy of categories.

Many other models for textual classification tasks can be
induced in a conceptually similar way. One key example is
the task of Wikification.

The literature on Wikification, the task of identifying and
grounding mentions of entities and concepts into encyclope-
dic resources, builds on the fact that the content of Wikipedia
pages “explains” their title. Moreover, it counts on au-
thors and editors to hyperlink (a subset of the) mentions in
Wikipedia to the appropriate titles. This incidental supervi-
sion signal provides the ability to train ranking models that
map a mention in its context to the appropriate Wikipedia ti-
tle without any task specific annotation (Ratinov et al. 2011;
Cucerzan 2007; Milne and Witten 2008; Mihalcea and Cso-
mai 2007; Cheng and Roth 2013). Thus, a mention of Clin-
ton in a specific context can be disambiguated to whether
it is Hillary Clinton, Bill Clinton, the Clinton Nuclear Gen-
erating Station or any of the many other senses of Clinton,
without any direct supervision. As pointed out above, with
the additional incidental supervision signal provided by the
cross-lingual links, documents in multiple languages can be
Wikified into the English Wikipedia (Tsai and Roth 2016b).
Incidental supervision might be even more important when
trying to ground concepts into knowledge bases that cover
multiple aspects of a domain – as is the case in the medical
domain (Jimeno-Yepes and Aronson 2010). This problem
poses a few additional challenges beyond those addressed
in the popular Wikification setting mentioned above. Key
among them is that most knowledge bases do not contain
the rich textual and hyperlink information Wikipedia does;
consequently, the main supervision signal used to train Wik-
ification rankers does not exist. However, other incidental
supervision signals exist and Tsai and Roth (2016a) show

that the fact that a small percentage of the textual concepts
have entries in multiple knowledge bases, redundant entries
or just related entries, provides a sufficiently strong supervi-
sion signal to train a good ranking model. This is an illustra-
tion of a somewhat more sophisticated use of an incidental
supervision signal, nevertheless it exhibits the notion that
signals are out there, and they can be used to train a variety
of models.

Other tasks in natural language processing, such as con-
text sensitive spelling and grammar checking, have relied
on incidental supervision for many years. Specifically, un-
der the assumption that most edited textual resources (e.g.,
the New York Times, Wikipedia) have been carefully edited
for spelling and grammar, these methods generate contex-
tual representations for words, punctuation marks, and phe-
nomena such as agreements, and then use these represen-
tations to identify mistakes and correct them in a context
sensitive manner (Rozovskaya and Roth 2014; Golding and
Roth 1999).

These are, in fact, the same incidental supervision as-
sumptions that underlie methods like LSI (Deerwester
et al. 1990) and the recently popularized word embed-
dings (Mikolov, Yih, and Zweig 2013), with the key dif-
ference that in the former, a more accurate notion of nega-
tive examples is used to generate representations that, con-
sequently, can be used directly as classifiers.

Finally we note that, in most cases, making use of mul-
tiple incidental supervision signals requires some inference
mechanism that supports making decisions by putting the re-
sulting models together (Klementiev, Roth, and Small 2008;
Cheng and Roth 2013).

Structured Label Spaces
In this section, we discuss the problem of supervising learn-
ing models for structured output spaces. The challenge in
learning structured models is that the prediction (also called
decoding, or inference) involves assigning values to multiple
interdependent variables where the expressive dependency
structure – modeled as a graph, a tree, or a sequence – can
influence, or even dictate, what assignments are possible.

We will use the example of (Extended) Semantic Role
Labeling (Palmer, Gildea, and Kingsbury 2005) to illus-
trate the key machine learning challenges. While the orig-
inal semantic role labeling task was defined for semantic
relations expressed by verb predicates, it has been clear
that sentences express relations via other linguistic phe-
nomena as well (Srikumar and Roth 2011; Arivazhagan,
Christodoulopoulos, and Roth 2016). Furthermore, these
phenomena interact with each other, thus restricting the
structures they articulate. The key challenge from the Ma-
chine Learning perspective is that large jointly labeled cor-
pora do not exist and are extremely difficult to generate.
However, for many of the individual phenomena of interest,
including verb predicates, prepositional predicates, tempo-
ral relations, light verbs, compound nouns, etc., there ex-
ist independent collections of annotated text (largely since
the independent annotation task is significantly easier). The
scarcity of jointly labeled data presents a crucial technical
challenge for learning a joint model and, as importantly, to
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scaling it up when additional phenomena are to be added, at
later times.

The incidental supervision perspective of this problem
would consider a model for each phenomena (or, potentially,
tightly coupled phenomena for which jointly labeled data
exists) as black boxes. It would then make use of coherency
constraints between the predictions of these models as a way
to support coherent global predictions that satisfy the inter-
dependencies among the phenomena.

This can be done with minimal jointly labeled data to
guarantee scaling of different models (Srikumar and Roth
2013), but can also be done with no jointly labeled data,
in a multi-view learning paradigm (Ganchev et al. 2007;
Sun 2013), where multiple output views of the same data
can be learned together, with one model per view. There are
multiple computational frameworks that support this type
of processing. One way could be to consider the exist-
ing “simple” models as fixed components in a global con-
strained optimization problem, where each of these pro-
duces a probability distribution over its possible outputs.
An alternative could be to propagate some feedback from
the global solution back to individual components. This
last approach can be viewed as an instance of Constraint
Driven Learning (Chang, Ratinov, and Roth 2007; 2012;
Chang et al. 2008a) and its continuous counterpart, posterior
regularization (Ganchev et al. 2010), where multiple simple
(distributional) signals contribute to a global decision, by be-
ing pushed to satisfy expectations on the global decision.

The perspective described in this section provides another
important view on supporting involved, global decisions, via
rather simple, indirect, supervision signals. This view de-
pends on the decision making process being aware of the
interdependencies among the expected predictions of their
components but does not necessitate significant annotation
effort for large structures.

Response Driven Learning
In this section we address a third perspective of indirect su-
pervision, which we motivate via a rather involved natural
language understanding task.

The reason we want to develop intelligent agents with nat-
ural language understanding abilities is to allow humans to
communicate with the agent for the purpose of providing it,
for example, some relevant domain expertise. Key require-
ment of this interaction is that we want to communicate with
the intelligent agent without knowing anything about the in-
ternal representations used by the agent.

This natural language interpretation task, often referred
to as semantic parsing, is typically formulated as that of
learning a mapping between natural language input and a
formal meaning representation; an “executable” representa-
tion that the agent can act on – the agent could be a data
base responding to a natural language query, a game API re-
sponding to natural language instructions, etc. Technically,
this problem can be formulated in a straight forward way
as the following machine learning problem: given a set of
input sentences and their corresponding meaning represen-
tations, learn a mapping – a semantic parser – that can map

a new, previously unseen sentence into its meaning repre-
sentation (Zelle and Mooney 1996; Zettlemoyer and Collins
2005). However, this learning algorithm would require large
amounts of annotated data to account for the expected vari-
ability in the input, and this annotation is costly, since it re-
quires expertise in forming the logical meaning representa-
tions the agent can take. Moreover, this annotation process
may have to be repeated when the interaction is done with a
different agent that might use a different representation.

The incidental supervision perspective in this case is
based on the observation that the target meaning representa-
tion is to be executed by a computer program – the learning
agent – which in turn provides a response or outcome. That
is, there is a simple derivative of the meaning representation
– the action produced by the agent given this meaning rep-
resentation. Consequently, the incidental supervision per-
spective suggests to use the fact that this derivative is bound
to be naturally supervised in the environment, and exploit
these indirect signals in the interaction between the learning
agent and the environment (or teacher) rather than annotate
meaning representations. This brings up the technical ques-
tion of whether one can rely on this weak level of interaction
to provide sufficient supervision and, eventually, support the
recovery of the meaning representation.

More specifically, if we assume that the goal is to interact
with a game API or a database, the simple derivative is the
execution of the meaning representation on the API or the
database. Consider transforming the input sentence into the
executable meaning representation using the current model;
once this representation is executed – an instruction is being
sent to the API in its own formal language, or a query is be-
ing issued to the database in its formal language – feedback
is provided at the level of: “this API instruction is legiti-
mate/good/bad” or “the answer supplied by the database is
not the expected one” (indicating that the semantic parsing
process failed to produce the correct query). In a more ab-
stract way, consider some simple derivatives of the semantic
parser model’s outputs; supervise the derivative (e.g., “is the
answer provided by the database correct?”) and propagate it
to learn the complex, structured, semantic parsing model.

Indeed, (Clarke et al. 2010) proposed a new learning
paradigm – Response Driven Learning – capable of exploit-
ing this level of incidental supervision, based on the easy-to-
supervise response. The feedback can be viewed as a teacher
judging whether the execution of the meaning representation
produced the desired response for the input sentence.

We note that this learning paradigm is conceptually re-
lated, but technically different, from that of reinforcement
learning and is also different from a simple end-to-end task
done with a neural network. The goal here is to learn a com-
plex structured model such as a semantic parser. And, it is
important that this model, which is viewed as latent in the
response driven learning paradigm, is executable, so that it
yields a response from the environment or the teacher.

This type of supervision is natural in many situations and
requires no expertise, thus can be supplied by any user. In-
deed, more work is being done in this paradigm (Liang, Jor-
dan, and Klein 2011; Artzi and Zettlemoyer 2013) and the
results show, perhaps surprisingly, that without using any an-
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notated meaning representations, learning with this weak in-
cidental supervision signal is capable of producing a parser
that is competitive with fully supervised parsers.

Technically, this mode of supervision, that relies on feed-
back from the behavior of the model in its environment,
is more challenging than earlier incidental supervision in-
stances we described. However, given that we typically want
our models to be used, this supervision is bound to exist and
be available, if we can address the challenge of using it well.
In addition, it is important to note that the supervision pro-
tocol is independent of the learning model itself; thus, re-
cent attempts to learn semantic parsers using sequence-to-
sequence neural network models (Dong and Lapata 2016)
could also be embedded within this more general and realis-
tic training paradigm.

Conclusion
This paper proposes that the AI community needs to re-
think the current annotation-heavy approaches used in Natu-
ral Language Processing, Computer Vision, and many other
areas that make use of machine learning methods to deal
with messy, naturally occurring data. We argue that in or-
der to scale up our use of learning methods and move for-
ward in our ability to support complex cognitive computa-
tions, learning should be (and is) driven by incidental sig-
nals. These are weak signals that exist in the data and the
environment, independently of the tasks at hand, and are co-
related to the target tasks. We should develop ways to iden-
tify and exploit these signals and, along with it, develop the
necessary inference support so that we can provide sufficient
supervision and facilitate learning without the need to anno-
tate data for each task of interest. We provided evidence in
the form of three incidental supervision scenarios in a range
of natural language understanding tasks, and gave a prelim-
inary characterization of the type of incidental supervision
scenarios the community might want to study further. Our
research community needs to address these challenges by
developing principled ways to identify these signals and by
studying principled algorithmic approaches for using them.
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