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Abstract

Improving road safety is critical for the sustainable develop-
ment of cities. A road safety map is a powerful tool that can
help prevent future traffic accidents. However, accurate map-
ping requires accurate data collection, which is both expen-
sive and labor intensive. Satellite imagery is increasingly be-
coming abundant, higher in resolution and affordable. Given
the recent successes deep learning has achieved in the visual
recognition field, we are interested in investigating whether
it is possible to use deep learning to accurately predict road
safety directly from raw satellite imagery. To this end, we
propose a deep learning-based mapping approach that lever-
ages open data to learn from raw satellite imagery robust deep
models able to predict accurate city-scale road safety maps at
an affordable cost. To empirically validate the proposed ap-
proach, we trained a deep model on satellite images obtained
from over 647 thousand traffic-accident reports collected over
a period of four years by the New York city Police Depart-
ment. The best model predicted road safety from raw satel-
lite imagery with an accuracy of 78%. We also used the New
York city model to predict for the city of Denver a city-scale
map indicating road safety in three levels. Compared to a map
made from three years’ worth of data collected by the Denver
city Police Department, the map predicted from raw satellite
imagery has an accuracy of 73%.

Introduction
In a recent report (World Health Organization 2015), the
World Health Organization (WHO) has estimated that road
traffic accidents are the number one cause of mortality
among people aged between 15 and 29 years, killing more
than 1.2 million people worldwide each year. Most of road
deaths are in low- and middle-income countries where in-
frastructure development and policy change have not kept
pace with the increase in motorization accompanying the
rapid economic growth. Poor road safety causes developing
countries an approximate economic loss of 3% of GDP mak-
ing it not only a major public health issue but also a devel-
opmental one. In the face of this grim reality, the world’s na-
tions have recently adopted the 2030 agenda of Sustainable
Development which sets the goal of cutting road injuries and
deaths in half by 2020 (United Nations 2015).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: City-scale road safety mapping from satellite im-
agery via deep learning.

Mapping traffic accidents is an established practice used
to gain insights on where and what interventions are needed
to improve road safety (Miaou, Song, and Mallick 2003). A
map made from manually collected reports of previous ac-
cidents visualizes where within the city road safety suffers.
Maintaining and improving infrastructure around these spots
helps prevent future traffic accidents.

However, accurate mapping requires accurate data col-
lection, which is both expensive and labor intensive. While
high-income countries are flooded with data, most low- and
middle-income countries suffer from a data drought (Lei-
dig, Teeuw, and Gibson 2016). The reason is that accurate
data collection requires transparency, technology, skills and
other resources extremely scarce in these parts of the world.
Therefore, an automatic approach to road safety mapping
that does not require data collection is highly needed.
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Figure 2: Satellite images of six different locations in New
York city. Between March 2012 and March 2016, locations
in the upper row had over 100 traffic accidents each. Those
in the bottom row had only one accident each. What is inter-
esting is the striking visual similarity among images of the
same row. Notice how images of locations of similar road
safety level have similar (1) setting (highway/intersection vs.
residential), (2) dominant color (gray vs. green), and (3) ob-
jects (zebra lines and vehicles vs. trees and rooftops). This
example illustrates that visual features captured in satellite
imagery can be used as a proxy indicator of road safety.
Therefore, based mainly on this observation we are moti-
vated to investigate predicting road safety directly from raw
satellite imagery.

Recent advances in imaging and space technology have
increasingly made satellite imagery abundant, higher in res-
olution and affordable (Dash and Ogutu 2016). The bird’s
eye/aerial viewpoint of satellite imagery makes it a rich
medium of visual cues relevant to environmental, social, and
economic aspects of urban development. Given the recent
successes deep learning (LeCun, Bengio, and Hinton 2015)
has achieved in the visual recognition field (Razavian et al.
2014; Oquab et al. 2014; Donahue et al. 2014), we are in-
terested in investigating the use of deep learning to predict
road safety from raw satellite imagery (See Figure 1).

Although satellite imagery captures a wealth of visual fea-
tures relevant to road safety (See Figure 2 for an illustrated
example), it is a highly unstructured form of data. Given that
learning robust models using the recently proven successful
deep networks (Krizhevsky, Sutskever, and Hinton 2012) re-
quires large numbers of training examples, it is difficult to
use deep learning to extract useful insights on road safety
directly from raw satellite images.

We overcome this problem by leveraging an abundant yet
highly accurate source of data known as open data (Dietrich
et al. 2009). The idea is to mine available large-scale datasets
of traffic-accident reports for high-quality labeled satellite
images. These datasets are official (i.e., collected by gov-
ernments) and made publicly accessible online. To the best
of our knowledge, we are the first to adopt such strategy in
collecting and labeling satellite images.

In this paper, we propose a deep learning-based mapping
approach that uses Convolutional Neural Networks (Con-
vNets) (LeCun et al. 1989; 1998) and leverages open data to
learn from raw satellite imagery robust deep models able to
predict accurate city-scale road safety maps. A deep model
learned from open data collected in one city is used to gen-
erate for another city a road safety map predicted from its
satellite imagery (See Figure 1). Since data collection is
not required, our approach offers a mapping solution that
is highly affordable.

To empirically validate the proposed approach, we trained
a deep model on satellite images obtained from over 647
thousand traffic-accident reports collected over a period of
four years by the New York city Police Department (NYPD).
The best model predicted road safety from raw satellite im-
agery with an accuracy of 78%. To test its reusability, we
used the New York city model to predict for the city of Den-
ver a city-scale map indicating road safety in three levels.
Compared to a map made from three years’ worth of data
collected by the Denver city Police Department, our map
has an accuracy of 73%.

To the best of our knowledge, this paper is the first to at-
tempt predicting road safety directly from raw satellite im-
agery. Contributions made in this paper are summarized as
follows:

1. Proposing a deep learning-based mapping approach for
predicting city-scale road safety maps from raw satellite
imagery.

2. Proposing the idea of obtaining labeled satellite images
from open data.

3. Making publicly available a deep model for predict-
ing road safety learned from over 647 thousand traffic-
accident reports collected by the NYPD.

4. Predicting for the city of Denver a city-scale road safety
map with an accuracy of 73%.
The remainder of this paper is organized as follows. Pre-

vious works on machine learning-based road safety mapping
are briefly reviewed in section 2. Data is introduced in sec-
tion 3. Our approach is explained in section 4. Empirical
validation using real data is presented in section 5. Finally,
the paper is summarized and concluded in section 6.

Previous Works
In this section, we briefly review previous works on city-
scale road safety mapping using machine learning, and com-
pare them to ours.

To the best of our knowledge, (Chen et al. 2016) is the
only work that uses machine learning to predict city-scale
road safety maps. In this work, a deep model is learned from
traffic-accident reports and human mobility data (i.e., GPS
data) collected from 1.6 million smartphone users over a pe-
riod of seven months. The learned model is then used to pre-
dict from real-time GPS data a map for the city of Tokyo
indicating road safety in three different levels.

(Chen et al. 2016) is similar to our work in the fact that
it uses patterns recognized in an abundant and unstructured
source of data as a proxy indicator of road safety. While
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ID Date Time Latitude Longitude Vehicle 1 Vehicle 2
1 3/12/2016 10:30 40.5426730 -74.1647651 Station wagon Van
2 3/12/2016 12:15 40.5970318 -74.0933639 Station wagon Unknown
3 8/31/2015 09:40 40.6338578 -74.1259566 Passenger vehicle Bus
4 8/29/2015 07:08 40.6134776 -74.0979215 Unknown Other
5 8/19/2015 08:30 40.6311355 -74.1279294 Passenger vehicle Bicycle

Table 1: Examples of NIBRS-style traffic accident reports.

Chen et al. use real-time GPS data, we use satellite imagery
as our abundant source of data. However, the core differ-
ence between the two works is the application domain each
is intended for. While Chen et al. are interested in generat-
ing user-oriented maps intended for real-time use, we are in-
terested in generating maps that help inform city-planning
decision-making and policy and eventually improve road
safety for cities where proper data collection is unaffordable.

It is worth mentioning that for the application we are in-
terested in, using satellite imagery rather than GPS data is
more practical since: (1) satellite images are more ubiqui-
tous and freely available online (e.g., from Google Maps),
and (2) smartphones in low- and middle-income countries
(which this research is targeting) are not as widely used as
in high-income countries, i.e., GPS data in low- and middle-
income countries do not provide a reliable indicator of road
safety at a city scale.

We are aware of other works, such as (Anderson 2009;
Bı́l, Andrášik, and Janoška 2013; Xie and Yan 2013; Han et
al. 2015), which mainly focus on the detection and analysis
of traffic accident-prone areas (also known as, traffic acci-
dent hotspots) rather than the prediction of road safety level
at a city scale. Therefore, and given the above, we believe
that our work is the first to attempt using machine learn-
ing to predict city-scale road safety maps directly from raw
satellite imagery.

Data
In this section, we describe the data we used to train, verify,
and test our deep models.

All models in this paper were trained, verified and tested
on satellite images obtained from official traffic-accident re-
ports collected by police departments in the United States.
These reports are released as open data which is defined
as data that can be freely used, re-used and redistributed by
anyone - subject only, at most, to the requirement to attribute
and share-alike (Dietrich et al. 2009).

Reports follow the National Incident Based Reporting
System (NIBRS) (Maxfield 1999) that describes individual
accidents using several attributes, such as time, date, (ap-
proximate) geographic location of the accident, and types of
vehicle involved. See Table 1 for an example.

We used data collected in two US cities (New York and
Denver), and it is summarized as follows:

• 647,868 traffic-accident reports collected by the NYPD
over the period between March 2012 and March 20161.

1https://data.cityofnewyork.us/

• 110,870 traffic-accident reports collected by the Denver
city police department over the period between July 2013
and July 2016.
Given that these reports were collected manually by hu-

man experts (e.g., police officers), we assume that models
learned from this data are highly accurate. Using the geo-
graphic location information, we represented individual re-
ports with satellite images. We used these images to train,
verify, and test our deep models.

Deep Models for Road Safety Mapping
The ability of mapping road safety implies the ability of pre-
dicting the occurrence of traffic accidents. However, traffic
accidents occur due to complex reasons which cannot be
pinned down to a single one. Therefore, it is extremely chal-
lenging to predict traffic accidents.

In this work, we base our definition of road safety on the
concept of accident hotspots. In other words, we predict the
level of road safety based on both frequency and severity
of previous accidents occurred within a limited geographic
area. Assuming that satellite imagery captures a wealth of
visual information that can be used as a proxy indicator of
road safety, we aim to model and understand what a satellite
map of a city tells about road safety.

In the following, we describe our approach. First, we ex-
plain how we obtain labeled satellite images from raw open
data. Then, we describe how we use ConvNets to train deep
models for predicting road safety from satellite imagery.

Satellite Images from Open Data
Before learning a robust deep model able to predict road
safety from raw satellite images, first we need to collect a
set of training images accurately labeled with road safety,
and of a scale large enough to train a deep network. To this
end, we propose to obtain our images from an abundant yet
accurate source of data known as open data. This procedure
is explained in the following:

Location information discretization: using a square grid,
we divided the map of New York city into square regions (r)
of 30m×30m each which is a proper area for traffic accident
analysis. Then given their location information, the 647,868
traffic accidents documented by the NYPD were assigned to
different regions. Finally, each region is assigned a safety
score (Sr) given as the sum of severity levels of accidents
occurred within its boundaries, such that:

Sr =

n∑

i=1

ai,r, (1)
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where ai,r is the severity level of the i-th accident within
region r, and n is the total number of accidents. ai,r = 1
whenever severity level is unknown.

Binning: to obtain three safety levels (high, neutral, and
low), we clustered the obtained safety scores by frequency
around three bins using the k-means algorithm (MacQueen
and others 1967), such that:

argmin
T

k∑

i=1

∑

x∈Ti

‖x− μi‖2, (2)

where μi is the mean of the points in Ti, k = 3 is the num-
ber of bins, and x is the frequency of individual scores. We
have experimented with other clustering algorithms, such as
Gaussian Mixture Models (GMM) and Jenks natural breaks
optimization (Jenks 1967). However, we found that the sim-
ple k-means gives the best results.

Resampling: the obtained labeled set of regions is highly
imbalanced. In fact over 59% of the regions are labeled as
highly safe. Therefore and in order to avoid learning a biased
model, we resampled our data via downsampling majority
classes so that the three classes are balanced out.

Finally, we represented each of the regions with a satel-
lite image centered around the GPS coordinates of its cen-
ter. These images form a dataset on which our models are
trained, verified and tested.

Safety Prediction using ConvNets
We begin by introducing ConvNets, then we explain how
our models are learned.

Convolutional Neural Networks A ConvNet is a
biology-inspired feedforward neural network that is de-
signed to process data that come in multiple arrays, such
as RGB color images. Similar to other deep learning ap-
proaches, ConvNets automatically learn from data hierar-
chical representations that capture patterns and statistics at
multiple levels of abstraction.

Having their roots in the early neocognitron (Fukushima
and Miyake 1982), ConvNets have been used in several ap-
plications since the early 1990s such as in (LeCun et al.
1998). Later in the 2000s, ConvNets proved highly success-
ful in several vision tasks where training examples are abun-
dant. However, not until 2012 when trained on over a million
images, ConvNets achieved a ground-breaking performance
in generic object recognition. This success has since revolu-
tionized in the visual recognition field, with ConvNets dom-
inating most of the vision tasks nowadays (LeCun, Bengio,
and Hinton 2015).

A ConvNet takes a raw RGB image as an input and
produces a class prediction as an output. Natural images
are compositional hierarchies, in which lower level features
combine to form higher level ones. ConvNets were designed
to exploit this property. A typical ConvNet consists of a
stack of convolutional layers followed by fully-connected
layers ordered such that the output of one layer is the input
of the next. A typical convolutional layer convolves a three-
dimensional input tensor with a tensor of weights (filter
maps). The weighted sum of the convolution is then passed

through a nonlinearity function such as a Rectified Linear
Unit (ReLU). The result is then passed through pooling op-
erators (usually, max operator) to reduce the dimensionality
of the representation and make it invariant to small perturba-
tions. On the other hand, a fully-connected layer reduces the
multidimensional input into a one-dimensional vector that is
fed to a final classifier.

A ConvNet is trained end-to-end in a supervised fashion
using stochastic gradient descent (SGD) and backpropaga-
tion.

Model Learning To train our models, we adopted transfer
learning in which pre-learned knowledge is transferred from
a source to a target problem. In our case, source and tar-
get problems are generic object/scene recognition and road
safety prediction, respectively. And the transferred knowl-
edge is a set of low-level visual features such as edges and
corners. In the deep learning community, this way of train-
ing is known as finetuning and it has been proven highly
successful in augmenting learning when training data is lim-
ited (Karayev et al. 2013; Branson et al. 2014).

To finetune a pre-trained model, we first replaced the clas-
sification layer with a three-class output layer representing
the three safety levels. Weights of the newly added layer are
initialized randomly, and the entire network is trained jointly
using small learning rates.

Experiments
In this section, we empirically validate the proposed ap-
proach by evaluating the accuracy of a road safety map pre-
dicted for the city of Denver using a deep model learned
from data collected in New York city.

Datasets
In our experiments, we used two different satellite imagery
datasets collected as explained in the previous section:

NYC: It consists of 14,000 satellite images obtained from
official traffic-accident reports collected by the NYPD. Indi-
vidual images are labeled with one of three safety labels.

Denver: It consists of 21,406 satellite images obtained
from official traffic-accident reports collected by the Denver
city Police Department. Individual images are labeled with
one of three safety labels.

Implementation details
Favoring the reproducibility of the results, below we explain
how experiments were implemented:

Satellite imagery: We used Google Static Maps API2 to
crawl all satellite images used in our experiments. Individual
images have a spatial resolution of 256×256 pixels each and
crawled at three different zoom levels (18, 19, and 20).

Architecture: All ConvNets used in this experiments fol-
low the AlexNet architecture (Krizhevsky, Sutskever, and
Hinton 2012). We are aware of the other successful deep
architectures, such as (Simonyan and Zisserman 2014;
Szegedy et al. 2015). However, we used AlexNet since it
is both simple and considered a landmark architecture.

2https://developers.google.com/maps
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Figure 3: City-scale map of Denver city indicating road safety in three different levels (high: blue, neutral: yellow, and low:
red). Upper row is a map made from data collected by Denver city Police Department between July 2013 and July 2016. Bottom
row is a map predicted from raw satellite imagery using our approach. First three columns (left to right) represent the three
safety levels mapped individually. The fourth column represents all safety levels mapped together. This figure is best viewed in
digital format.

x18 x19 x20
ImageNet 0.740 0.766 0.739
Places205 0.755 0.775 0.745

ImageNet + Places205 0.778 0.782 0.771

Table 2: Average prediction accuracy obtained using differ-
ent models pre-trained on three different large-scale datasets
and finetuned on satellite images captured at three differ-
ent zoom levels. The best performing model is the one pre-
trained on both ImageNet and Places205 and finetuned on
satellite images captured at zoom level 19. All results are
cross-validated on three random data splits.

Training: Instead of training from scratch, our models
were pre-trained on a generic large-scale image dataset first.
Three pre-training datasets were considered: (1) ImageNet
(Deng et al. 2009), (2) Places205 (Zhou et al. 2014), and (3)
both ImageNet and Places205 datasets combined. Finally,
training was conducted using Caffe deep learning frame-
work (Jia et al. 2014) running on a single Nvidia GeForce
TITAN X GPU.

Evaluation: To evaluate the learned models, we calculated
the average prediction accuracy cross-validated on three ran-
dom 5%/95% data splits. Reported results are obtained after
60,000 training iterations.

Denver New York
Population (million) 0.664 8.491

Area (km2) 396.27 783.84
Population density

(people per km2)
1675 10833

Average traffic delay
(minutes per person per day)

7.4 9.7

Table 3: Comparing Denver city to New York city in terms
of area, population and traffic delay.

Predicting Road Safety in New York City
The purpose of this experiment is twofold: (1) to investigate
whether or not our assumption that visual features captured
in satellite imagery can be effectively used as a proxy in-
dicator of road safety. And (2) to evaluate the performance
of state-of-the-art ConvNets in learning deep models able to
predict road safety from raw satellite images.

We have finetuned a ConvNet on images of the NYC
dataset. Table 2 shows the average prediction accuracy ob-
tained using nine models obtained considering three pre-
training scenarios using satellite images captured at the three
zoom levels.

Spanning a range between 73.9% and 78.2%, the best per-
forming model is the one obtained through finetuning a pre-
trained model on both ImageNet and Places205 datasets us-
ing satellite images captured at zoom level 19.

From Table 2, one can make the following observations:
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1. For all zoom levels, models pre-trained on both ImageNet
and Places205 achieves the best, followed by models pre-
trained on Places205, and finally models pre-trained on
ImageNet. This is expected since satellite images have
bird’s eye/aerial viewpoint which makes them closer in
composition to scene images of Places 205 rather than the
object-centric images of ImageNet.

2. For all pre-training scenarios, finetuning using satellite
images captured at zoom level 19 results in the best per-
formance.
Results obtained in this experiment confirm our assump-

tion that visual features captured in satellite imagery can be
efficiently used as a proxy indicator of road safety. More-
over, state-of-the-art ConvNets are able to learn robust mod-
els that can predict road safety from raw satellite images.

City-Scale Mapping of Denver City
The purpose of this experiment is to evaluate the perfor-
mance of a deep model learned from data collected in New
York city in predicting for the city of Denver a city-scale
map indicating road safety in three levels from raw satellite
images only.

To this end, we used the best performing model learned
from New York city to predict safety labels of the 21,406
images of the Denver dataset. Figure 3 shows a city-scale
road safety map for the city of Denver. The upper row is
a map made from 110,870 traffic-accident reports collected
by the Denver police department over the period between
July 2013 and July 2016. The bottom row shows a map pre-
dicted completely from raw satellite images. The first three
columns (left to right) illustrate the three safety levels (high:
blue, neutral: yellow, and low: red) mapped individually.
The fourth column illustrates all safety levels mapped to-
gether. Compared to the official map (upper row), the pre-
dicted map (bottom row) has an accuracy of 73.1%.

Denver city and New York city are quite different from
each other in terms of the level of development, area, popu-
lation, traffic, etc. (See Table 3 for a brief comparison). Thus,
demonstrating that a model learned from New York city data
can effectively predict road safety in Denver city proves that
models are practically reusable. Moreover, in order to quan-
tify the accuracy of the predicted map, we had to choose a
city that has its official traffic-accident reports publicly ac-
cessible so that we can compare our results to a ground truth.
Therefore, for the previous reasons we chose Denver city to
map in this experiment.

Results obtained in this experiment confirm that deep
models learned from road safety data collected in a large
city can be reused to predict road safety in smaller cities
with less resources.

Summary & Conclusions
In this paper, we have investigated the use of deep learning
to predict city-scale road safety maps directly from satellite
imagery. We have proposed a mapping approach that uses
state-of-the-art Convolutional Neural Networks (ConvNets)
and leverages open data to learn robust deep models able to
predict road safety from raw satellite imagery.

To empirically validate the proposed approach, we trained
a deep model on satellite images obtained from over 647
thousand traffic-accident reports collected over a period of
four years by the New York city Police Department. The best
model predicted road safety from raw satellite imagery with
an accuracy of 78%. We also used the New York city model
to predict for the city of Denver a city-scale map indicating
road safety in three levels. Compared to a map made from
three years’ worth of data collected by the Denver city Police
Department, the map predicted from raw satellite imagery
has an accuracy of 73%.

The obtained results confirm: (1) our assumption that vi-
sual features contained in satellite imagery can be effectively
used as a proxy indicator of road safety. (2) State-of-the-art
ConvNets can learn robust models for road safety prediction
from satellite imagery. (3) Deep models learned from road
safety data collected in a large city can be reused to predict
road safety in smaller cities with less resources.

Although providing a practical and affordable approach
for road safety mapping where proper data collection is
not affordable (e.g., developing countries), our study suffers
from several limitations. First, our models were trained on
traffic-accident reports that do not indicate the severity level
of individual accidents. Therefore, we used accident fre-
quency only as safety labels. We believe that training mod-
els on more elaborate data will result in better performance.
Second, our models predict road safety without taking time
and date into consideration. In other words, our maps do not
differentiate between day and night or summer and winter.
Third, although we proved our method effective in predict-
ing road safety in Denver city using models trained on data
collected in New York city, we have not considered a more
extreme case in which both cities are located in two different
continents (e.g., New York city and Nairobi city) where ar-
chitecture, city planning, traffic regulations (among others)
differ extremely. These limitations among others are to be
addressed in future work.
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