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Abstract

Effective human-aware robots should anticipate their user’s
intentions. During hand-eye coordination tasks, gaze often
precedes hand motion and can serve as a powerful predic-
tor for intent. However, cooperative tasks where a semi-
autonomous robot serves as an extension of the human hand
have rarely been studied in the context of hand-eye coordi-
nation. We hypothesize that accounting for anticipatory eye
movements in addition to the movements of the robot will
improve intent estimation. This research compares the appli-
cation of various machine learning methods to intent predic-
tion from gaze tracking data during robotic hand-eye coor-
dination tasks. We found that with proper feature selection,
accuracies exceeding 94% and AUC greater than 91% are
achievable with several classification algorithms but that an-
ticipatory gaze data did not improve intent prediction.

1 Introduction

In an increasingly autonomous world, while the physical
and cognitive burdens of work will be offloaded to robots,
there will necessarily be tasks that require human interaction
with these ever-ubiquitous intelligent systems. While many
of these interactions may remain simply physical, more in-
telligent systems will require cognitive interaction, such as
activity recognition and intent prediction, to work safely and
productively with humans.

In visuomotor coordination tasks, it has long been rec-
ognized that activity recognition is not limited to process-
ing hand movements but can also be learned from eye be-
havior (Bednarik, Vrzakova, and Hradis 2012; Bondareva et
al. 2013; Land, Mennie, and Rusted 1999; Gielen, Van den
Heuvel, and Van Gisbergen 1984). It has also been shown
that the eyes have a tendency to anticipate hand movements
when a task’s sequence and targets are being planned or
when the target is moving (Mennie, Hayhoe, and Sullivan
2007; Thier and Ilg 2005; Ma-Wyatt, Stritzke, and Trom-
mershäuser 2010). Thus, gaze data should be able to inform
us of upcoming user intent. This anticipatory information
could prove useful by giving us advance clues for earlier
intent prediction. However, while past studies have applied
machine learning techniques to classify intent from gaze
data (Eivazi and Bednarik 2011; Bednarik, Vrzakova, and
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Hradis 2012; Bondareva et al. 2013), none have attempted
to leverage anticipatory eye behavior to improve upon their
predictive capabilities.

Therefore, this research addresses the questions:
1. Can gaze data be used to predict intent, as realized in the

movements of the robotic grasper?
2. Does gaze data significantly improve such prediction over

using “hand” movement data alone?
3. Which classification algorithm performs this intent pre-

diction best?

2 Background

During hand-eye coordination tasks, a trained operator’s
gaze anticipates the target’s position and tends to fixate on
the goal (Sailer, Flanagan, and Johansson 2005; Johansson
et al. 2001; Posner 1980). Fixations are associated with the
task structure and have unique characteristics and routines
depending on the function they serve (Land, Mennie, and
Rusted 1999; Sailer, Flanagan, and Johansson 2005; Hayhoe
2000). In all cases, they tend to last for 200-400 ms and are
characterized by their low velocities (< 100◦/s) (Salvucci
and Goldberg 2000a). A key feature of task-oriented fixa-
tions is how far in advance they anticipate manipulations
(Land, Mennie, and Rusted 1999; Pelz and Canosa 2001;
Johansson et al. 2001; Hayhoe 2000). Depending on the
level of cognitive processing involved, fixations may occur
anywhere from 0.2-10 s before hand movement commences
(Johansson et al. 2001; Land, Mennie, and Rusted 1999;
Hayhoe and Ballard 2005). About 20% of fixations are com-
posed of these look-ahead movements (Mennie, Hayhoe,
and Sullivan 2007; Hayhoe et al. 2003; Pelz and Canosa
2001), and the majority of fixations help gather guiding in-
formation for hand movement planning (Mennie, Hayhoe,
and Sullivan 2007).

In dynamic tasks another gaze type that exhibits antici-
patory behavior is smooth pursuit. This behavior tracks a
moving target to keep it centered on the fovea, taking 100
ms to lock on to the target using an open-loop strategy and
then switching to closed-loop feedback once the target is ac-
quired. At that point, the 100–ms lag gap is closed and some-
times even reversed, such that the gaze position leads the
target’s (Thier and Ilg 2005). Smooth pursuit tracking has
been shown to improve control of a target’s motion during
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direct manipulation by both humans and monkeys. While
the exact nature of this coupling in oculo-manual coordina-
tion is still a subject of debate (Vercher and Gauthier 1992;
Reina and Schwartz 2003), the close coupling of smooth
pursuits and target tracking as well as the anticipatory ca-
pabilities of smooth pursuits have been well established
(Barnes and Marsden 2002; Mrotek and Soechting 2007).

Saccades, which last under 100 ms (Salvucci and Gold-
berg 2000b) and achieve angular speeds well over 70◦/s
(Komogortsev and Karpov 2013), are generally used for ba-
sic visual input such as filtering, tracking peripheral move-
ment, and updating visual memory. In hand-eye coordina-
tion tasks, saccades help to direct grasps to specific exten-
sions or protrusions of the object to be manipulated (Johans-
son et al. 2001). Therefore, like fixations, saccades are used
to plan future manipulations (Ma-Wyatt, Stritzke, and Trom-
mershäuser 2010), or at least future fixations (Land 2006).
However, saccades also occur at the onset of hand movement
(Ma-Wyatt, Stritzke, and Trommershäuser 2010), as well as
randomly during fixations, in order to reacquire the image
on the fovea (Carpenter 1991).

Since visual feedback is generally too slow for dynamic
tasks to be performed well, the predictive visual systems
underlying fixations, saccades, and smooth pursuits are al-
ready naturally exploited by cognitive processes (Miall and
Reckess 2002; Mrotek and Soechting 2007). Through them,
humans learn to visually anticipate the effect of their ac-
tions (Crawford, Medendorp, and Marotta 2004; Johansson
et al. 2001; Land and Hayhoe 2001; Barnes and Marsden
2002) using saccade-and-fixate and saccade-pursue strate-
gies, supplemented with haptic feedback (Sobuh et al. 2014;
Mrotek and Soechting 2007; Reina and Schwartz 2003).

Machine learning techniques have proven useful for in-
tent estimation from gaze data. Steichen et al. (2014) and
Bondareva et al. (2013) both found that logistic regression
worked best, compared to Decision Trees, Support Vec-
tor Machine (SVM), Random Forest, and Naive Bayes in
information–gathering tasks (53% and 78% accuracy, re-
spectively), but results varied widely based on task gran-
ularity, likely due to the limited number of unique search
strategies employed.

Eivazi et al. (2011) successfully used SVMs to clas-
sify high- and low- performers (73% accuracy) and their
current task (95% accuracy). A further study using the
same SVM found that predictions using fixation-saccade se-
quences were more successful than those using pupillary re-
sponses (Bednarik, Vrzakova, and Hradis 2012). However,
these experiments only looked at binary classification prob-
lems with intentional gaze use. When eye movement is less
directed, such as during natural hand-eye coordination tasks,
expectations of gaze behavior are lower, as the task structure
is less well known. Simola et al. (2008) found that a discrim-
inative Hidden Markov Model (dHMM) predicted discrete
processing states with 60% average accuracy, using fixation-
saccade sequences during natural information search tasks.
Again, predictive accuracy was found to vary widely be-
tween task types, with some tasks much easier to predict
than others, due to task granularity.

These previous studies used various features related to

either areas of interest (Eivazi and Bednarik 2011; Bon-
dareva et al. 2013) or to specific gaze types, such as fixa-
tion duration, number of fixations, and mean saccade length
(Simola, Salojärvi, and Kojo 2008; Steichen, Conati, and
Carenini 2014). Furthermore, they have all solely focused on
2D interface interactions (Simola, Salojärvi, and Kojo 2008;
Eivazi and Bednarik 2011; Bednarik, Vrzakova, and Hradis
2012; Steichen, Conati, and Carenini 2014; Bondareva et al.
2013) and not 3D tasks in physical work spaces. Therefore,
further research into more effective features and learning in
hand-eye coordination scenarios is strongly warranted.

3 Materials & Method

Experimental Setup

The data was collected from 7 participants (4 men, 3
women) with normal or corrected-to-normal vision, some
of whom had taken part in previous gaze-tracking studies.
All participants gave prior consent, and the experiment fol-
lowed all regulations as required by the Georgia Institute of
Technology’s Central Institute Review Board.

Each participant played a modified version of the clas-
sic arcade-style “claw” game, where a grasper is moved in
a small space to perform pick-and-place tasks in the pres-
ence of obstacles. Participants were instructed to (1) pick up
a target object, (2) bring it to a pre-specified location, (3)
hold it there until indicated, and then (4) drop the object off
at the prize chute. Before the trial, a monitor to the side of
the claw machine displayed the “hold” location. Some time
after the “hold” was initiated, the monitor, through both vi-
sual and auditory cues, indicated to the participant when to
stop holding and continue to take the object to the chute. In
order to keep the participant’s attention engaged, “holding”
required actively pushing the target into the “hold” position.

The claw was controlled by three levers: two controlling
one DoF each (left/right, forward/back) and a third which
simultaneously lowered and opened (raised and closed) the
grasper. The claw machine was limited to staying on for one
minute, providing a natural cut-off for each trial.

After 3-5 practice runs to familiarize the participant with
the experimental setup, each participant completed 10 trials,
over which the target’s orientation was randomly varied. The
timing of each hold was randomized with a mean of 1.25 s
(σ2 = 0.5 s). The target’s color, starting location, hold po-
sition, and the obstacles’ positions were varied in a coun-
terbalanced design, and the claw always started in the same
position, over the goal, to ensure consistency.

The participant’s gaze was recorded in real-time by a
gaze-tracker, and their arm, head, and eye movements were
wholly unconstrained. Furthermore, an egocentric scene
camera mounted to the top of the gaze-tracker recorded the
visual workspace data from the user’s perspective.

Apparatus & Calibration

For gaze-tracking, a glasses-style head-mounted monocular
(right eye) tracker with a scene camera that employs IR re-
flection was used (MobileEyeXG; Applied Sciences Labo-
ratories, Bedford MA). The gaze-tracker recorded at 30 Hz
with a latency of 100 ms and an accuracy of 0.5 − 1◦. The
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eye-tracking equipment can be seen in Figure 1. The Mo-
bileEyeXG software package was used to export the relative
gaze position in the scene plane (2D, pixels) and egocentric
video of the scene (RGB, 480x640 pixels).

Figure 1: The gaze-tracking system.

The calibration procedure followed that outlined by the
gaze-tracker supplier with few variations (MobileEye 2013;
2014a; 2014b). A calibration scene with nine carefully-
spaced points was placed parallel to the visual plane, at the
back panel of the claw machine. The gaze-tracker was then
calibrated by having the participants look at the nine points
sequentially with the experimenter manually marking the in-
tended point of gaze in the scene plane with the supplied
software. After calibration, the participant’s distance from
the calibration plane was measured in order to calculate vi-
sual angle.

Feature Extraction

State Features Two sets of basic features were first ex-
tracted from the raw data: gaze and claw location. The for-
mer was a direct output of the EyeHead module of ASL Re-
sults Plus, which pre-processed the gaze data via the cali-
bration. Since both the claw and gaze positions on the scene
plane were recorded from an unstable platform, the par-
ticipant’s moving head, their relative position from a sin-
gle fixed coordinate system was estimated using video sta-
bilization and manual frame alignment. This was accom-
plished using a point feature mapping constructed by fast
corner detection and then extracting the Fast Retina Key-
point (FREAK) descriptor at each point. The Hamming dis-
tance was then used as the matching cost between these de-
scriptors. To refine correspondences between points, a vari-
ant of the RANSAC algorithm, M-estimator Sampling Con-
sensus (MSAC), calculated the inlier correspondences and
got the homogeneous geometric transform matrix between
the collections of points in each frame. Instead of calcu-
lating this transform between each successive frame, the
joint transform was taken between each frame and the initial
frame, as the initial frame always captured the entire scene,
including the calibration plane, from the most straight-on
perspective due to its proximity to calibration. Once the cur-
rent and initial frames were aligned, the transforms were ap-
plied to the raw gaze position data for each frame.

Post-stabilization, the claw’s position in the scene plane
was recorded manually every 10 frames, due to its signif-
icantly slower velocity and absence of internal sensors. In-
termediate positions were then interpolated and its trajectory

smoothed with a 5-point moving average filter. The gaze and
claw data had to also be temporally synced. This was ac-
complished by manually identifying the location of the gaze
point in the scene plane at the start of the trial and finding its
matching frame number in the gaze-tracker data.

Finally, the scene data across all trials was aligned by
marking the points at the upper left and lower right of the
game apparatus’ viewing window. Then an appropriate ho-
mogeneous transform was calculated and applied to both the
claw and eye data. This last step enabled calculation of con-
sistent gaze data statistics across trials in order to extract
gaze type and remove outliers.

Due to the physical constraints of the oculomotor system,
gaze velocity during normal usage has a Gaussian distribu-
tion and maximal velocity. Thus, outliers greater than 3σ
were attributed to faulty sensor readings and blinks, and re-
moved from the feature set (Komogortsev and Karpov 2013;
Larsson et al. 2015). This exclusion of outliers is further jus-
tified by noting that they account for less than 2% of the
entire training set (see Results below), thus proving statisti-
cally insignificant with regard to the results from the fully
trained models. Outliers were also excluded from the claw
data, for which jumps were rarer and mostly attributable to
quick movements of the head, where the participant turned
away from the task and the eye lost contact with the claw’s
workspace.

In addition to the positional data, the eye’s and claw’s ve-
locity components were extracted as features.

Gaze Classification Based on previous gaze-tracking
work involving eye-hand coordination tasks, gaze behavior
is likely to be a strong predictor of imminent tasks (Hay-
hoe 2000; Mennie, Hayhoe, and Sullivan 2007). Most gaze
classifiers just differentiate between two states, fixations and
saccades (Salvucci and Goldberg 2000b; Duchowski 2007;
Munn, Stefano, and Pelz 2008; Olsen 2012). However, as
our task structure contains dynamic, continuous movements
of the claw, smooth pursuit is expected to weakly dominate
other gaze behaviors. Thus, a ternary classifier that identi-
fies smooth pursuits, as well as fixations and saccades, was
implemented (Larsson et al. 2015; Gyllensten 2014).

Before gaze behavior classification, a series of pre-
processing steps was carried out. First the raw gaze data was
transformed into visual angle v◦ as

v◦ = 2arctan
(
p− pc
2d

)
(1)

where p is the gaze position, pc is the position of the
center of the calibration plane, and d is the participant’s
distance from the calibration plane. Then blinks and one-
sample spikes were detected and removed per Larsson et al.
(2013), using local extrema detection around missing data
samples for blinks (blink window = 0.5 s) and a median fil-
ter (length 3) with a minimum activation threshold of 0.3◦.

Classification of saccades was performed via a simple ve-
locity threshold τv = 80◦/s per Komogortsev et al. (2010).
Saccade and blink locations were then used to segment the
gaze data into windows for fixation/smooth pursuit classifi-
cation. Four criteria were used for this purpose: dispersion,
directional consistency, positional displacement, and spatial
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Table 1: Parameters for gaze processing. Sources are listed
for parameter definitions and starting points for parame-
ter selection, with some differences due to sampling rate.
Parameters were tuned experimentally for best performance.

Parameter Symbol Value Source
Max. Window
Size wmx 166 ms (Gyllensten 2014)

Velocity
Threshold τv 80◦/s (Komogortsev et al. 2010)

Min. Fixation
Duration tmn 67 ms (Larsson et al. 2015)

Parameter
thresholds

ηD
ηCD

ηPD

ηFix

ηSmp

φ

0.5
0.6
0.3
2.6
2.3
π/4

(Larsson et al. 2015)

range. A complete discussion of these criteria and their cal-
culations can be found in Larsson et al. (2015) and Gyllen-
sten (2014), while our parameters for these calculations are
listed in Table 1.

Ground Truth Data Labelling Three classes of inten-
tion are of interest: ‘move’,‘ready’,‘hold’. We approximated
these intentions based on when the claw was moving and
not moving (‘move’/‘hold’) and about to move (‘ready’).
The latter was defined as 210 ms before movement com-
menced, which is around the mean reaction time for hand
movement during hand-eye coordination (Gielen, Van den
Heuvel, and Van Gisbergen 1984). Movement was defined
with velocity (≥ 6.7px/ms) and dispersion (≥ 80px) thresh-
olds, both determined experimentally. A Hampel filter was
applied to claw movement to remove one-sample spikes, re-
ducing noise.

Feature Offsetting To test if intent classification im-
proved by considering eye movements that precede hand
movement, feature sets were re-calculated with the claw data
offset by an increasing number of frames. The combined fea-
tures form something akin to a Hankel matrix:

⎡
⎢⎢⎢⎢⎣

[c0 g0] [c1 g0] . . . [cq g0]
[c1 g1] [c2 g1] . . . [cq+1 g1]
[c2 g2] [c3 g2] . . . [cq+2 g2]

...
...

. . .
...

[cn−q gn−q] [cn−q+1 gn−q] . . . [cn gn−q]

⎤
⎥⎥⎥⎥⎦

(2)

such that the claw features at a given time cx are offset by
q in time with the gaze features gx−q .

Learning Algorithms

Eight classifiers, including all five which had previously
been used in intent estimation from gaze data (see Back-
ground) and three other popular techniques, were compared
against each other in combination with varying feature sets.
The algorithms used were Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), k-Nearest

Neighbors (KNN), Naive Bayes (NB), C4.5 Decision Tree
(C4.5), multinomial logistic regression, Support Vector Ma-
chine (SVM), and Hidden Markov Models (HMM). The
first five were implemented using MATLAB’s Statistics and
Machine Learning Toolbox, logistic regression from Chen
(2016), SVM from LibSVM, and HMM from PMTK3 (Dun-
ham and Murphy 2010). The list of classifiers is not meant to
be exhaustive, just demonstrative of how various feature sets
perform and whether anticipatory gaze data proves useful
in intent prediction. The SVM and logistic regression were
implemented with one-against-all coding, and the SVM pa-
rameters were chosen by implementing a 5x5 grid-style pa-
rameter selection with 5-fold validation. The HMM used a
mixed Gaussian model with 3 nodes, which was determined
to work best experimentally. All algorithms were externally
tested with 5-fold validation, with 20% of the data unseen in
training being tested. Averages of accuracy and area under
the curve (AUC) from the Receiver Operating Characteristic
scores were calculated for all of the classifiers.

4 Results

Out of 70 trials, 7 trials from 6 participants were deemed
unsuitable for feature extraction due to the amount of head
movement, image quality, and poor calibration. The remain-
ing 63 trials yielded 16,373 gaze samples. While samples
with all gaze types, including unclassified ones, were used
for learning, 1.8% of the samples had unclassifiable gaze
types due to blinks, reflections, and dropped frames.

The class labels were imbalanced such that
‘ready’/‘move’/‘hold’ were respectively represented by
8.1%, 77.0%, and 14.9% of the samples. Thus, when com-
paring classifiers, metrics that take into account precision
and sensitivity, such as AUC, should be considered and not
just accuracy.

C C+G C+E C+E+G E E+G G
Feature Sets

0.65

0.7

0.75

0.8

0.85

0.9

Ac
cu

ra
cy

Figure 2: Feature set performance averaged over all classi-
fiers and time offsets. Feature sets are a combination of claw
(C), eye (E), and gaze type (G) features.
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Feature Set Performance

Figure 2 compares performance between claw (C), eye (E),
and gaze (G) type features and their combinations. As ex-
pected, claw features are best for predicting intention (89%
accuracy, 0.82 AUC), since intention was attributed based
on claw behavior. While not as effective, eye position data
still performed fairly well on average (≈ 80% accuracy,
0.63 AUC), while gaze type alone was the weakest predictor
(69% accuracy, 0.51 AUC).

Another trend to note is that the combined feature sets
tended to have weaker performance (e.g. C vs. C+E, E
vs E+G) suggesting that perhaps despite 5-fold cross-
validation, overfitting occurred due to inclusion of too many
features. This trend does not hold for E vs. C+E, where the
claw features clearly improve upon the accuracy of E alone.

0 1 2 3 4
0.8

0.82

0.84
LDA

0 1 2 3 4
0.8

0.9

1
KNN

0 1 2 3 4
0.8

0.9

1
NB

0 1 2 3 4
0.8

0.9

1

A
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ur
ac

y

C4.5

0 1 2 3 4
0.75

0.8

0.85
mlogReg

0 1 2 3 4
time (s)

0

0.5

1
HMM

0 1 2 3 4
time (s)

0.6

0.8

1
SVM

0 1 2 3 4
0.6

0.8

1
QDA

C
E
C+E

Figure 3: Feature set performance over time for each classi-
fier over claw features (C), eye features (E), and their com-
bination (E+C). mlogReg stands for multinomial logistic re-
gression.

Classifier Performance Over Time

Figure 3 depicts classifier accuracy with increasing predic-
tion horizon. Feature sets that included the claw (C and C+E)
always outperformed eye features alone, with the exceptions
of LDA and logistic regression. On average (Figure 4), time
had a small negative effect on accuracy (-0.62%/s) but KNN
on gaze type alone actually yielded a small positive effect of
0.31%/s. Conversely, the classifier/feature combination with
the largest negative effect was HMM with eye and gaze type
features, with an effect of -4.5%/s. While accuracy generally
decreased smoothly against prediction time, this was not the
case for the HMM. The HMM results display that training

C C+G C+E C+E+G E E+G G
Feature Set
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Figure 4: Effect of offset time on accuracy averaged over all
classifiers on claw features (C), eye features (E), and their
combination (E+C).

tended toward one of two end-states, such that the results
appear to oscillate between them. Note, however, that inde-
pendent HMM’s were trained at each time slice. One group
of HMM’s reached a “high performing” end-state and the
other group, a “low performing” one; thus, careful attention
should be paid to model validation if this HMM is to be used
again.

Overall Classifier Performance

Overall classifier performance is given in Table 2 and shows
that the C4.5 decision tree algorithm yielded the highest av-
erage accuracy and AUC (90%, 0.86) over all feature sets
and time offsets, while KNN had the single maximum ac-
curacy (97%, 0.97 AUC) averaged over time for a specific
feature set. C4.5, KNN, HMM, QDA, and NB all performed
very well, and their results compare favorably to previ-
ous work; however, these results stand in contrast to those
works in which SVM and logistic regression were found
to perform best (Eivazi and Bednarik 2011; Simola, Sa-
lojärvi, and Kojo 2008; Steichen, Conati, and Carenini 2014;
Bondareva et al. 2013). In our research they ranked as
the two worst performers among those tested. While they
had fairly high accuracy, their AUC scores were signifi-
cantly weaker than the other classifiers’ scores. Overall, the
classifier/feature combinations used in this research yielded
higher average accuracies than nearly all previous studies.

5 Discussion

Effectiveness of Gaze Data for Prediction

In regard to the first part of the research question, we can
now answer that while not as effective as using the claw
features, eye features including location, visual angle, and
velocity all yield respectable classification accuracies of 75-
85% (0.63 AUC), while gaze type alone performed weakly
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Table 2: Classifier performance ranked by AUC, that is AUC
averaged over all classes and features. Acc is the classifier’s
accuracy at AUC. Acc∗ is the maximum accuracy obtained
by each classifier on any given feature set, and AUC∗ is the
AUC at Acc∗. mlogReg is multinomial logistic regression.

Method Acc AUC Acc∗ AUC∗

C4.5 0.900 0.861 0.959 0.947
KNN 0.879 0.811 0.974 0.970
HMM 0.845 0.806 0.918 0.942
QDA 0.881 0.796 0.926 0.985
NB 0.881 0.781 0.925 0.912
LDA 0.817 0.604 0.831 0.565
SVM 0.852 0.590 0.917 0.589
mlogReg 0.798 0.576 0.825 0.546

(69%, 0.51 AUC). Thus, eye data can yield fairly accurate
classification of intent when the end-effector features are un-
available during task performance.

Improvement of Classification With Incorporation
of Gaze Data

When gaze data was no longer considered alone but in com-
bination with the claw data, it was not found to significantly
improve overall accuracy. Time in general had a small neg-
ative interaction effect with all feature sets, and including
eye location or gaze type did not seem to mitigate this ef-
fect, with the exception of gaze type when classified with
KNN. In general, KNN accuracy was affected the least by
lag time, falling only -0.1%/s on average. Perhaps this is due
to KNN’s dependence on local feature structure and the lo-
cal, if not offset, correlation between hand and eye position.

Overall, we had expected to find that including gaze data
would improve classification because of the anticipatory na-
ture of many gaze behaviors, which does not seem to be
the case here. One possible explanation is the dominance
of the smooth pursuit behavior (58%) among the gaze types.
While smooth pursuit can be anticipatory, it tends to slightly
lag or stick very close to the tracked object, and only occa-
sionally overtake that object (Thier and Ilg 2005). Another
factor that must be taken into account is that only 20% of
fixations, which themselves accounted for 34% of all gaze
types, are used to look ahead at relevant targets and goals
(Mennie, Hayhoe, and Sullivan 2007). While saccades are
often also anticipatory, they only accounted for 6% of the
observed gaze behavior. Many saccades were likely also lost
due to the 30–Hz frame rate of the camera, given that sac-
cades tend to last less than 100 ms.

A final explanation is that eye behavior changes with
task-specific experience and expertise. Sobuh at al. (2014)
showed that novices learning to operate an upper body pros-
thesis tended to have more fixations, more erratic gaze be-
havior, and more transitions between areas of interest. Ex-
perts, on the other hand, tended to have a more systemic
and simpler fixation trajectory. Furthermore, novices tend to
oscillate their fixations between the targets and the manipu-
lator, while experts focus on the targets. While participants

in our study were given the chance to get comfortable with
operating the machine, they may have fixated more on their
hands as opposed to the robotic manipulator to make sure
they were placed correctly on the control levers. These pos-
sibilities require further investigation before the usefulness
of gaze data in furthering intent prediction is ruled out.

6 Conclusion

This research investigated the potential of gaze data to im-
prove intent prediction in visuomotor coordination tasks. In
doing so, it yielded the first comparison of classification al-
gorithms for intent prediction during hand-eye coordination
in a 3D workspace, finding that the C4.5 decision tree, KNN,
and HMM algorithms worked best, with accuracies above
94%. It found that gaze features alone could yield reasonable
predictions (80% accuracy) and that accuracy for nearly all
classifier and feature combinations decreases slightly with
lengthening horizon. Adding gaze features to claw features
was not found to significantly improve prediction accuracy,
despite theoretical expectations. Future work should focus
on explaining the mismatch between the science of hand-
eye coordination and the findings presented here. By work-
ing toward a more complete understanding of anticipatory
gaze–tracking, not only may intent prediction be improved
but also an important contribution can be made to cognitive
human-robot interaction.
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J. R. 2001. Eye-Hand Coordination in Object Manipulation.
The Journal of Neuroscience 21(17):6917–32.
Komogortsev, O. V., and Karpov, A. 2013. Automated Classi-
fication and Scoring of Smooth Pursuit Eye Movements in the
Presence of Fixations and Saccades. Behavior Research Meth-
ods 45(1):203–215.
Komogortsev, O. V.; Gobert, D. V.; Jayarathna, S.; Koh, D. H.;
and Gowda, S. M. 2010. Standardization of Automated Anal-
yses of Oculomotor Fixation and Saccadic Behaviors. IEEE
Transactions on Biomedical Engineering 57(11):2635–2645.
Land, M. F., and Hayhoe, M. 2001. In What Ways do Eye
Movements Contribute to Everyday Activities? Vision Research
41(25):3559–3565.
Land, M.; Mennie, N.; and Rusted, J. 1999. The Roles of Vi-
sion and Eye Movements in the Control of Activities of Daily
Living. Perception 28(11):1311–1328.
Land, M. F. 2006. Eye Movements and the Control of Ac-
tions in Everyday Life. Progress in Retinal and Eye Research
25(3):296–324.
Larsson, L.; Nyström, M.; Andersson, R.; and Stridh, M. 2015.
Detection of Fixations and Smooth Pursuit Movements in High-
Speed Eye-Tracking Data. Biomedical Signal Processing and
Control 18:145–152.
Larsson, L.; Nyström, M.; and Stridh, M. 2013. Detection
of Saccades and Postsaccadic Oscillations in the Presence of
Smooth Pursuit. IEEE Transactions on Biomedical Engineering
60(9):2484–2493.
Ma-Wyatt, A.; Stritzke, M.; and Trommershäuser, J. 2010. Eye-
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