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Abstract

Adaptive management is applied in conservation and natu-
ral resource management, and consists of making sequential
decisions when the transition matrix is uncertain. Informally
described as ’learning by doing’, this approach aims to trade
off between decisions that help achieve the objective and de-
cisions that will yield a better knowledge of the true transi-
tion matrix. When the true transition matrix is assumed to
be an element of a finite set of possible matrices, solving
a mixed observability Markov decision process (MOMDP)
leads to an optimal trade-off but is very computationally de-
manding. Under the assumption (common in adaptive man-
agement) that the true transition matrix is stationary, we pro-
pose a polynomial-time algorithm to find a lower bound of
the value function. In the corners of the domain of the value
function (belief space), this lower bound is provably equal to
the optimal value function. We also show that under further
assumptions, it is a linear approximation of the optimal value
function in a neighborhood around the corners. We evaluate
the benefits of our approach by using it to initialize the solvers
MO-SARSOP and Perseus on a novel computational sustain-
ability problem and a recent adaptive management data chal-
lenge. Our approach leads to an improved initial value func-
tion and translates into significant computational gains for
both solvers.

Introduction

Adaptive management is an approach tailored for achieving
a management objective in environmental problems when
the system dynamics is partially unknown (Walters and
Hilborn 1978; Chadès et al. 2016), with applications in con-
servation (Chadès et al. 2012; Runge 2013), fisheries (Fred-
erick and Peterman 1995), natural resource management
(Johnson, Kendall, and Dubovsky 2002) and forest manage-
ment (Moore and Conroy 2006). Over time, we can learn
about the system dynamics by analyzing how the system
has responded to our actions so far. Some actions might not
seem optimal to achieve the management objective given our
current knowledge but might be more informative about the
system dynamics than others, potentially resulting in better
decisions in the future.

The uncertainty about the system dynamics is often mod-
eled by a finite set of scenarios (Walters and Hilborn 1976;
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Moore and Conroy 2006). Chadès et al. (2012) showed
that this problem can be formulated as a mixed observabil-
ity Markov decision process (MOMDP), a special case of
POMDP (partially observable MDP). An optimal MOMDP
policy accomplishes the best trade-off between informative
and rewarding actions, with regard to a precise management
objective (Chadès et al. 2012).

Researchers from other fields have also looked at vari-
ations of the same problems: model-based Bayesian rein-
forcement learning aims to find the best trade-off (Vlassis et
al. 2012), but does not assume the transition matrix to belong
to a finite given set - instead probabilities are often assumed
to follow a Dirichlet distribution (Duff 2003).

In adaptive management, the true transition matrix is
commonly assumed to be stationary, i.e. it does not change
over time (Walters and Hilborn (1978), Chadès et al. (2012),
Runge (2013) to cite a few). We will make this assumption
too and will refer to the problem as a stationary MOMDP.
Most MOMDP solvers are α-vector-based, i.e. they update
a piecewise linear value function converging to the optimal
value function (Ong et al. 2010). In practice, the high com-
plexity of stationary MOMDPs (PSPACE-complete; Chadès
et al. 2012) leads to very slow convergence for all but trivial
problems.

Based on the properties of stationary MOMDPs, we pro-
pose an algorithm generating a lower bound of the value
function (Proposition 1). We show that it runs in polynomial
time (Proposition 2). Any α-vector-based MOMDP solver
can be initialized with this lower bound, with a potentially
significant reduction of the computation time. Additionally,
our lower bound is provably optimal in the corners of the
domain of the value function (Proposition 3). Finally, we
demonstrate in Theorems 1 and 2 that, under some assump-
tions, the derivatives of the optimal value function exist and
are equal to those of our lower bound in neighborhoods
around the corners of the domain, i.e. our lower bound is
a linear approximation of the optimal value function.

The paper is organized as follows: we first introduce
MOMDPs formally. We then describe our approach to speed
up MOMDP solvers. We illustrate the efficiency of our ap-
proach on the management of the invasive mosquito Aedes
albopictus in an Australian archipelago and on case studies
taken from Nicol et al. (2013). The data is freely available at
goo.gl/6f4Rh0. In the last section we discuss our approach
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Figure 1: Relations between various Markovian models.

and the results obtained.

Mixed observability Markov decision process

A partially observable Markov decision process (POMDP)
is a mathematical framework to model the impact of sequen-
tial decisions on a probabilistic system under imperfect ob-
servation of the states (Sigaud and Buffet 2010). MOMDPs
are a special case of POMDPs, where the state can be de-
composed into a fully observable component and a partially
observable component (Ong et al. 2010). Alternatively, they
can be seen as MDPs extended with a non-observable com-
ponent (Fig. 1). MOMDPs can model various decision prob-
lems where an agent knows its position but evolves in a par-
tially observable environment, or when the transition matri-
ces or rewards are uncertain. Formally, a MOMDP (Ong et
al. 2010) is a tuple 〈X,Y,A,O, Tx, Ty, Z,R, γ〉 in which:

• The state space is of the form X × Y . The current state
(x, y) fully specifies the system at every time step. The
component x ∈ X is assumed fully observable and y ∈ Y
is partially observable;

• A is the finite action space;

• Tx(x, y, a, x
′) = p(x′|x, y, a) is the probability of transi-

tioning from the state (x, y) to x′ when a is implemented.
Ty(x, y, a, x

′, y′) = p(y′|x, y, a, x′) is the probability of
transitioning from y to y′ when a is implemented and the
observed component transitions from x to x′. The process
respects the Markov property in that these probabilities do
not depend on past states or actions;

• The reward matrix is the immediate reward r(x, y, a) that
the policy-maker receives for implementing a in state
(x, y);

• O is the finite observation space;

• Z(a, x′, y′, o′) = p(o′|a, x′, y′) is the probability of ob-
serving o′ ∈ O if the state is (x′, y′) after action a;

• γ is the discount factor (< 1 in infinite time horizon).

The sequential decision making process unfolds as fol-
lows (Fig. 2a). Starting at time t = 0 in a given initial state
(x0, y0), the decision maker chooses an action a0 and re-
ceives the reward r(x0, y0, a0). The states x1 and y1 cor-
responding to t = 1 are drawn according to the probabili-
ties Tx(x0, y0, a0, ·) and Ty(x0, y0, a0, x1, ·). The observa-
tion o1 is drawn according to the probability Z(a0, x1, y1, ·).
The decision maker then observes x1 and o1, selects a new
action a1 and the process repeats.

The goal of a decision maker is to find a sequence
of actions that yields the best expected sum of rewards
over time, depending on the selected criterion. Here,
we use an infinite time horizon, i.e. the criterion is

Figure 2: Illustration of the interdependencies between
states, observations and actions in a MOMDP and a station-
ary MOMDP. The grey area surrounding the variable y indi-
cates that it is partially observed.

E[
∞∑
t=0

γtr(xt, yt, at)|x0, y0]. Because the state yt is not per-

fectly observable, it is modeled by a probability vector bt,
called a belief state, where each component represents a
state in the set Y (Åström 1965). Belief states are sufficient
statistics (Bertsekas 1995), i.e. sufficient knowledge about
the system is contained in (xt, bt) to make optimal decisions.
The set of all belief states is the belief space, denoted B. It
is a simplex (e.g. triangle or tetrahedron when |Y | = 3 or 4
respectively) whose ’corners’ (vertices) correspond to vec-
tors of the form (0, . . . , 0, 1, 0, . . . , 0) ∈ B, and where each
pair of corners is linked by an edge.

A MOMDP policy π : X×B → A is a mapping from the
set of components x and belief states b to the set of actions.
A policy π is optimal if it maximizes the selected perfor-
mance criterion:

π∗ = argmax
π

E[

∞∑
t=0

γtR(xt, bt, π(xt, bt))|x0, b0] (1)

with R(x, b, a) =
∑

y∈Y b(y)r(x, y, a). Any policy π can
be assessed through its value function Vπ defined as, for all
x, b ∈ X ×B:

Vπ(x, b) = E[

∞∑
t=0

γtR(xt, bt, π(xt, bt))|x, b], (2)

We then have π∗ = argmaxπ Vπ(x0, b0). Its optimal
value function is denoted V ∗.

An essential property of POMDPs that translates to
MOMDPs is that the value function Vπ(x, ·) is piecewise
linear convex (PWLC) in the belief state b for finite horizon
problems (Smallwood and Sondik 1973). That is, there ex-
ists a finite set Γx of |Y |-tuples (called α-vector hereafter)
such that:

Vπ(x, b) = max
α∈Γx

b · α (3)

where b · α =
∑

y∈Y b(y)α(y) is the inner product. In infi-
nite horizon problems, the value function is only guaranteed
to be convex, and can be approximated arbitrarily closely
by PWLC functions. Initialized with a lower bound of the
optimal value function, most MOMDP solvers calculate the
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policy by updating the sets Γx recursively through Bellman’s
equation, causing Vπ to increase until it is close enough to
the optimal value function. To apply the policy, since each
α-vector is associated with an action, the best action to im-
plement at any time step is found by selecting the α-vector
that maximizes b · α in Eq. 3. This necessitates knowing the
belief state b, which can be calculated recursively. Given the
current belief state bt, the current and future state x and x′,
the action a and the future observation o′, the future belief
state bt+1 is unique and calculated as follows:

bt+1(y
′) = p(y′|x, bt, a, x′, o′)

=
p(o′|x, bt, a, x′, y′)p(y′|x, bt, a, x′)

p(o′|x, bt, a, x′)
= ηZ(a, x′, y′, o′)×∑

y∈Y

Tx(x, y, a, x
′)Ty(x, y, a, x

′, y′)bt(y)

(4)

where η = 1/p(o′, x′|x, bt, a) is a normalizing term.

Stationary MOMDPs

We call a MOMDP ’stationary’ when its partially observ-
able component y is stationary, i.e. it will not change over
time. Potential examples include the population dynamics
of a species or a patient’s condition, which can be reason-
ably assumed stationary over a short period of time. Regard-
ing adaptive management problems, the partially observable
component y represents the transition matrix, while the com-
ponent x models the observed ’physical’ system (Chadès et
al. 2012). The transition matrix is typically assumed sta-
tionary (Walters and Hilborn 1978; Chadès et al. 2012;
Runge 2013). This means Ty(x, y, a, x

′, y′) = 1 if y = y′,
0 otherwise (Fig. 2b). In this case, the future belief state can
be written (Chadès et al. 2012):

bt+1(y
′) = ηZ(a, x′, y′, o′)Tx(x, y

′, a, x′)bt(y′) (5)

Proposed approach

In this section we describe how the structure of a stationary
MOMDP can be exploited to speed up any α-vector-based
MOMDP solver.

Property of stationary MOMDPs

Assume that, at a certain time step t, the transition matrix is
known, i.e. bt(y) = 1 for some y ∈ Y and bt(ỹ) = 0 for all
ỹ �= y. This belief state is a corner of the belief space B and
is denoted by the unit vector ey .

In a stationary MOMDP, the corner ey is absorbing (i.e.
bt′ = ey for all t′ ≥ t), since for all ỹ �= y, bt+1(ỹ) =
ηZ(a, x′, ỹ, o′)Tx(x, ỹ, a, x

′) × 0 = 0, so bt+1(y) = 1 (the
observable component x may still change). From time step
t on, the process is a fully observable Markov decision pro-
cess, with state space X , action space A, transition matrix
Tx|y and rewards r|y . The new transition matrix and rewards
are the restriction of the MOMDP components to the state y:
Tx|y(x, a, x′) = Tx(x, y, a, x

′) and r|y(x, a) = r(x, y, a).

Algorithm

Our approach (Algorithm 1) builds on this property to gener-
ate a lower bound of the optimal value function. First, these
|Y | MDPs that correspond to the corners of the belief space
are solved (line 2), providing |Y | optimal MDP policies π∗

y

and values V ∗
y . Then, each policy is evaluated on the |Y |−1

other MDPs (line 6). The combination of these evaluations
yields, for each policy, one α-vector per state X (line 8). So,
there are |X||Y | α-vectors generated in total. The function
Init is defined for any x, b ∈ X × B as the maximum over
these α-vectors.

Algorithm 1 Calculation of the function Init

Input: MOMDP 〈X,Y,A,O, Tx, Ty, Z,R, γ〉, Ty = Id

1: for y ∈ Y do
2: V ∗

y , π
∗
y ← SolveMDP (X,A, Tx|y, r|y, γ)

3: for x ∈ X do
4: αx,y(y) ← V ∗

y (x)

5: for ỹ ∈ Y − {y} do
6: Vy,ỹ ← PolicyV alue(π∗

y , X,A, Tx|ỹ, r|ỹ, γ)
7: for x ∈ X do
8: αx,y(ỹ) ← Vy,ỹ(x)

9: Init : (x, b) 	→ maxy∈Y αx,y · b, (x, b) ∈ X ×B

Theoretical results

Proposition 1. The function Init is a lower bound of the
optimal value function V ∗.

Proof. Let y ∈ Y . By linearity, the linear functions (x, b) 	→
αx,y · b equal the value functions of the MOMDP policy
consisting of implementing the action π∗

y(x) in state x ∈ X ,
with no regard to the observations of y and no belief state
calculation. Consequently, these functions are lower bounds
of V ∗; so is Init by definition.

Proposition 2. Algorithm 1 runs in polynomial time in the
number of states |X|, |Y | and actions |A|.
Proof. Algorithm 1 consists of solving |Y | MDPs, which
can be solved in polynomial time in |X| and |A| (Littman,
Dean, and Kaelbling 1995). The evaluation of |Y | MDP
policies |Y | − 1 times also runs in polynomial time.

So, the lower bound can be quickly computed and used
as an initial value function in any α-vector-based solver. A
good initial value function (i.e. not too far from the optimal
value function) can be critical for solving large stationary
MOMDPs rapidly, since the value function is calculated re-
cursively through Bellman’s equation. In the following we
show that the lower bound is optimal in all corners ey:
Proposition 3. V ∗

y (x) = V ∗(x, ey), for all x, y ∈ X × Y .

Proof. As discussed above, when bt = ey the MOMDP
behaves like a classic MDP. Being the optimal MDP value
function, V ∗

y is by definition no smaller than any other value
function, including V ∗(., ey). Conversely, since the process
is also part of the MOMDP, the optimal MOMDP function
V ∗ satisfies V ∗(x, ey) ≥ V ∗

y (x) for all x ∈ X .
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Figure 3: Illustration of an optimal value function V ∗, Init
and f = V ∗ − Init between ey and eỹ for a given x ∈ X .
In infinite time horizon, the optimal value function V ∗ is
convex but is not necessarily piecewise linear (e.g. near ey).
Under Assumption 1, the derivatives of f in ey and eỹ equals
zero, i.e. Init is a linear approximation of V ∗ in neighbor-
hoods around the corners of the belief space.

However, optimality in the corners does not imply that
the lower bound Init will be close to V ∗ in the center of
the belief space. The following property states that Init is
a linear approximation of V ∗ in neighborhoods around the
corners of the belief space.

We prove that, under some assumptions (Assumptions 1
and 2 below), the directional derivatives of V ∗ in the cor-
ners exist and equal those of Init. Formally, the directional
derivative of V ∗ in (x, ey) along a vector d is defined as
∇dV

∗(x, ey) = limh→0
V ∗(x,ey+hd)−V ∗(x,ey)

h . With As-
sumption 1, the allowed ’directions’ d are along the edges
of the belief space (Theorem 1). With Assumptions 1 and 2,
all directions are allowed (Theorem 2).

First, satisfying Assumption 1 ensures that the optimal
MDP policies are optimal around the corners, and not just
in the corners. For all (x, a) ∈ X × A, denote πx,a the pol-
icy selecting a in state x and following π∗

y in other states.
Assumption 1: There exists y ∈ Y such that, for each

(x, a) ∈ X ×A, the optimal MDP policy π∗
y satisfies either:

• V ∗
y (x, ey) > Vπx,a(x, ey) (i.e. π∗

y(x) strictly better than
a in state x);

• Or, for all ỹ ∈ Y , Tx(x, ỹ, π
∗
y(x), ·) = Tx(x, ỹ, a, ·) and

r(x, ỹ, π∗
y(x)) = r(x, ỹ, a) (i.e. π∗

y(x) and a have iden-
tical outcomes in state x).

In other words, we do not consider cases where for some
state x, two optimal actions for transition matrix y have dif-
ferent transition or reward on some transition matrix ỹ ∈ Y .
Under Assumption 1, the directional derivatives of V ∗ and
Init in the corners towards other corners are equal (Fig. 3):

Theorem 1. We assume that Assumption 1 is satisfied for
some y ∈ Y . For all x ∈ X , the directional derivative of the
optimal value function in (x, ey) with respect to any ỹ �= y
equals that of the function Init (obtained with Algorithm 1).
Let d = eỹ − ey . For all x ∈ X and ỹ ∈ Y , we have:

∇dV
∗(x, ey) = ∇dInit(x, ey) = αx,y · ey −αx,y · eỹ (6)

Sketch of proof. (Full proof available in Appendix)

(a) Assumption 1 implies that the optimal MDP policy π∗
y

is identical to the optimal MOMDP policy π∗ in a neighbor-
hood of the corner (x, ey).

(b) We show that the belief in transition matrix ỹ
does not grow by more than a constant from one
belief state bt to its successors. The constant equals
max{Z(a,x′,ỹ,o′)Tx(x,ỹ,a,x

′)
Z(a,x′,y,o′)Tx(x,y,a,x′) |x, x′ ∈ X, a ∈ A, o′ ∈

O,Z(a, x′, y, o′)Tx(x, y, a, x
′) �= 0}.

(c) Combining (a) and (b) applied recursively, we deduce
that π∗

y and π∗ will be identical for as many time steps as we
want, provided bt is close enough to ey .

(d) This implies that the distributions of rewards and be-
lief states for π∗

y and π∗ will be identical for as many time
steps as we want. So, the difference between V ∗ and Init
will only be due to events happening after a number of time
steps t′ which increases when bt converges to ey .

(e) The impact of these future events on V ∗ − Init can
be bounded by γt′C‖bt − ey‖1 (with C a constant), which
implies that the difference V ∗−Init has derivative zero.

Another assumption on the transition matrices can yield a
stronger version of the theorem:

Assumption 2: There exists y ∈ Y such that, for each
(x, x′) ∈ X , if Z(π∗

y(x), x
′, y, o′)Tx(x, y, π

∗
y(x), x

′) = 0,
then Z(π∗

y(x), x
′, ỹ, o′)Tx(x, ỹ, π

∗
y(x), x

′) = 0 for all ỹ ∈
Y .

In other words, an event that is impossible to observe for
transition matrix y cannot be observed for any other transi-
tion matrix. This happens, for example, when all scenarios
concur on which events are possible and which are not.
Theorem 2. We assume that Assumptions 1 and 2 are sat-
isfied for some y ∈ Y . Then, for all x ∈ X , the direc-
tional derivative of the optimal value function in (x, ey)
in any direction equals that of the function Init. For all
(x, b) ∈ X ×B, denoting d = b− ey , we have:

∇dV
∗(x, ey) = ∇dInit(x, ey) = αx,y · ey − b · αx,y (7)

So, under Assumption 1, the lower bound Init has the
same derivative in the corners as the optimal value function
along the edges. Under Assumptions 1 and 2, their direc-
tional derivatives in the corners are equal along any direction
inside the belief space. These theorems state that the lower
bound is a linear approximation of the optimal value func-
tion in neighborhoods of the corners of the belief space. We
now introduce the real-world case study used to evaluate the
validity of our approach.

Case study: managing invasive Aedes albopictus
The Asian tiger mosquito Aedes albopictus is a known vec-
tor of several pathogens. Although the Australian mainland
is currently not infested, the nearby Torres Strait Islands are
(Ritchie et al. 2006). The N = 17 inhabited islands con-
stitute potential sources for the introduction of Aedes al-
bopictus into mainland Australia through numerous human-
related pathways between the islands and towards north-east
Australia (see map in Fig. 4).

Management actions on islands include the treatment of
containers and mosquitoes with diverse insecticides. Since
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Figure 4: Connections between islands depict the possibili-
ties of colonization of the mosquitoes on susceptible islands.

budget is limited, not all islands can be treated simultane-
ously. The objective is to select islands to manage to max-
imize the expected time before the mainland becomes in-
fested. The effect of distances and populations on the prob-
ability of dispersal between islands and the effectiveness of
some of the management actions are partially unknown (i.e.
the transition matrix is unknown). A mix of expert data and
literature review led us to narrow down the number of transi-
tions matrices to eight. As traditionally in adaptive manage-
ment, these transitions matrices are assumed equally likely
at t = 0, i.e. the initial belief state equals (1/8, . . . , 1/8).
This decision problem is modeled as a MOMDP in which:
• The observable component x ∈ X specifies the season

(wet/dry) and the presence or absence of the mosquitoes
across the islands N (|X| = 2N+1 + 1). The last ’+1’
is an absorbing state corresponding to the presence of
mosquitoes in the mainland. The component y ∈ Y is
the unknown true transition function, with |Y | = 8;

• Each action a ∈ A describes which islands should be
managed (up to three simultaneously) and the type of
management (light or strong);

• The transition probabilities Tx(x, y, a, x
′) accounts for

the possible eradications and transmissions between is-
lands. Also, Ty(x, y, a, x

′, y′) = 1y=y′ (stationary);
• The reward r(x, y, a) equals 0 if the mainland is infested

and 0.5 otherwise (it only depends on x);
• O = X is the finite observation space;
• Z(a, x′, y′, o′) = 1o′=x′ (x′ fully observable);
• γ should ideally be 1 so the MOMDP value equals the ex-

pected time before infestation of Australia (in years since
each time step equals six months). Since most solvers do
not support such a setting, we set γ = 0.999.
We also tested our approach on adaptive management

problems of migratory shorebirds taken from Nicol et al.
(2013), where we have changed the transition matrix from
non-stationary to stationary. We programmed our approach
with the MOMDP solver MO-SARSOP (Kurniawati, Hsu,

and Lee 2008; Ong et al. 2010) with the MDPSolve pack-
age (https://sites.google.com/site/mdpsolve/) and POMDP
solver Perseus with 500 beliefs states (Spaan and Vlassis
2005). We compare the modified solvers (marked with a ’+’)
with the original solvers through the quality of their initial-
ization (Table 1) and their convergence speed (Fig. 5). Note
that MO-SARSOP has an advanced lower bound imple-
mentation, which we have replaced with our lower bound.
MO-SARSOP also initializes an upper bound (fast-informed
bound), which is optimal in the corners for all case stud-
ies. Perseus initializes its value function with the constant
1

1−γ minx,y,a r(x, y, a).

Results

We show the computation times of mosquito instances with
number of islands ranging from 7 to 9 (Table 1). Problems
for more than 9 islands were not tractable. We show prob-
lems Grey-tailed tattler, Red knot pearsonii and Red knot
rogersi from Nicol et al. (2013). For problems Lesser sand
plover, Terek sandpiper and Bar-tailed godwit m, the initial-
ization is already optimal in MO-SARSOP. Our computer
ran out of memory when solving the problems Great knot,
Far eastern curlew and Curlew sandpiper.

Table 1: Initial values and initialization times of original and
modified (+) MO-SARSOP and Perseus. These are the val-
ues of the initial belief state, of the form (1/|Y |, . . . , 1/|Y |)
in all problems. Experiments conducted on a dual 3.46GHz
Intel Xeon X5690 with 96GB of memory.

Instance MO- MO- Perseus Perseus+
(|X|/|Y |/|A|) SARSOP SARSOP+

7 islands 11.7 16.7 0 16.7
(257/8/113) 159 s 165 s 0 s 76 s
8 islands 12.2 17.4 0 17.4
(513/8/157) 740 s 771 s 0 s 169 s

9 islands 12.5 17.4 (intrac- (intrac-
(1025/8/211) 3244 s 3316 s table) table)
Grey-tailed 4987 5167 836 5167
tattler (972/3/6) 23 s 20 s 0 s 70 s
Red knot pear- 6049 6049 4444 6049
sonii (8748/3/8) 140 s 125 s 0 s 874s
Red knot roger- 6906 6947 (intrac- (intrac-
si (8748/3/8) 717 s 592 s table) table)

Modified solvers consistently obtain a better initial value
than original solvers, with the exception of MO-SARSOP on
Red knot pearsonii (equal value). Moreover, MO-SARSOP+

initializes roughly as quickly as MO-SARSOP. The initial-
ization in Perseus is much quicker than in Perseus+ but at
the cost of a lower initial value (0 in our case study because
minx,y,a r(x, y, a) = 0).

Fig. 5 illustrates the evolution of the value over time for
the original and modified solvers, and the upper bound as
calculated in MO-SARSOP+. The modified solvers con-
sistently outperform the original solvers. In our case study
Aedes albopictus, MO-SARSOP+ obtains much better ini-
tial values than MO-SARSOP (7 islands, Fig. 5a). All
solvers converge very slowly, which makes this initial value
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Figure 5: Values over times of original and modified MO-
SARSOP and Perseus on 4 problems (stopped after 3600s
including initialization). We also show the upper bound as
calculated in modified MO-SARSOP. The point correspond-
ing to the initialization time and initial value is circled.

all the more critical. For Red knot rogersi (Fig. 5b), MO-
SARSOP+ initializes more rapidly and with a better value
than MO-SARSOP, leading to a rapid reduction of the op-
timality gap (i.e. difference to the upper bound). Regarding
Red knot pearsonii, our approach does not improve the ini-
tial value, but it significantly accelerates the reduction of the
optimality gap (Fig. 5c). This supplements Theorem 1 and
2 in suggesting that the generated α-vectors do not solely
yield a good value on the initial belief state but all across the
belief space, which allows generating good future α-vectors
through Bellman’s equations. Finally, for all but small prob-
lems, Perseus suffers from a poor initial value and is outper-
formed by Perseus+ (Fig. 5d).

Discussion

We proposed a method to improve the initialization of a
MOMDP solver in the case where the partially observ-
able component is stationary. We showed that our approach,
which consists of solving a number of Markov decision pro-
cesses, generates a lower bound that is optimal in the cor-
ners of the belief space. With an additional assumption about
the optimal policy, we demonstrated that this lower bound
is also a linear approximation to the value function. This
simple and inexpensive initial lower bound can be used as
an initialization to any α-vector-based solver. Tested on two
state-of-the-art MOMDP and POMDP solvers, our approach
showed significant computational gains on a novel compu-
tational sustainability case study of management of an inva-
sive species and on a previously published data challenge.

Our approach has several benefits. It quickly identifies the
optimal MDP policies and their values, which solvers may
take a very long time to match (Fig. 5a). Since α-vectors are
updated recursively through Bellman’s equation, α-vector-
based solvers very much rely on a good initial value func-
tion. Our initial lower bound algorithm has proven to trigger
a steeper reduction of the gap in the first steps of computa-

tion (Fig. 5b, 5c).
Assumption 1 (two non-identical actions cannot be both

optimal) may seem like a strong assumption. However, the
set of ’degenerate’ instances has measure zero, i.e. a ran-
dom MOMDP instance will satisfy Assumption 1 with prob-
ability 1. As meaningful instances are not random and may
well be degenerate, one can slightly perturb their rewards to
avoid having two optimal actions. The same goes for As-
sumption 2, where one can perturb the transition matrices to
ensure a transition matrix cannot have probability 0 where
other transition matrices have non-zero probability. So, with
an arbitrarily small impact on the value of any policy, the
assumptions can be fulfilled and the property of linear ap-
proximation can be guaranteed.

This property can be exploited in various ways. First, a
belief state that is close to a corner can be approximated
with the initial value, which would save storage space and
backup time. Ideally, the error incurred should be controlled
and linked to the distance between the belief state and the
corner (also guaranteeing that a policy is near optimal for
decision makers), perhaps by bounding the second derivative
of the optimal value function. This warrants further research.

The magnitude of the optimality gap after our initializa-
tion provides precious information to decision makers. A
small optimality gap means that some optimal MDP poli-
cies are robust to a transition matrix falsely identified as be-
ing true, so adaptive approaches might not be necessary. A
large gap shows that a poor knowledge will be heavily pe-
nalized and is an incentive to use adaptive methods to reduce
the uncertainty; if the value is a financial cost or benefit, this
provides an idea of how much money could be spent to re-
duce uncertainty.

Our approach could be of use in other contexts of com-
putational sustainability. In medical science, trade-offs may
occur between learning about a patient’s condition and
minimising the risk of death, complications, or discomfort
(Hauskrecht 1997). In education, an educator may learn a
student’s profile while teaching in order to identify the best
way of teaching (Cassandra 1998).

Apart from computational sustainability, the maintenance
of machines, networks or infrastructures (Faddoul et al.
2015) could benefit from our approach, with the partially
observable component containing information about the in-
ner state to be maintained, e.g. deterioration or flaws. In
marketing, a company or salesperson can learn about the
customer as they are implementing their marketing strat-
egy (Zhang and Cooper 2009). Dias, Vermunt, and Ramos
(2015) infer hidden parameters driving stock markets; Sta-
tionary MOMDPs would allow merging the learning and de-
cision processes.

The method can be extended and improved in several
ways. Nicol et al. (2013) extended the traditional adaptive
management framework by assuming the transition matrix
non-stationary. Our approach does not work under this as-
sumption because in this case the corners of the belief space
are not absorbing and so the optimal values on corners can-
not be obtained by solving MDPs. However, we hope our
research will lead to a stronger focus from the artificial intel-
ligence community on improving lower bounds for general-
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case MOMDPs or POMDPs. Another common assumption
is the finite number of transition matrices; by contrast, Merl
et al. (2009) sample continuous parameters with a Monte
Carlo approach, which could be combined with our algo-
rithm. Finally, we could not solve very large instances that
Nicol et al. (2013) solved with Symbolic Perseus, a fac-
tored POMDP solver (Poupart 2005). Our approach could
be adapted to factored POMDPs by solving factored MDP
(Hoey et al. 1999), also allowing us to solve our case study
with a higher number of islands.
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