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Abstract

Future projection of climate is typically obtained by com-
bining outputs from multiple Earth System Models (ESMs)
for several climate variables such as temperature and precip-
itation. While IPCC has traditionally used a simple model
output average, recent work has illustrated potential advan-
tages of using a multitask learning (MTL) framework for
projections of individual climate variables. In this paper we
introduce a framework for hierarchical multitask learning
(HMTL) with two levels of tasks such that each super-task,
i.e., task at the top level, is itself a multitask learning problem
over sub-tasks. For climate projections, each super-task fo-
cuses on projections of specific climate variables spatially us-
ing an MTL formulation. For the proposed HMTL approach,
a group lasso regularization is added to couple parameters
across the super-tasks, which in the climate context helps ex-
ploit relationships among the behavior of different climate
variables at a given spatial location. We show that some re-
cent works on MTL based on learning task dependency struc-
tures can be viewed as special cases of HMTL. Experiments
on synthetic and real climate data show that HMTL pro-
duces better results than decoupled MTL methods applied
separately on the super-tasks and HMTL significantly outper-
forms baselines for climate projection.

Introduction

Future projections of climate variables such as temperature,
precipitation, and pressure are usually produced by physics-
based models known as Earth System Models (ESMs).
ESMs consist of four components and their interactions,
viz. atmosphere, oceans, land, and sea ice (Tebaldi and
Knutti 2007; IPCC 2013). Climate projections generated
from ESMs form the basis for understanding and infer-
ring future climate change, global warming, greenhouse gas
concentration and its impact on Earth systems and other
complex phenomena such as El Niño Southern Oscillation
(ENSO). ENSO, for instance, has a global impact, ranging
from droughts in Australia and northeast Brazil to heavy
rains over Malaysia, the Philippines, and Indonesia (IPCC
2013). Then, producing accurate projections of climate vari-
ables is essential to anticipate extreme events.

Many ESMs have been developed by climate research in-
stitutes. A single and possibly more robust projection can be
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built as a combination (ensemble) of multiple ESMs simu-
lations (Tebaldi and Knutti 2007; McQuade and Monteleoni
2013; Sanderson, Knutti, and Caldwell 2015).

Recently, the problem of constructing ESMs ensemble
was approached from a multitask learning (MTL) perspec-
tive (Gonçalves et al. 2014), where building an ESMs en-
semble for each geographical location was viewed as a
learning task. The joint estimation of the ESM ensemble
produced more accurate projections than when indepen-
dent estimation was performed for each location. The MTL
method was able to capture the relationship among geo-
graphical locations (tasks) and used it to guide information
sharing among tasks.

Modeling task relationship in multitask learning has
been the focus of recent research (Zhang and Schneider
2010; Zhang and Yeung 2010; Yang, Li, and Zhang 2013;
Gonçalves, Von Zuben, and Banerjee 2016). This is a fun-
damental step to promote information sharing only among
related tasks, while avoiding the unrelated ones. Besides es-
timating task specific parameters (Θ), the task dependency
structure (Ω) is also estimated from the data. The latter is
usually estimated from the former, i.e., task dependency is
defined based on the relation of the task parameters. Two
tasks are said to be related if their parameters are related in
some sense.

Inconsistently estimated task dependency structure in
MTL can misguide information sharing and, hence, can be
harmful to the MTL method performance. The problem of
estimating statistical dependency structure of a set of ran-
dom variables is known as structure learning (Meinshausen
and Buhlmann 2006). Existing methods for the problem
guarantee to recover the true underlying dependence struc-
ture given a sufficient amount of data samples. In the MTL
case (Gonçalves, Von Zuben, and Banerjee 2016), the ran-
dom variables are tasks parameters and, depending on the
ratio between dimensionality and the number of tasks, the
amount of data samples may not be sufficient.

In this paper, we introduce the Hierarchical Multitask
Learning (HMTL) method that jointly learn multiple tasks
by letting each task be, by itself, a MTL problem. The asso-
ciated hierarchical multitask learning problem is then said to
be composed of super-tasks and the tasks involved in each
super-task as sub-tasks. Our formulation is motivated by the
problem of constructing ESM ensembles for multiple cli-
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mate variables, with multiple geolocations for each variable.
The problem of obtaining ESMs weights for all regions for
a certain climate variable is a super-task.

The paper is organized as follows. We first discuss
existing MTL methods with task dependency estimation,
on which our proposed ideas are built; then, we briefly talk
about the climate projection problem that motived our work.
In the sequel, we present our proposed framework, perform
experiments and analyze the results. Concluding remarks
and next research steps complete the paper.

Notation. Let T be the number of super-tasks, d the prob-
lem dimension, and n(t,k) the number of samples for the
(t, k)-th sub-task. For the purposes of the current paper, we
assume that all super-tasks have m sub-tasks and all sub-
tasks have problem dimension d. X(t,k) ∈ R

n(t,k)×d and
y(t,k) ∈ R

n(t,k)×1 are the input and output data for the k-th
sub-task of the t-th super-task. Θ(t) ∈ R

d×m is the matrix
whose columns are the set of weights for all sub-tasks for
the t-th super-task, that is, Θ(t) = [θ(t,1), ...,θ(t,m)]. For
the ease of exposition, we represent {X} = X(t,k) and
{Y } = y(t,k), k = 1, ...,mt; t = 1, ..., T . For the weight
and precision matrices, {Θ} = Θ(t) and {Ω} = Ω(t), ∀t =
1, ..., T . Identity matrix of dimension m × m is denoted
by Im. U(a, b) is an uniform probability distribution in the
range [a,b].

Multitask Learning with Task Dependence

Estimation

Explicitly modeling task dependencies has been made by
means of Bayesian models. Features across tasks (rows of
the parameter matrix Θ) were assumed to be drawn from a
multivariate Gaussian distribution. Task relationship is then
encoded in the inverse of the covariance matrix Σ−1 = Ω,
also known as precision matrix. Sparsity is desired in such
matrix, as zero entries of the precision matrix indicate condi-
tional independence between the corresponding two random
variables (tasks) (Friedman, Hastie, and Tibshirani 2008).
The associated learning problem (1) consists of jointly es-
timating the task parameters Θ and the precision matrix Ω,
which is done by an alternating optimization procedure.

min
Θ,Ω

m∑
k=1

L(Xk,yk,Θ)− log |Ω|+ λ0tr(ΘΩΘ�) +R(Θ,Ω)

s.t. Ω � 0.
(1)

Note that in (1) the regularization penalty R(Θ,Ω) is a gen-
eral penalization function that will be discussed later in the
paper. A solution for (1) alternates between the following
two steps until a stopping criterion is met:

Step 1 Estimate Θ from current estimation of Ω;

Step 2 Estimate Ω from updated parameters Θ.

Setting initial Ω to identity matrix, i.e., all tasks are indepen-
dent at the beginning, is usually a suitable start.

In Step 1, task dependency information is incorpo-
rated into the joint cost function through the trace term

penalty tr(ΘΩΘ�). It helps to promote information ex-
change among tasks. The problem associated with Step
2, known as sparse inverse covariance selection problem
(Friedman, Hastie, and Tibshirani 2008), seeks to find some
sparsity pattern in the precision matrix. Experimental anal-
ysis have shown that these approaches usually outperform
MTL with pre-defined task dependency structure for a vari-
ety of problems (Zhang and Schneider 2010; Gonçalves et
al. 2014).

Mathematical Formulation of

ESMs Climate Projection

A common projection method is to perform the combination
of multiple ESMs in a least square sense, that is, to estimate
a set of weights for the ESMs based on past observations.

For a given location k the predicted climate variable (tem-
perature, for example) for a certain timestamp i (expected
mean temperature for a certain month/year, for example) is
given by:

ŷik = 〈xik,θk〉+ εik (2)

where xik is the set of values predicted by the ESMs for the
k-th location in the timestamp i, θk is the weight vector of
each ESM for the k-th location, and εik is a residual. The
weight vector θk is estimated from a training data. The com-
bined estimate ŷik is then used as a more robust prediction of
temperature for the k-th location in a certain month/year in
the future.

ESMs weights (θk) are defined for each geographical
location and it possibly varies for different locations. It
is possible that some ESMs are more accurate for some
regions/climate than others and the difference between
weights of two locations will reflect this behavior. In sum-
mary, the ESMs ensemble consists of solving a least square
problem for each geographical location.

The ESMs weights may vary for the prediction of differ-
ent climate variables, such as precipitation, temperature, and
pressure. Then, solving an MTL problem for each climate
variable is required. In this paper, we propose to simultane-
ously tackle multiple MTL problems through a hierarchical
(two-level) MTL formulation.

The HMTL Formulation

The HMTL formulation seeks to minimize the following
cost function C(Γ) with Γ = {{Θ}, {Ω}, λ0}:

L(Γ) =
T∑

t=1

(
mt∑
k=1

L
(
X(t,k)θ(t,k),y(t,k)

)

− log |Ω(t)|+ λ0tr
(
S(t)Ω(t)

))
+R({Ω}) (3)

where R({Ω}) is a regularization term over the precision
matrices, S(t) is the sample covariance matrix of the task pa-
rameters for the t-th super-task. For simplicity, we dropped
the �1-penalization on the weight matrix Θ as is often done
in MTL (Zhang and Schneider 2010; Yang, Li, and Zhang
2013; Gonçalves, Von Zuben, and Banerjee 2016). However,
it can be added, if one desires sparse Θ, with minor changes
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in the algorithm. All super-tasks are assumed to have the
same number of sub-tasks. Squared loss was used as loss
function.

The formulation (3) is a penalized cumulative cost func-
tion of the form (1) for several multitask learning problems.
The penalty function R({Ω}) is to favor common structural
sparseness across the precision matrices. Here, we focus on
the group lasso penalty (Yuan and Lin 2006), which we de-
note by RG, and is defined as

RG({Ω}) = λ1

T∑
t=1

∑
k �=j

|Ω(t)
kj |+ λ2

∑
k �=j

√√√√ T∑
t=1

Ω
(t)2

kj (4)

where λ1 and λ2 are two nonnegative tuning parameters.
The first penalty term is an �1-penalization of the off-
diagonal elements, so that non-structured sparsity in the pre-
cision matrices is enforced. The larger the value of λ1, the
sparser the precision matrices. The second term of the group
sparsity penalty encourages the precision matrices for dif-
ferent super-tasks to have the same sparsity pattern. Group
lasso does not impose any restriction on the degree of simi-
larity of the non-zero entries of the precision matrices.

Setting λ2 to zero, super-tasks are decoupled into inde-
pendent MTL formulations. Then, λ2 can be seen as a cou-
pling parameter, as larger values push the super-tasks to be
coupled, so that different Ω(t) have similar sparsity patterns.
On the other hand, lower (or zero) values lead to decoupled
super-tasks, recovering existing MTL formulations, such as
in (Gonçalves et al. 2014).

Figure 1 shows the hierarchy of tasks for the projection of
multiple climate variables. At the level of super-tasks, group
lasso regularization encourages precision matrices to have
a similar sparseness pattern. The learned precision matrices
are consequently used to control with whom each sub-task
will share information.

The correspondence between the variables in the HMTL
formulation and the elements in the climate problem is
shown in Table 1.

Optimization

Optimization problem (3) is not jointly convex on {Θ} and
{Ω}, particularly due to the trace term which involves both
variables. We then use an alternating minimization, in which
{Θ} is held fix and optimize for {Ω} (we call it Ω-step),
and similarly fix {Ω} and optimize for {Θ} (we call it Θ-
step). Both steps now consist of convex problems, for which
efficient methods have been proposed. In the experiments,
20 to 30 iterations were required for convergence.

Solving Θ-step The convex problem associated with this
step is defined as

min
{Θ}

T∑
t=1

mk∑
k=1

L
(
X(t,k)θ(t,k),y(t,k)

)
+ λ0tr

(
S(t)Ω(t)

)
.

(5)
Considering the squared loss function, Θ-step consists of

two quadratic terms, as {Ω} are positive semidefinite matri-
ces. Note that the optimization for each super-task weight

Table 1: Correspondence between HMTL variables and the
components in the joint ESMs ensemble for the multiple cli-
mate variables problem.

Var. HMTL meaning Climate meaning

T # of super-tasks # of climate variables
m # of sub-tasks in the t-

th super-task
# of locations (equal for all
climate variables)

X(t,k) data input for the k-
th sub-task in the t-th
super-task

ESMs predictions for the t-
th climate variable in the
k-th location

y(t,k) data output for the k-
th sub-task in the t-th
super-task

observed values of the t-th
climate variable in the k-th
location

θ(t,k) linear regression pa-
rameters for the k-th
sub-task of the t-th
super-task

ESMs weights for the t-th
climate variable in the k-th
location

Ω(t) precision matrix for
the t-th super-task

dependence among the
ESMs weights for all loca-
tions for the t-th climate
variable

matrix Θ(t) are independent and can be performed in paral-
lel. We used the L-BFGS (Liu and Nocedal 1989) method in
the experiments.

Solving Ω-step The Ω-step is to solve the following opti-
mization problem

min
{Ω}

T∑
t=1

(
− log |Ω(t)|+ λ0tr(S(t)Ω(t))

)
+RG({Ω})

s.t. Ω(t) � 0, ∀t = 1, ..., T.

(6)

This step corresponds to the problem of joint learning mul-
tiple Gaussian graphical models and has been recently stud-
ied (Honorio and Samaras 2010; Danaher, Wang, and Wit-
ten 2014; Mohan et al. 2014). These formulations seek to
minimize the penalized joint negative log likelihood in the
form of (6) and they basically differ in the penalization term
R({Ω}). Researchers have shown that the graphical models
jointly estimated were able to increase the number of edges
correctly identified while reducing the number of edges in-
correctly identified, when compared to those independently
estimated. An alternating direction method of multipliers
(ADMM) proposed in (Danaher, Wang, and Witten 2014)
was used to solve problem (6).

Algorithm (1) presents the pseudo-code for the proposed
HMTL algorithm.

Related Works

A lattice graph is used to represent the regional relationship
in (Subbian and Banerjee 2013), where immediate neigh-
bor locations are assumed to have similar ESMs weights.
Weights for all geolocations are estimated jointly (in a least
square sense) with graph Laplacian regularization to encour-
age spatial smoothness.

In (McQuade and Monteleoni 2013) the online ESMs en-
semble problem is tackled by using a lattice Markov Ran-
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Super-tasks

Sub-tasks

Data
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Figure 1: Hierarchy of tasks and their connection to the climate problem. Each super-task is a multitask learning problem for a
certain climate variable, while sub-tasks are least square regressors for each geographical location.

Algorithm 1: HMTL algorithm.
Data: {X}, {Y}.
Input: λ0 > 0, λ1 > 0 and λ2 > 0.
Result: {Θ}, {Ω}.

1 begin

2 Ω(t) = Imt , ∀t = 1, ..., T.

3 Θ(t) = U(−0.5, 0.5), ∀t = 1, ..., T.
4 repeat
5 Update {Θ} by solving (5);
6 Update {Ω} by solving (6);
7 until stopping condition met

dom Field. The state of each hidden variable, which is asso-
ciated with a geographical location, is the identity of the best
ESM for that specific location. The marginal probabilities
of the hidden variables act as the weights of the ensemble.
Hence, ESMs with a higher probability of being the best has
a larger weight in the ensemble. At each time step marginal
probabilities are updated based on the performance of the
ESMs in the previous time step via the loopy belief propa-
gation algorithm.

Differently, (Gonçalves et al. 2014) do not assume any
fixed dependence graph, but, instead, estimate it through a
multitask learning model that makes use of a sparse Gaus-
sian Markov Random Field (GMRF) to capture the relation-
ship of ESMs weights among locations. ESM weights for all
locations and the GMRF are jointly estimated via an alter-
nating minimization scheme.

Our work differs from the existing research as it (1) lever-
ages information not only from immediate neighbors but
also from any related geographical locations; (2) allows two
levels of information sharing: ESMs weights and precision
matrices that encodes the relationship of locations; and (3)
handles the projection of multiple climate variables (explor-
ing their resemblance) simultaneously.

Experiments

In this section we present experiments to compare the pro-
posed HMTL with existing methods in the literature for both
synthetic and real climate data.

Synthetic Data

We first generated a synthetic dataset to assess the perfor-
mance of HMTL over traditional MTL methods. For com-
parison, we used the MTL method proposed in (Gonçalves
et al. 2014; Gonçalves, Von Zuben, and Banerjee 2016),
called MSSL, that has shown to be competitive with ex-
isting MTL algorithms including (Zhang and Yeung 2010;
Kumar and Daume III 2012; Kang, Grauman, and Sha
2011). We also seek to investigate the effect of the increase
in the number of super-tasks. For this analysis we generated
7 super-tasks containing 15 sub-tasks each, with dimension
of 50. For each sub-task 100 data samples were generated.
Inverse covariance matrices Ω(t), t = 1, ..., T were drawn
from a Wishart distribution with a scale matrix Λ and n = 10
degrees of freedom. Scale matrix Λ was designed to reflect
a structure containing three groups of related variables. As
sampled precision matrices are also likely to present the
group structure, jointly sparse precision matrices are suit-
able to capture such pattern, which is precisely what HMTL
formulation assumes.

Given Ω(t), the sub-tasks parameters Θ(t) were con-
structed as: Θ(t)(j, :) = N (0,Ω(t)), j = 1, .., d; and, fi-
nally, the design matrix X(t,k) were sampled from N (0, I),
and Y (t,k) = X(t,k)Θ(t) + ε(t,k), where ε(t,k) ∼ N (0, 0.1),
∀k = 1, ..,m; t = 1, .., T.

Ten independent runs for both HMTL and MSSL were
carried out. Each run with a different random train/test data
split. Table 2 shows the relative improvement1 of HMTL
over MSSL for distinct number of super-tasks. Two scenar-
ios were tested: using 50 and 30 samples for training and

1Relative improvement is given by the difference between
MSSL and HMTL performance (RMSE) divided by MSSL per-
formance as percents (%).
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the remaining for test (50 and 70, respectively). Penaliza-
tion parameters (λ’s) were chosen by cross-validation on the
training set.

Table 2: Average relative improvement (in %) of HMTL
over MSSL for the synthetic dataset. HMTL produced lower
RMSE as the number of super-tasks increase.

Training # of super-tasks
samples 2 3 4 5 6 7

50 2.2 4.0 4.9 5.5 5.2 5.8
30 22.3 23.4 25.1 25.7 24.2 24.3

From Table 2, we observe that HMTL has a continu-
ous increase on the relative improvement compared to in-
dependently running MSSL, as the number of super-tasks
grows. From the sixth super-task on, the relative improve-
ment shows a tendency to stabilize. Such behavior is also
observed in the scenario with only 30 training samples. It is
worth noting that the smaller a set of training data (30 sam-
ples) the sharper the improvements obtained by HMTL over
MSSL.

Climate Data

We collected monthly land temperature and precipitation
data of 32 CMIP5 ESMs (Taylor, Stouffer, and Meehl 2012),
from 1901 to 2000, in South America. Observed data pro-
vided by (Willmott and Matsuura 2001) was used. ESMs
predictions and observed values from 250 locations in South
America (distributed in a grid shape) were considered. From
the HMTL perspective, the problem involves: two super-
tasks, 250 sub-tasks (per super-task) with dimensionality of
32.

In the climate domain, it is common to work with the rel-
ative measure of the climate variable to a value of reference,
which is obtained from past information. In our experiments,
we directly work on the raw data (not detrended). We inves-
tigate the performance of the algorithm in both seasonal and
annual time scales, with focus on winter and summer. All
ESMs and observed data are in the same time and spatial
resolution. Temperature is in degree Celsius and precipita-
tion in cm.

Experimental Setup: Based on climate data from a cer-
tain past (training) period, model parameters are estimated
and the inference produces its projections for the future
(test). Clearly, the length of the training period affects the
performance of the algorithm. A moving window of 20, 30
and 50 years were used for training and the next 10 years for
test. The performance is measured in terms of root-mean-
squared error (RMSE).

Seasonality strongly affect climate data analysis. Winter
and summer precipitation patterns, for example, are distinct.
Also, by looking at seasonal data, it becomes easier to iden-
tify anomalous patterns, possibly useful to characterize cli-
mate phenomena as El Niño. We extracted summer and win-
ter data and performed climate variable projection specifi-
cally for these seasons.

Five baseline algorithms were considered:

1. multi-model average (MMA): set equal weights for all
ESMs. This is currently performed by IPCC (IPCC 2013);

2. best-ESM in training phase: it is not an ensemble, but a
single best ESM in terms of mean squared error;

3. ordinary least square (OLS): perform independent OLS
for each location and climate variable;

4. S2M2R (Subbian and Banerjee 2013): can be seen as an
MTL method with pre-defined location dependence given
by the graph Laplacian. It incorporates spatial smoothing
on ESMs weights.

5. MSSL (Gonçalves et al. 2014): run MSSL for each cli-
mate variable projection independently. The parameter-
based version (p-MSSL) was used.

All the penalization parameters of the methods (λ’s in
MSSL and HMTL) were chosen by cross-validation. From
the training set, we selected the first 80% for training and the
next 20% for validation. The best values in the validation set
were selected. For example, in the scenario with 20 years of
measurements for training, we took the first 16 years to re-
ally train the model, and the next 4 years to analyze the per-
formance of the method using a specific setting of λ’s. Using
this protocol, the selected parameter values were: S2M2R
used λ = 1000; MSSL λ0 = 0.1 and λ1 = 0.1; and HMTL
λ0 = 0.1, λ1 = 0.0002, λ2 = 0.01.

Results: Table 3 shows the RMSE of the projections pro-
duced by the algorithms and the observed values, for pre-
cipitation and temperature. First, we note that simply as-
signing equal weights to all ESMs does not seem to exploit
the potential of ensemble methods. MMA (as used by IPCC,
(IPCC 2013)) presented the largest RMSE among the algo-
rithms for the majority of periods (summer, winter and year)
and number of years for training. Second, the MTL methods,
MSSL and HMTL, clearly outperform the baseline meth-
ods. S2M2R does not always produce better projections than
OLS. In fact, it is slightly worse for the year dataset. As ex-
pected, the assumption of spatial neighborhood dependence
does not seem to hold for all climate variables.

HMTL presented better results than performing MSSL for
precipitation and temperature independently in many situ-
ations. HMTL was able to significantly reduce RMSE in
summer precipitation projections, which has shown to be
the most challenging scenario. Significant improvement was
also seen for winter and year temperature projections.

RMSE per geographical location for precipitation and
temperature are presented in Figure 2. For precipitation,
more accurate projections (lower RMSE) was obtained by
HMTL in Northernmost regions of South America, includ-
ing Colombia and Venezuela. More accurate temperature
projections were obtained in central North region of South
America, which comprises part of the Amazon rainforest.

We believe that the improvements of the hierarchical
MTL model are due to the same reasons as general MTL
models: reduction of sample complexity by leveraging infor-
mation from other related super-tasks. As a consequence, the
precision matrices, which guide information sharing among
sub-tasks, are estimated more accurately. The reduced sam-
ple complexity probably explains the better climate vari-
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# of training Best-ESM OLS S2M2R MMA MSSL HMTL
years Precipitation

20 7.88 (0.44) 9.08 (0.54) 7.33 (0.68) 8.95 (0.27) 7.16 (0.43) 6.48 (0.34)∗∗

Summer 30 7.95 (0.55) 7.87 (0.63) 7.39 (0.86) 8.96 (0.26) 6.86 (0.48) 6.37 (0.29)∗

50 8.30 (0.71) 7.84 (1.13) 7.86 (1.12) 9.03 (0.30) 6.89 (0.55) 6.42 (0.33)

20 4.83 (0.26) 5.62 (0.30) 4.58 (0.39) 5.44 (0.24) 3.98 (0.21) 3.83 (0.22)
Winter 30 4.86 (0.29) 4.83 (0.27) 4.68 (0.38) 5.41 (0.25) 3.94 (0.17) 3.80 (0.21)∗

50 4.92 (0.38) 4.64 (0.63) 4.77 (0.52) 5.33 (0.18) 3.84 (0.21) 3.70 (0.20)

20 7.38 (0.17) 6.03 (0.65) 6.49 (0.49) 7.78 (0.14) 5.79 (0.16) 5.70 (0.16)
Year 30 7.41 (0.18) 6.21 (0.80) 6.57 (0.61) 7.76 (0.14) 5.72 (0.16) 5.66 (0.18)

50 7.47 (0.26) 6.56 (1.07) 6.87 (0.80) 7.73 (0.14) 5.69 (0.23) 5.61 (0.22)

Temperature

20 1.39 (0.23) 1.22 (0.10) 0.95 (0.13) 1.95 (0.02) 0.82 (0.08) 0.81 (0.01)
Summer 30 1.47 (0.30) 1.21 (0.15) 1.09 (0.17) 1.96 (0.01) 0.84 (0.07) 0.80 (0.01)

50 1.63 (0.35) 1.40 (0.19) 1.36 (0.20) 1.98 (0.01) 0.88 (0.05) 0.83 (0.01)∗

20 1.58 (0.19) 1.48 (0.08) 1.18 (0.12) 2.08 (0.01) 1.03 (0.04) 1.02 (0.03)
Winter 30 1.64 (0.26) 1.40 (0.13) 1.27 (0.16) 2.09 (0.01) 1.01 (0.04) 0.99 (0.03)

50 1.77 (0.31) 1.55 (0.17) 1.51 (0.18) 2.08 (0.01) 1.04 (0.02) 0.98 (0.03)∗∗

20 1.64 (0.18) 1.10 (0.13) 1.13 (0.12) 2.11 (0.01) 1.00 (0.04) 0.91 (0.02)∗∗

Year 30 1.70 (0.24) 1.20 (0.17) 1.24 (0.17) 2.12 (0.01) 1.00 (0.04) 0.91 (0.02)∗∗

50 1.83 (0.28) 1.47 (0.21) 1.50 (0.20) 2.12 (0.01) 1.01 (0.03) 0.91 (0.02)∗∗

Table 3: Precipitation and Temperature: Average and standard deviation RMSE for all scenarios. HMTL presented the best
results. Two-sampled t-test was performed and statistically significant differences between HMTL and the second best method
at a level of p ¡ 0.05(*) and p ¡ 0.01(**) are highlighted.

able prediction capacity in situations with limited amount
of measurements (samples), as the results shown in Table 2.

Concluding Remarks

A hierarchical multitask learning (HMTL) framework to
deal with multiple MTL problems is proposed. It was mo-
tived by the problem of constructing Earth System Models
(ESMs) ensemble for the simultaneous prediction of multi-
ple climate variables. The formulation allows two levels of
information sharing: (1) model parameters (coefficients of
linear regression); and (2) precision matrices, which encodes
the relationship of linear regressors. A group lasso regular-
ization is responsible for capturing similar sparsity patterns
across multiple precision matrices.

Experiments on joint projection of temperature and pre-
cipitation in South America showed that the HMTL pro-
duced more accurate predictions in many situations, when
compared to the independent execution of existing MTL
methods for each climate variable. Simulations on synthetic
datasets also showed that the proposed HMTL achieved
higher performance as the number of internal MTL prob-
lems increase. Here, only temperature and precipitation were
used, as they are two of the most studied variables in the cli-
mate literature. Future works include a wider analysis with
other climate variables, such as geopotential heights and
wind directions.
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