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Abstract

Stochastic network design is a general framework for opti-
mizing network connectivity. It has several applications in
computational sustainability including spatial conservation
planning, pre-disaster network preparation, and river net-
work optimization. A common assumption in previous work
has been made that network parameters (e.g., probability of
species colonization) are precisely known, which is unreal-
istic in real-world settings. We therefore address the robust
river network design problem where the goal is to optimize
river connectivity for fish movement by removing barriers.
We assume that fish passability probabilities are known only
imprecisely, but are within some interval bounds. We then
develop a planning approach that computes the policies with
either high robust ratio or low regret. Empirically, our ap-
proach scales well to large river networks. We also provide
insights into the solutions generated by our robust approach,
which has significantly higher robust ratio than the baseline
solution with mean parameter estimates.

1 Introduction

Many problems, such as influence maximization (Kempe,
Kleinberg, and Tardos 2003), spatial and fish conservation
planning (Sheldon et al. 2010; O’Hanley and Tomberlin
2005), and predisaster preparation (Schichl and Sellmann
2015) can be formulated as a variant of the stochastic net-
work design problem. A stochastic network design problem
(SNDP) is defined by a directed graph where each edge is
either present or absent with some probability. Management
actions can be taken to change the probabilities of edge pres-
ence. The goal is to determine which actions to take, subject
to a budget, to optimize some outcome of the stochastic net-
work over a time period. Several approaches to solve SNDPs
have been shown to scale up to large networks (Chen,
Wang, and Wang 2010; Kumar, Wu, and Zilberstein 2012;
Wu, Sheldon, and Zilberstein 2014b; 2016).

An important assumption made in SNDPs is that the net-
work parameters (e.g., probabilities of edge presence) are
estimated accurately, which is not feasible in real world eco-
logical domains due to noisy observations, model drift, cli-
mate change, and the diversity of species. To handle parame-
ter uncertainty, researchers have formulated robust network
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design problems that include uncertain network probabili-
ties (He and Kempe 2014; Chen et al. 2016). Recently, Ku-
mar et al. (2016) also studied a robust conservation planning
problem where the movement probabilities of species and
sizes of habitats are not accurately specified. The robust net-
work design problem we address differs from previous work,
which does not allow management actions to modify inter-
val parameters (e.g., edge probabilities). They only modify
network structure, for example, by adding sources or nodes.
In contrast, we allow management actions that can modify
both interval bounds and network structure. As a result of
the richer action space, it is unclear whether the sample av-
erage approximation (SAA) approach used in previous set-
tings (Kumar et al. 2016) is applicable to our problem. To
address these challenges, we develop a dynamic program-
ming and mixed-integer programming based approach that
can optimize connectivity without using SAA.

We study robust SNDPs for tree-structured river net-
works. The motivating application is the barrier removal
problem (Neeson et al. 2015), where the goal is to decide
which instream barriers to remove or repair to help fish move
upstream and get access to their historical habitats. In this
domain, the passage probability of a barrier can only be in-
accurately estimated, and the new passage probability of a
repaired barrier is even harder to estimate. Hence, we model
the uncertainty in passage probability using well known in-
terval bounds (Boutilier et al. 2003). We then develop a scal-
able algorithm to find the robust policy for barrier removal.

The robustness of a policy can be quantified by two corre-
lated metrics: robust ratio (He and Kempe 2014; Chen et al.
2016) and regret (Boutilier et al. 2003; Kumar et al. 2016).
Intuitively, assume that given a policy, nature chooses an ad-
versarial policy that selects parameters within their interval
bounds so as to either minimize the ratio between the val-
ues of the given policy and the adversarial policy (called ro-
bust ratio) or maximize the value difference between them
(called regret). We develop a scalable algorithm to find a
robust policy that maximizes the robust ratio by solving a
bilevel optimization problem. We also show that, with minor
modifications, our approach can be used to minimize regret.

The algorithm is based on a constraint generation proce-
dure (Boutilier et al. 2003) that interleaves between two op-
timization steps. The decision optimization step finds a deci-
sion policy that maximizes the robust ratio when nature can
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(a) River segments (b) Directed rooted tree

Figure 1: Encoding a river network as a directed rooted tree.
Each color represents a contiguous region.

choose policies and probabilities from a given limited num-
ber of choices. In the second ratio minimization step, the
best adversarial policy and probabilities are found for the
selected decision policy and are added to the set of choices
for nature. We provide a mixed integer linear programming
formulation for the decision optimization problem. The ratio
minimization problem is much harder; we develop an algo-
rithm called rounded dynamic programming (RDP) by com-
bining a dynamic programming algorithm and a rounding
method and show that it is a fully polynomial time approxi-
mation schema (FPTAS). In experiments, we show that RDP
performs nearly optimally as it selects the adversarial policy
and probabilities. Our algorithm can find policies that are
more robust than policies found by baseline methods with
respect to both robustness metrics. We also provide insights
on the robustness metrics by visualizing the solutions.

2 River Network Design

The problem is defined on a directed rooted tree T =(V,E)
with a unique root denoted by s. Edges spread out from
the root. A node v represents a contiguous region of the
river network. It denotes a connected set of stream segments
among which fish can move freely without passing any barri-
ers. A node v is associated with a reward rv which is propor-
tional to the total amount of habitat in that region (e.g., the
total length of all segments). An edge e encodes a river bar-
rier. Fig. 1 shows how to encode a river network as a directed
rooted tree. Each barrier is associated with a passage proba-
bility—the probability that a fish can pass the barrier. Before
any repair action is taken, the probability is called the initial
passage probability denoted by pe. A finite set of candidate
actions denoted by Ae = {0, 1, ...,m} are available at e; an
action i has cost ce(i), and, if taken, can raise passage prob-
ability to pe|i. The action 0 is the null action with pe|0 = pe
and zero cost. A policy π indicates which action is taken
at each edge. The passage probability for a given policy is
denoted by pe|π . The accessibility of a node v denoted by
ps�v|π is the probability that a fish passed all barriers on the
path from s to v or ps�v|π =

∏
e: on path from s to t pe|π . A re-

ward rv can be collected only if a fish can reach v. The value
of policy π, denoted by z(π), is the total reward of nodes
weighted by their accessibilities: z(π) =

∑
v∈V ps�v|πrv .

We also call z(π) the objective value to differentiate be-

Figure 2: Illustration of robust ratio with X-axis showing dif-
ferent policies. For policy 1, the adversary chooses policy 2
and probability 1 (yellow curve) to minimize the robust ra-
tio, which is 0.1. Similarly, the robust ratio of policy 2 is 7

9 ,
hence it is more robust than policy 1.

tween other values assigned to π. The barrier removal prob-
lem (Wu, Sheldon, and Zilberstein 2014a) is to find a policy
maximizing z(π) subject to a budget constraint:

argmax
π

z(π) s.t. c(π) ≤ B (1)

where c(π) is the total cost of action taken for each edge in
the network. Let X = {π : c(π) ≤ B} denote the set of
feasible policies.

Robust River Network Design The barrier removal prob-
lem is defined upon the assumption that all the passage prob-
abilities are known. However, this is an unrealistic assump-
tion. Often, in real world settings, it is not possible to accu-
rately estimate such probabilities. Therefore, in our model
only interval bounds are specified for different probabili-
ties (Boutilier et al. 2003). Specifically, the passage prob-
ability for an edge e and action i ∈ Ae can take any value
within a given interval. That is, pe|i ∈Pe|i = [p

e|i, pe|i]. Let
p denote a vector of all probabilities p=(pe|i)e∈E,i∈Ae . Let
the space of all the allowed probabilities p be denoted as
P =×e∈E,i∈AePe|i. Our goal is to find a policy πMRR that
maximizes the robust ratio as defined by Kouvelis and Yu
(2013) and Chen et al. (2016):

πMRR ∈ argmax
π∈X

min
π′∈X ,p∈P

z(π;p)

z(π′;p)
. (2)

In the outer maximization, the decision maker seeks a de-
cision policy π that is robust relative to adversarial choices
made by nature. In the inner minimization, nature adversari-
ally chooses a policy π′ and feasible parameters p (a policy-
parameter pair) to minimize the ratio between the value of
the decision policy π and the adversarial policy π′ on this set
of parameters. The optimal value of the adversary is called
the robust ratio of policy π with respect to parameter space
P . A policy (such as πMRR) that maximizes the robust ratio
is called MRR-optimal, and the robust ratio of such a policy
is called the MRR-value. Suppose πMRR is MRR-optimal
with MRR-value α: then πMRR achieves at least α fraction
of the optimal reward for any parameter setting p ∈ P . Fig. 2
illustrates the concept.
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Algorithm 1 Robust Policy Optimization

1: Initialize C = {(π′
0,p0)} and T = 1.

2: Decision Optimization: obtain πT by solving:

U = max
π

min
(π′,p)∈C

z(π;p)/z(π′;p) (3)

3: Adversary Optimization: obtain the adversarial policy-
parameter pair (π′

T ,pT ) with respect to πT by solving:

L = min
(π′,p)∈C

z(πT ;p)/z(π
′;p). (4)

4: if U − L ≤ threshold, return πT . Otherwise set C = C ∪
{(π′

T ,pT )}, increment T , and go to step 2.

3 Our Method

We develop an iterative method (Algorithm 1) to solve Prob-
lem (2) using constraint generation (Boutilier et al. 2003).
The high-level idea is to interleave two optimization prob-
lems. First, in the decision optimization problem, the deci-
sion maker finds the best decision policy πT relative to a
limited adversary, who can only pick policy-parameter pairs
from the finite set C. Then, the adversary selects a new
policy-parameter pair to minimize the robust ratio with re-
spect to the current decision policy πT . The decision player’s
value U is an upper bound on the MRR-value, because the
adversary is limited to a finite subset of policy-parameter
pairs. The adversary’s optimal value L is a lower bound on
the MRR-value. When U = L, we have an MRR-optimal
decision policy. By allowing a small gap between the two
bounds, we can find a nearly MRR-optimal policy. The set
C is initialized with an arbitrary policy and probabilities.

3.1 The Decision Optimization Problem

The goal of Problem (3) is to find a decision policy that
maximizes the robust ratio with respect to the limited adver-
sary. Fig. 3 presents a mixed-integer linear program (MILP)
to solve this problem building on techniques from (Neeson
et al. 2015). The variable M encodes the MRR-value. The
inner minimization is replaced by inequality constraints (??)
on M . The continuous variable zp encodes the objec-
tive value of the decision policy for probability setting p
by (??). z(π′;p) is a constant for each policy-parameter
pair (π′;p) ∈ C. xi

e is a binary decision variable indicat-
ing whether action i ∈ Ae is applied to e (= 1) or not
(= 0). Constraint (??) enforces that one and only one ac-
tion is taken at each edge, and (??) is the budget constraint.

The constraint set Ω(p, x) defined in (??)–(??) forces zp
to be the objective value of π under probability setting p.
The variable αp

v encodes the accessibility of node v. The
root node has accessibility 1 by (??). Π(v) denotes the par-
ent of node v. Recall that each node has at most one parent.
The variable λp

v,i encodes the increment in the accessibil-
ity of node v if an action i ∈ AΠ(v),v is applied to edge
(Π(v), v). In (??), the accessibility of v equals to the cumu-
lative passability when no action is taken on edge (Π(v), v)
(the term αp

Π(v)pΠ(v)v) plus the total increment (the term∑
i∈AΠ(v)v

λp
v,i). Actually, at most one action can be taken,

maxM (5)

M ≤
zp

z(π′;p)
∀(π′

;p) ∈ C (6)

zp ∈ Ω(p, x) ∀(π′
;p) ∈ C (7)

∑

i∈Ae

x
i
e = 1 ∀e ∈ E (8)

∑

e∈E

∑

i∈Ae

cixi ≤ B (9)

x
i
e ∈ {0, 1} ∀e ∈ E, ∀i ∈ Ae (10)

Constraint set Ω(p, x) (11)

zp =
∑

v∈V

α
p
vrv (12)

α
p
s = 1 (13)

α
p
v = α

p
Π(v)

pΠ(v)v +
∑

i∈AΠ(v)v

λ
p
v,i ∀v ∈ V/{s} (14)

λ
p
v,i ≤ x

i
Π(v)v ∀v ∈ V/{s}, ∀i ∈ AΠ(v)v (15)

λ
p
v,i ≤ (pΠ(v)v|i − pΠ(v)v) α

p
Π(v)

∀v ∈ V/{s}, ∀i ∈ AΠ(v)v (16)

α
p
v ∈ [0, 1] ∀(π′

,p) ∈ C, ∀v ∈ V (17)

λ
p
e,i ∈ [0, 1] ∀(π′

,p) ∈ C, ∀e ∈ E, ∀i ∈ Ae (18)

Figure 3: Mixed integer linear program to maximize the ro-
bust ratio for a given set C

so only one λp
v,i will be nonzero in the summation. The in-

crement λp
v,i is nonzero only if xi

Π(v)v is 1 by (??), and can
be at most (pΠ(v)v|i−pΠ(v)v) α

p
Π(v) by (??), which is exactly

the increment when action i is taken.

3.2 The Adversary Optimization Problem

In the adversary optimization step, we wish to solve Prob-
lem (4) to find a policy-parameter pair (π′∗,p∗) to minimize
the robust ratio with respect to the current decision policy.

Here is our main result.
Theorem 1. There is an FPTAS for problem (4). It finds a
policy-parameter pair with robust ratio at most (1+ε)OPT

in time O(n
4

μ2 ) where μ = ε
2+ε , n is the number of nodes in

the tree, and OPT is the optimal value of (4).

The FPTAS only approximately minimizes the objective, so
the value L̂ it achieves not a lower bound in in Algorithm 1.
However, the approximation guarantee implies that L = L̂

1+ε
is a lower bound.

In the rest of this section, we prove Theorem 1 (proofs of
some auxiliary results are omitted due to space constraints).
We first propose a dynamic programming (DP) algorithm
for problem (4), but this takes exponential time. We then de-
velop a rounding strategy to reduce the running time to poly-
nomial time and prove that this is an FPTAS. This basic idea
is originally used for the barrier removal problem (1) (Wu,
Sheldon, and Zilberstein 2014a). The adversary optimiza-
tion problem here is more complex as the adversary tries to
simultaneously minimize the value of decision policies and
maximizes the value of adversarial policies. To guarantee the
approximation rate, we round these two values distinctly.

To simplify the presentation, we assume without loss of
generality the following:
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Assumption 1. Each node u ∈ T has at most two children.

Any problem instance can be converted to satisfy this as-
sumption (Wu, Sheldon, and Zilberstein 2014a). Our first
lemma restricts the space of parameters to be considered.

Lemma 1. There exists an optimal policy-parameter pair
(π′∗,p∗) for Problem (4) with the following property. Sup-
pose π′∗ takes action i and the decision policy π takes action
j on edge e. If j �= i, then p∗e|i = pe|i and p∗e|j = p

e|j . Oth-
erwise, p∗e|i is either p

e|i or pe|i.

Lemma 1 guarantees that the optimal adversary probability
is either the upper or lower bound of the interval.

Policy-Parameter Actions and Optimization First, we
redefine problem (4) in the following way so that it is
amenable to dynamic programming.

Let π be fixed. The new optimization problem is the same
as the river network design problem (1) except that its ob-
jective is the robust ratio z(π;p)

z(π′;p) and its actions encode both
the actions and parameters of the adversary.

We define a finite set of policy-parameter actions Ap
e for

each edge, which encode choices made by the adversary
for edge e, including both the action taken and the proba-
bility setting for each available action. A policy-parameter
action is a vector (iae ,pe|0, ...,pe||Ae|) taking value in Ap

e =

Ae ×
∏

j∈Ae
{p

e|j , pe|j}. iae specifies the action that the ad-
versary takes at e. pe|j specifies the passage probability
on e for action j. It is easy to see from Lemma 1 that a
given policy-parameter action need only consider p

e|j and
pe|j as possible values for pe|j without sacrificing optimal-
ity. In addition, Lemma 1 allows us to eliminate certain
policy-parameter actions from consideration. For example,
if Ae = {0, 1} and the decision policy π takes action 1, As

e
only needs to include 3 policy-parameter actions

(0, pe|0, pe|1), (1, p
e|0, pe|1), (1, p

e|0, pe|1)

More generally, we have

Corollary 1. For a fixed π, only |Ae|+ 1 actions in As
e are

needed to compute (π′∗,p∗).

In summary, the choice of a policy-parameter action for
each edge to minimize the robust ratio gives the optimal
policy-parameter pair (π′∗,p∗) for problem (13).

Dynamic Programming We now present a dynamic pro-
gramming algorithm to solve this new problem with policy-
parameter actions.

In a rooted directed tree, each node u corresponds to a
subtree Tu. Define πu (or π′

u) to be the subset of π (or π′)
that only includes actions for edges within Tu, and define
pu to be the subset of p including probabilities only in Tu.
Define zu(πu;pu) to be the objective value of policy πu on
subtree Tu with probability vector pu pretending that u is
the overall root, i.e., zu(πu;pu) =

∑
t∈Tu

pu�t|πrt. Sim-
ilarly, zu(π′

u;pu) is the value of π′
u for Tu. The following

recurrences calculate both values for a given (πu;pu)

zu(π
′
u;pu)=ru+puv|π′

u
zv(π

′
v;pv) + puw|π′

u
zw(π

′
w;pw) (5)

zu(πu;pu)=ru+puv|πuzv(πv;pv) + puw|πuzw(πw;pw) (6)

The DP table of subtree Tu is indexed by pairs (zau, z
d
u),

where zau represents an objective value of an adversary pol-
icy and zdu represents an objective value of the (fixed) deci-
sion policy on that subtree. The table includes only pairs that
are achievable by some probability vector pu and adversary
policy π′

u for subtree Tu, that is, zdu = zu(πu;pu) and zau =
zu(π

′
u,pu). Let Φ(zau, z

d
u) = {(π′

u,pu) | zu(π′
u;pu) =

zau, zu(πu;pu) = zdu} be the set of all policy-parameter
pairs that map to a pair of objective values (zau, z

d
u). For the

entry of the table indexed by (zau, z
d
u), we record only the

minimum-cost adversary policy, and the minimum cost (de-
noted by mc) it achieves:

mc(zau, z
d
u) = min

(π′,p)∈Φ(za
u,z

d
u)
c(π′

u) (7)

The DP tables for all subtrees can be calculated recur-
sively from leaf nodes toward the root s in the following
way. First, the table at a leaf node contains a single tu-
ple with cost 0 because the subtree contains only the leaf
node. Consider a node u with two children v and w. We
can build the DP table at u if we have the DP tables of v
and w by computing all achievable objective-value pairs at
u and their minimum costs. From each pair (zav , z

d
v) at v and

each pair (zaw, z
d
w) at w, policy-parameter pairs (π′

v,pv) and
(π′

w,pw) can be extracted. For each policy-parameter action
(iauv,puv) on edge (u, v) and each policy-parameter action
(iauw,puw) on edge (u,w), a new pair (π′

u,pu) at u can be
built, with which we can compute a pair (zau, z

d
u) using re-

currences (5) and (6). The cost of this new pair is

c(iauv) + c(iauw) + mc(zav , z
d
v) + mc(zaw, z

d
w) (8)

The same pair may be generated multiple times, but only the
minimum cost is recorded.

Once all DP tables are computed, the optimal solution can
be extracted from the table at s by finding a tuple

(za∗s , zd∗s ) ∈ arg min
mc(za

s ,z
d
s )≤B

zds
zas

The pair (π′∗,p∗) associated with the tuple minimizes the
objective.

Unfortunately, the table size grows exponentially with the
height of the node in the tree. We next introduce a rounding
strategy to make the algorithm scalable.

Rounding We define rounded value functions ẑu(π
′;p)

and ẑu(π;p) for subtree u and introduce the following
recurrences for rounded value functions:

ẑu(π
′
u;pu)=Ku

⌊
ru+ puv|π′

u
ẑv(π

′
v;pv) + puw|π′

u
ẑw(π

′
w;pw)

Ku

⌋

(9)

ẑu(πu;pu)=Ku

⌈
ru+ puv|πu ẑv(πv;pv) + puw|πu ẑw(πw;pw)

Ku

⌉

(10)

where Ku is an user defined rounding parameter. Intu-
itively, values are rounded and grouped into discrete bins,
which reduces the number of pairs in the DP table. The fol-
lowing theorem states that for any given policy-parameter
pair, the rounded objective values are not too far from the
true values.
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Theorem 2. Let μ > 0. If we set Ku = μru, for any
(π′

u,pu) and any πu, we have

zu(π
′
u;pu)−ẑu(π

′
u;pu)≤

∑
t∈Tu

pu�t|π′
u
Kt=μzu(π

′
u;pu) (11)

ẑu(πu;pu)−zu(πu;pu)≤
∑
t∈Tu

pu�t|πuKt=μzu(πu;pu) (12)

zu(π
′
u;pu) ≥ ẑu(π

′
u;pu) (13)

ẑu(πu;pu) ≥ zu(πu;pu) (14)

Proof sketch. Intuitively, in (9), the floor rounding opera-
tion at a node t reduces the value by at most Kt, which is dis-
counted by probability pu�t|π′ . Therefore, we have (11) and
(13). In (10), the ceiling rounding operation at a node t in-
troduces an increment bounded by Kt, which is discounted
by pu�t|π′ . Therefore, we have (12) and (14).

The rounded dynamic programming (RDP) algorithm
works the same as the DP algorithm except that instead of
keeping a list of (zau, z

d
u) in the table of u, a list of rounded

pairs denoted by (ẑau, ẑ
d
u) are kept, which are calculated by

recurrences (9) and (10). Each rounded pair is associated
with the minimum cost to achieve it and the correspondent
policy-parameter pair. Intuitively, since multiple zaus (or zdus)
are rounded into the same ẑau (or ẑdu), the size of the table is
reduced. It can be shown that RDP can find

(π′r,pr) ∈ argmin
π′,p

ẑ(π;p)

ẑ(π′;p)
(15)

We show that (π′r,pr) is a good approximation to the op-
timal policy-parameter pair (π′∗,p∗). That is, it is within
(1 + ε) optimal if μ is set properly. Specifically,
Theorem 3. If μ = ε

2+ε , we have

OPT =
z(π;p∗)

z(π′∗;p∗)
≤ z(π;pr)

z(π′r;pr)
≤ (1 + ε)OPT

Proof. By (11) and (12), for any (π′,p), we have

ẑ(π;p)

ẑ(π′;p)
≤ (1 + μ)z(π;p)

(1− μ)z(π′;p)
= (1 + ε)

z(π;p)

z(π′;p)

Since (π′r,pr) produces the minimum ratio for rounded
value functions (10) and (9), we have

ẑ(π;pr)

ẑ(π′r;pr)
≤ ẑ(π;p∗)

ẑ(π′∗;p∗)
≤ (1 + ε)

z(π;p∗)

z(π′∗;p∗)

By (13) and (14), we have

z(π;pr)

z(π′r;pr)
≤ ẑ(π;pr)

ẑ(π′r;pr)

Thus, the theorem is proved.

Runtime Analysis In Theorem 3, we see that the Ku val-
ues of affect the approximation rate. Now, we analyze the
dependence of the RDP algorithm running time on these val-
ues. First, we make the following assumption.
Assumption 2. There are two constants m and M indepen-
dent of |V | such that m ≤ ru ≤ M for all u ∈ V .

The assumption is reasonable because rewards represent
habitat areas of stream segments, which do not increase or
decrease as the number of segments increases.

Let the number of different values of ẑau and ẑdu in the table
at u be ma

u and md
u. We have

Lemma 2. If Ku = μru, we have

ma
u = O

(nu

μ

)
, md

u = O
(nu

μ

)

where nu is the number of nodes in subtree Tu.

Proof. Since ẑ(π′
u;pu) is upper-bounded by z(π′

u;pu) ≤
nu · M , the number of different rounded values with Ku

is ma
u ≤ nu·M

Ku
≤ nu·M

μm = O(nu

μ ). Similarly, ẑ(π;p) is
upper-bounded by (1 + μ)z(πu;pu) ≤ (1 + μ)nuM , so
md

u = O(nu

μ ) as well.

Define T (nu) to be the running time for subtree u, which
is calculated by recurrence

T (nu) = O(ma
vm

d
vm

a
wm

d
w) + T (nv) + T (nw)

Together with Lemma 2, it can be shown that

Theorem 4. T (nu) = O(
n4
u

μ2 )

Thus, the running time of the RDP algorithm is O(n
4

μ2 )

where n is the number of nodes in the directed rooted tree.
Combining Theorems 3 and 4, Theorem 1 is proved.

4 Other Criterion of Robustness

A slightly different way to quantify robustness is to use re-
gret (Kumar et al. 2016; Boutilier et al. 2003). The policy
that minimizes the regret is defined by

πMR ∈ arg min
π:c(π)≤B

max
π′:c(π′)≤B

z(π′;p)− z(π;p) (16)

The robust ratio and the regret are correlated as

z(π;p)

z(π′;p)
= 1− z(π′;p)− z(π;p)

z(π′;p)

The robust ratio is in some way the scaled version of the
regret. In experiments, we show that πMRR also produces
small regret compared to policies computed by other base-
line methods. Our algorithm with minor modifications can
find a nearly optimal πMR empirically.

5 Experiments

We use data from the CAPS project (McGarigal et al. 2011)
for the river networks in Massachusetts and synthetically de-
fine the missing parameters from the data. The data provides
the point estimates of the initial passability probabilities. We
use the method in (Kumar et al. 2016) to define the intervals
of initial passage probabilities before taking actions. The in-
terval of an initial passage probability is [p − βp, p + βp]
where p is an point estimate and β is a parameter controlling
the interval sizes.

The data contains two types of barriers: culverts and
dams. The point estimates for culverts provided by the data
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(a) RDP for robust ratio (b) RDP for regret

Figure 4: Approximate qualities for different algorithm con-
figurations with β = 0.3. X-axis: budget sizes. Y-axis: value

OPT
where OPT is the optimal value produced by the DP algo-
rithm. Value of random policies is an average of 10 runs.

Figure 5: Robust ratio for different K values with β=0.3.
From top to bottom, curves are for “midpoint” and “worst”
policies, and 10 random policies.

are mostly in the range [0.8, 0.9]. A typical action that re-
moves a culvert raises its passage probability to 1.0 and costs
$100,000. Most of the point estimates for dams are less than
0.2. A typical action to repair a dam costs $173,030, and
shifts its probability interval to [p′ − βp′, p′ + βp′] where
p′ = p + a random value in [0.5, 0.9] . The cost estimates
are based on a study by Neeson et al. (2015). All intervals
are truncated to fit within [0, 1.0].

We compare our algorithm against two baseline methods:
a “midpoint” policy is obtained by solving problem (1) and
assuming true passage probabilities being the mid-point val-
ues of the intervals; a “worst” policy is obtained by solving
problem (1) and conservatively assuming true passage prob-
abilities being the lower bounds of the intervals. The policy
calculated by our algorithm is the “MRR” policy.

Approximate Rate of the RDP Algorithm First, we eval-
uate the approximation rates of the RDP algorithm for prob-
lem (4), and of a modified RDP algorithm for solving the
inner maximization problem of (16) on a small network of
only 22 nodes. The DP algorithm runs out of memory on
networks of larger sizes. The results are shown in Fig. 4. We
set Ku in two different ways—ε = 0.1 (denoted by “μ”) and
Ku = 5 (denoted by “constant”). Setting Ku = 5 makes the
algorithm about 20 times faster than setting μ = 0.1 and
100–600 times faster than DP. Note that robust ratios pro-
duced by our algorithm are greater than OPT and regrets
are smaller than OPT . From the figures, we see that the
(modified) RDP algorithm produces nearly optimal policy-
parameter pairs. In the rest of experiments, we do not show

(a) Robust Ratio (b) Regret

Figure 6: Robust ratio and regret (×105) for three type of
policies under different β and budget sizes of 5% and 10% .

the results of the modified algorithm to solve problem (16).
We test on a larger network of 2028 culverts and 166 dams

to see what value of K, when we set Ku=K, is sufficiently
large for the RDP algorithm to produce good robust ratios.
The optimal objective value is not available on this network.
The results are shown in Fig. 5. We see that robust ratios
converge within 2 minutes for all testing policies, and ran-
dom policies are much worst than two baseline policies. The
value of K in the convergence area implies that it is suffi-
cient to produce near-optimal solutions.

Robustness Comparison On the same network, we com-
pare the robustness of three policies using the value of K in
the convergence area. Fig. 6 shows how the robust ratio and
regret computed by “MRR” change as the size of intervals
(i.e., β) varies. Budget sizes are relative to the cost of remov-
ing all barriers. We see that as β increases, the robust ratio
decreases and the regret increases almost linearly. “MRR”
gives the largest robust ratio. Although “MRR” maximizes
the robust ratio, it produces the smallest regret, implying that
the two robustness metrics are correlated.

Finally, we test our algorithms on a large network of
9335 nodes, 7566 culverts and 596 dams with 5% budget.
In this very difficult setting, we obtain results similar to
those shown in Fig. 6 even without using the value of K
in the convergence area. Due to the limitation of space, we
do not show those similar figures here, but only visualize
the computed policies in Fig. 7. The “midpoint” policy allo-
cates most of the budget around the main stream, near the
middle vertical line of the river. The adversarial policy can
easily achieve much better value by taking actions in other
important areas and assigns high probabilities if actions are
taken (e.g., the adversarial policy) and low probabilities if
actions are not taken (e.g., the decision policy.) In contrast,
the “MRR” policy is more robust by allocating the budget to
several important areas so that the adversarial policy cannot
use the same trick to achieve much better value.

6 Conclusion

We describe an approximate robust optimization algorithm
for a tree-structured stochastic network design problem,
which is motivated by the river network design problem for
fish conservation. The algorithm iteratively solves two op-
timization problem: the decision optimization problem and
the ratio minimization problem. The former is encoded into
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(b) “midpoint” (1.3×106) (c) “midpoint” adv. (2.7×106)

(d) “MRR” (1.7×106) (e) “MRR” adv. (2.2×106)

Figure 7: Visualization of four policies for β=0.3. Values
shown in parenthesis. The accessibilities of edges are col-
ored according to the top color bar. Dots represent removed
(repaired) barriers. The adversarial midpoint and MRR poli-
cies are computed by RDP.

a MILP, and an FPTAS is developed for the latter, which is
the harder problem. Empirically, we show that the policies
computed by maximizing the robust ratio are more robust
than policies computed by two other baseline methods. Be-
sides finding policies of high robust ratio, our algorithm can
also produce policies with small regret on large-scale net-
works. These algorithms provide new computational tools
for environmental scientists who tackle decision problems
with imprecise models.
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