
Mixed Discrete-Continuous Planning with Convex Optimization

Enrique Fernández-González
MIT CSAIL

Cambridge, MA
efernan@mit.edu

Erez Karpas
Technion

Haifa, Israel
karpase@technion.ac.il

Brian Williams
MIT CSAIL

Cambridge, MA
williams@mit.edu

Abstract

Robots operating in the real world must be able to handle both
discrete and continuous change. Many robot behaviors can be
controlled through numeric parameters (called control vari-
ables), which affect the rate of the continuous change. Pre-
vious approaches capable of reasoning efficiently with con-
trol variables impose severe restrictions that limit the expres-
sivity of the problems that can be solved. A broad class of
robotic applications require, for example, convex quadratic
constraints on state variables and control variables that are
jointly constrained and that affect multiple state variables si-
multaneously. However, extensions to prior approaches are
not straightforward, since these characteristics are non-linear
and hard to scale. We introduce cqScotty, a heuristic forward
search planner that solves these problems efficiently. While
naive formulations of consistency checks are not convex and
do not scale, cqScotty uses an efficient convex formulation,
in the form of a Second Order Cone Program (SOCP), that
is very fast to solve. We demonstrate the scalability of our
approach on three new realistic domains.

Introduction

In order to achieve their missions, autonomous robots need
to reason with both discrete and continuous change (e.g. dy-
namics and temporal constraints). Over the last few years,
planners like Kongming (Li and Williams 2008), COLIN
(Coles et al. 2012) or Scotty (Fernandez, Karpas, and
Williams 2015) have emerged to address this problem. Of
these, heuristic forward search (HFS) approaches, such as
COLIN’s and Scotty’s, have shown to perform best. An im-
portant characteristic of these two is that they do not require
time discretization. This is essential for efficiently planning
for typical scenarios with long horizons and activities with
multiple time scales.

Scotty significantly increased the expressivity of the prob-
lems that could be modeled by introducing continuous
control variables in this continuous time heuristic forward
search setting. However, there is still a large class of prob-
lems that cannot be modeled with this approach. A broad
range of robotic applications need to be able to specify con-
straints between the control variables (that often represent
velocities) in order to limit, for example, the magnitude

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the velocity of the robot, instead of its principal com-
ponents independently (vx, vy). Moreover, these velocities,
apart from affecting the position of the robot, need to be
able to also affect other magnitudes simultaneously (e.g. to
model velocity dependent battery drain). Some applications
also require robots to be subject to complex state constraints,
such as staying within a maximum distance of another robot
or object, or being inside ellipsoidal regions. Finally, pre-
ferred plans often minimize magnitudes other than the typi-
cal plan length, such as distances traveled or fuel consump-
tion. None of these requirements can be modeled with Scotty
or other HFS planners. Satisfying these requirements while
maintaining the same performance of Scotty is challenging
due to the non-linearity of these characteristics.

In this work we achieve this goal through three insights.
First, due to recent advances in optimization, a restricted
form of quadratically constrained programs, called Second
Order Cone Programs (SOCPs), can be solved efficiently for
real world problems. Second, nearly all of the requirements
outlined above can be encoded with cone constraints, with
the exception of a non-convex term resulting from the prod-
uct of control variables and time. Third, an encoding trick
allows us to eliminate this non-convex term, resulting in a
SOCP encoding that is very fast to solve and that our plan-
ner repeatedly uses to test the consistency of partial plans.
Our new SOCP encoding allows us to impose upper bound
constraints on the norm of vectors of control variables (e.g.
v2x+ v2y ≤ v2max), enforce convex quadratic state constraints
(such as being inside ellipsoidal regions or ensuring a max-
imum distance between objects) and use the same control
variables in as many simultaneous effects as needed. We
do this without resorting to time, state or control variable
discretization, which allows us to maintain the high perfor-
mance of continuous time HFS planners. Since SOCPs are
convex programs and can be solved very efficiently, we keep
the same properties that Scotty had (optimality and com-
pleteness of consistency checks) at the cost of a slight in-
crease in computation.
Motivating example

Our example scenario (Figure 1) consists of an underwa-
ter ocean science mission carried out by a Remotely Op-
erated Vehicle (ROV), an Autonomous Underwater Vehicle
(AUV) and a ship. Initially the ship is transporting both the
AUV and the ROV to the science site. The AUV needs to

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4574

B

A

CB C

A

destination
region

start

AU
V-

na
vig

at
e

ROV-navigate ROV-sample-region

tether range

ship-navigate

deploy-ROV

recover-AUV

AUV-take-images

recover-ROV

Figure 1: Ocean Science Mission Scenario

take images at region A, while the ROV needs to take sam-
ples in regions B and C. All three vehicles need to reach
the destination region at the end, can navigate on their own
and have their own vx, vy velocities. The velocities can be
freely chosen, but their norms are upper-bound constrained
(v2xi

+ v2yi
≤ v2maxi

∀i ∈ {ship,ROV,AUV}). Whenever
the ROV is deployed, the ship needs to remain still at the de-
ployment location until the ROV is recovered again. More-
over, the ROV is tethered to the ship, and therefore it can
only move within a circle centered at the ship with radius
the tether length ((xR − xS)

2 + (yR − yS)
2 ≤ R2

tether).
Both the AUV and the ROV can be picked up when at most
2 meters away from the ship. The AUV can navigate on its
own once deployed, but it has a finite battery that limits how
long it can travel on its own (ḃAUV = −k · ‖vAUV‖).

Figure 1 shows a valid plan for this mission that presents
interesting characteristics. First, by stationing the ship and
deploying the ROV at the appropriate location, both sam-
pling regions can be visited without violating the tether
range constraint, which saves time and fuel. Second, the
AUV battery is not large enough to reach the destination
region on its own. Therefore, the ship meets the AUV at a
non fixed nor discretized intermediate location, picks it up
and transports it to the destination region. Finally, the bat-
tery decrease function is also interesting, as it depends on
the norm of the velocity of the AUV.

Related Work

Other than Scotty (Fernandez, Karpas, and Williams 2015),
Kongming is perhaps the planner that is closest to ours in the
features it supports. Kongming (Li and Williams 2008) was
the first planner to support control variables affecting con-
tinuous effects. Although powerful and expressive, Kong-
ming does not scale well in practice due to its fixed time
discretization and a solving method based on a continuous
analog of the Planning Graph and a MILP encoding.

COLIN (Coles et al. 2012) was the first planner capable
of reasoning with continuous effects in a heuristic forward
search setting. In order to do that COLIN uses linear pro-
grams to check the consistency of partial plans. However,
COLIN’s rates of change are fixed and cannot be chosen as
continuous controllable parameters and, therefore, it cannot

model the velocities in the example scenario. Scotty com-
bines the strengths of Kongming that allows more expres-
sive continuous actions through flow tubes, and an approach
based on COLIN’s method of heuristic forward search and
linear programming for consistency checking. In doing so,
Scotty supports continuous control variables without resort-
ing to discretization. However, Scotty cannot model the ex-
ample scenario since its control variables cannot affect mul-
tiple effects simultaneously (e.g. velocity affecting both po-
sition and battery) and can only be limited by their indepen-
dent fixed lower and upper bounds (i.e. the principal axes of
the velocity can be constrained, but not its norm). Recently,
POCPORN (Savas et al. 2016) formalized the notion of con-
tinuous control parameters as an additional element of ac-
tions. Contrary to Scotty and our planner, POPCORN’s con-
trol parameters can only be used in discrete numeric effects
and not as rates of change in continuous effects, which we
need for problems like the motivating scenario. Other recent
approaches have also considered continuous control param-
eters, but are limited to discrete time and change (Pantke,
Edelkamp, and Herzog 2016).

Recently, the planning community has made advances
in supporting more expressive planning problems as those
modeled in PDDL+ (Fox and Long 2006). Some of these
planners use a discretize and validate approach (Della Penna
et al. 2009; Piotrowski et al. 2016) while others have used
SMT based techniques with good results (Bogomolov et al.
2015; Cashmore et al. 2016). Most PDDL+ planners are, in
general, more expressive than our planner in several ways,
like their support of processes, events, must-happen seman-
tics and continuous change that is non-linear in time. How-
ever, their semantics do not represent robot dynamics very
well, since they do not support control variables and are un-
able to model the motivating example shown earlier.

The robotics community, on the other hand, has recently
shown interest in combined Task and Motion Planning
(TAMP) (Srivastava et al. 2014; Lozano-Pérez and Kael-
bling 2014). Like our planner, some interesting approaches
combine optimization with discrete search (Toussaint 2015;
Hadfield-Menell et al. 2016). These planners excel at highly
constrained manipulation problems but do not scale to long
planning horizons due to time discretization.

Problem Statement

Our mixed discrete-continuous planning problem is given by
the tuple 〈P, V, I,G,CV,CC,A,O〉, where:
• P is a set of propositions, which can be true or false.
• V is a set of real valued state variables.
• I is the initial state, which is a complete assignment to P

and V .
• G is the goal, which consists of a partial assignment to P

as well as conditions on the real state variables, and both
of which need to hold at the end of the plan.

• CV is a set of control variables. Each c ∈ CV is a real
valued parameter with a lower bound cl and an upper
bound cu.

• CC is a set of global constraints on the control variables.

4575

• A is the set of durative activities as described in PDDL2.1
(Fox and Long 2003).

• O is the plan optimization objective.
Our activities support two types of continuous effects

that depend on control variables: controllable linear time-
varying effects and resource-constrained norm effects.
Definition (Controllable linear time-varying continuous ef-
fect, CLTE). A CLTE, is given by a set of pairs 〈ki, ci〉,
where each ci is a control variable and ki ∈ R is its as-
sociated constant. A CLTE changes a state variable linearly
in time with a rate of change that is a linear combination of
its control variables. The change on a continuous state vari-
able x ∈ V up to time t due to an ongoing CLTE that started
at time 0 is given by

ΔxCLTE(t) =

∫ t

0

∑
〈ki,ci〉∈CLTE

ki · ci(τ)dτ (1)

Definition (Resource-constrained norm effects). Resource-
constrained norm effects are continuous linear time effects
that decrease the value of a constrained resource with a
rate of change proportional to the l2-norm or square of the
l2-norm of a set of control variables.

In the example scenario, there are six control variables
corresponding to the vx, vy velocities of each vehicle. These
are constrained so that the norm of each vehicle velocity is
limited. The vehicles change their positions thanks to the
navigate activities of each vehicle having two CLTE effects,
each operating on the x and y axes. Finally, the AUV navi-
gate activity also has a resource-constrained norm effect that
makes its battery drain at a rate proportional to the norm of
its velocity (ḃAUV (t) = −k · ‖vAUV‖ with k > 0). The op-
timization objective is given as a linear combination of the
plan makespan, the values of the state variables at the end
and the sumproducts of the norms (or squared norms) of the
control variable vectors and the times they were active for.
In the example, one of the terms is

∫ ‖vSHIP‖ dt, which
minimizes the distance traveled by the ship. A similar term
involving the square of the norm is also possible.

Approach

Our planner consists of two components that are tightly in-
tegrated: a discrete search and a convex optimization model.
We use a heuristic forward search algorithm, Enforced Hill-
Climbing (Hoffmann and Nebel 2001), to find a sequence
of starts and ends of activities that are analogous to the start
and end snap actions used by many temporal planners (Long
and Fox 2003; Coles et al. 2008). The convex optimization
serves two purposes. First, it is used to check the consis-
tency of the partial plans that the search visits. This entails
checking the feasibility of the convex program, that tries to
find an assignment of execution times and trajectories of the
state and control variables that is consistent with the con-
straints imposed by the activities in the partial plan. Second,
upon finding a sequence of activities that satisfies the goals,
this convex program finds the optimal trajectories of state
and control variables for that sequence in order to return the
plan.

Heuristic

The heuristic is based on the Temporal Relaxed Planning
Graph (Do and Kambhampati 2003; Coles et al. 2008) and
is very similar to that of COLIN and Scotty except for some
minor differences. As in the case of many other planners,
the heuristic value is the number of start or end events to
reach the goal in the relaxed graph. In the spirit of MetricFF
(Hoffmann 2003), each state variable has its associated min-
imum and maximum bounds in each fact layer of the plan-
ning graph. The state variable bounds for the first layer are
computed by solving the convex optimization program twice
per state variable (to minimize and maximize each variable).
Like Scotty, we use the minimum and maximum bounds of
the control variables to expand the bounds of the state vari-
ables in the next layer due to active continuous effects. New
in our heuristic is that we need to take into account the con-
vex quadratic conditions that neither COLIN nor Scotty sup-
port. In order to skip uneventful layers, COLIN’s heuristic
computes the future time when a currently unmet state con-
dition will be satisfied as a result of an active continuous
effect modifying a state variable. This is straightforward in
the case of linear inequality constraints, but hard to compute
for general convex quadratic constraints. Our solution is to
use linear over-approximations to the quadratic constraints
in the heuristic, which are then handled efficiently as in
COLIN’s heuristic. If the user specifies the convex quadratic
conditions as primitives, such as ellipsoidal regions, our
planner computes the linear over-approximations automati-
cally (e.g. axis aligned bounding boxes). Otherwise, the user
can specify the approximations directly by providing lists of
linear inequalities. These linear over-approximations consti-
tute valid relaxations since they ensure that actions can al-
ways be executed earlier than they would be if the actual
quadratic constraints were used.

The other difference in our heuristic is that resource-
constrained norm effects also need to be considered. These
effects only reduce the availability of constrained resources
and their application can only make activities infeasible (and
never new activities possible). Therefore, in the spirit of
delete relaxations, these effects are ignored in the heuristic.
The optimization-based consistency check, that accurately
computes these effects, rejects states that become infeasible
due to this and backtracking takes the search through a dif-
ferent route. However, there is room to improve the current
heuristic and make it aware of these interactions.
Consistency checking with convex optimization

To check the consistency of partial plans, we use Second
Order Cone Programs, which allow us to impose convex
quadratic constraints. While SOCPs are harder to solve than
LPs, there are efficient, polynomial-time algorithms that can
easily solve problems with thousands of variables. Since
SOCPs are convex problems, our consistency check is com-
plete and only infeasible partial states are pruned from the
search. While our planner is not optimal due to the greedy
search, this also guarantees that the returned solution is op-
timal with respect to the chosen sequence of activities.

Search nodes define partial plans that are given by an or-
dered sequence of start and end events (start and end of ac-
tivities). The execution times of these events, tj , and the val-

4576

ues of the state variables at these times, xk(tj), are decision
variables. We call the period of time between consecutive
events a stage and denote by Δtj = tj+1 − tj the duration
of the j-th stage.

The constraints in the model describe: a) the temporal
constraints, b) the at start, at end and over all numeric con-
straints on the state variables imposed by the activities, and
c) the continuous change in the state variables due to con-
tinuous effects. As in other temporal planners (Coles et al.
2012), the temporal constraints describe that consecutive
events need to be at least ε-separated (Δtj ≥ ε) and that
the minimum and maximum activity durations need to be
respected.

In order to simplify the model, we restrict the control
variables to only change values at start or end events and
therefore, stay constant throughout each stage. This results
in state variables having piecewise linear trajectories, with
the switch points being the events. This does not affect com-
pleteness, since our linear time dynamics and the absence of
obstacles or curvature constraints ensure that any problem
solvable with an arbitrarily changing state trajectory is also
solvable with a piecewise linear one. Additionally, because
the numeric conditions are convex and the trajectories are
linear, we only need to enforce the over all conditions at the
events (i.e., switch points) to ensure that these are satisfied
at all times, without requiring time discretization.

We proceed to describe now how we encode the con-
straints related to the continuous effects. Continuous effects
are cumulative. The continuous change in a state variable
between consecutive events (j and j + 1) is the sum of the
changes due to each effect:

xk(tj+1) = xk(tj) +
∑

effi∈Exk
(j)

Δxkeffi(j) (2)

where Exk
(j) is the set of all active continuous effects op-

erating on xk at stage j. Each Δxkeffi(j) is a decision vari-
able describing the change due to a continuous effect during
stage j.

The change due to a CLTE during stage j is given by

ΔxkCLTE(j) =

(∑
i

ki · cvari(j)
)

· (tj+1 − tj) (3)

where cvari(j) is the constant value that the i-th control vari-
able takes during stage j. Given that the event times are deci-
sion variables, the previous equation is non-linear and non-
convex if the control variables are also decision variables.
To overcome this problem, Scotty used alternative interval
equations that introduced severe limitations to the problems
that could be solved and that we address here. To do that,
we define the decision variable ciΔtj = ci · Δtj for every
control variable being used in each stage j. ciΔtj is subject
to the linear inequality constraints

cil ·Δtj ≤ ciΔtj ≤ ciu ·Δtj (4)
where cil and ciu are the lower and upper bounds of ci. The
non-linear CLTE equation (3) can then be rewritten as the
linear equation

ΔxkCLTE(j) =
∑
i

ki · ciΔtj (5)

In effect, instead of asking the solver to pick a value for
each control variable, we ask the solver to pick the times
of the events and the product of the values of the control
variables and the elapsed time between consecutive events.
The key idea that makes this encoding work is that for most
purposes we only need the values of the products of control
variables and time intervals instead of the actual values of
the control variables. A key advantage of this formulation is
that, contrary to Scotty, control variables can now be used
in as many continuous effects as needed, since the ciΔt de-
cision variables can be reused in other equations, and the
values will be consistent with each other. Moreover, we can
now impose constraints on the control variables. For exam-
ple, we can impose that two control variables, c1, c2 always
satisfy c1 + c2 ≤ 5. While the constraint cannot be encoded
directly since c1 and c2 are not explicit decision variables,
we can multiply the equation by Δtj and impose the con-
dition c1Δtj + c2Δtj ≤ 5 · Δtj at every stage. This can
be generalized to any linear constraint, since Δtj is always
positive by construction.

Similarly, we can also impose maximum l2-norm con-
straints on sets of control variables. In many robotic appli-
cations it is useful to represent the velocity of a robot with
its principal components (vx, vy) but still limit the total ve-
locity by some fixed amount. This can be expressed with the
constraint ||c|| ≤ vmax, where c = [vx, vy]

T is a vector of
control variables. To encode this constraint, we again mul-
tiply the whole equation by Δtj to obtain the second order
cone constraint

‖c‖ ·Δtj =
∥∥cΔtj

∥∥ ≤ vmax ·Δtj (6)

We can also represent resource constrained norm effects
using cone constraints. In this work we focus on linear norm
effects (LNE) and linear squared norm effects (LSNE). The
change due to the first effect on a constrained resource (state
variable rk) is given by

ΔrkLNE(j) = −kLNE · ‖c‖ ·Δtj , kLNE ≥ 0 (7)

where kLNE is a constant and c is a vector of control vari-
ables. Equation (7) is not convex and cannot be encoded di-
rectly. However, we can transform (7) into a cone constraint
by defining the bound variable b and rewriting the equation
as

||cΔtj || ≤ b, b ≥ 0 (8)

ΔrkLNE(j) = −kLNE · b (9)

Equations (7) and (9) do not represent the same, since b is
simply an upper-bound on ||cΔtj || . This is the reason why
we restrict these effects to constrained resources. In general,
the bound b will not be tight and the computed value for re-
source rk may not be accurate. However, these equations can
perfectly model that a constrained resource decreases with
the norm of a control variable vector and the bound will be-
come tight to ensure that a resource never dips below some
threshold. This is useful to model, for example, how battery
decreases in a vehicle as a function of the speed it is trav-
eling at, regardless of the x, y direction. Unfortunately, we
cannot use this resource constrained norm effects to impose

4577

that a certain resource is below some level, since the artifi-
cial bound b could take any arbitrary large value to satisfy
the constraint trivially without changing the actual value of
the norm of the control variable vector. The second resource
constrained norm effect that we support is the linear squared
norm effect (LSNE), which is subject to the same limitations
as the LNE effect, but in which monotonic decrease of the
resource variable is proportional to the squared norm.

ΔrkLNSE(j) = −kLNSE ·‖c‖2 ·Δtj , kLNSE ≥ 0 (10)
Again, equation (10) is non-convex, but we can use the same
principle as before to represent it as a SOCP constraint.
Since cΔtj = c ·Δtj , we can write

||c||2 ·Δtj =
cΔtj

T cΔtj

Δtj
≤ b, b ≥ 0 (11)

where b is, again, an auxiliary positive bound variable. Fi-
nally, equation (11) can be rewritten as

cΔtj
T cΔtj ≤ b ·Δtj (12)

ΔrkLNSE(j) = −kLNSE · b (13)
which is a rotated cone constraint, a valid type of convex
SOCP constraint, since b and Δtj are positive.

The remaining constraints in our model correspond to the
conditions imposed by the activities. The numeric state con-
ditions can be linear inequalities or convex quadratic con-
straints. The at start and at end conditions of an activity
are imposed at the start and end events of an activity. For
over all conditions, we further require that all intermediate
events between the start and end (the switch points) also sat-
isfy the condition. As previously mentioned and due to the
convexity properties, the full piecewise linear trajectory will
be contained in the convex set.

While checking the consistency of partial plans, there may
be activities that have started, but not ended yet. We use the
same tnow trick that COLIN uses to ensure that the partial
plan is feasible. An event at tnow is placed after all the other
events in the partial plan and before all the future end events
of activities that have started but not ended yet. This helps
identify partial plans that are not feasible because the tem-
poral deadlines have been violated.

Finally, once a plan has been found, our planner solves the
optimization problem with an optimization objective. This
objective is specified as part of the problem and can be a lin-
ear combination of the state variables at the end of the plan
and the sumproducts of the norms (or square norms) of con-
trol variable vectors and stage durations. This can be useful
for finding a plan that minimizes actuation control. An im-
portant advantage of this approach is not committing early to
the times or values of the state variables at the switch points.
Since we do not require discretization of state, control vari-
ables or time, we prevent early bad choices that could lead
to infeasible plans later on and we leave as much flexibility
as possible for the solver to make the best choice according
to the optimization objective (Toussaint 2015).

Experimental Results
To showcase the new capabilities of our planner and to show
that our optimization framework is fast and scalable, we

present three new expressive domains and benchmark our
planner against them. Since no other planner can solve these
domains, we also provide a simplified, linear version of
some of these domains that we use to compare our planner
to Scotty and POPCORN. We compare against these plan-
ners since they support control variables, which are essential
for these domains. Although Kongming supports the same
capabilities as Scotty, we do not compare against Kong-
ming since it was shown to perform significantly worse
than Scotty for the same features (Fernandez, Karpas, and
Williams 2015).
The AUV domain: In this domain an AUV needs to visit
and take samples at multiple regions. This domain is similar
to POPCORN’s 2D-AUV-Power domain (Savas et al. 2016),
that is based on prior Kongming and Scotty domains. There
are two main differences between POPCORN’s domain and
ours. First, since POPCORN does not support controllable
rates of change, the effects of the glide action are modeled
as discrete numeric displacements on the x, y variables at
the end of the action, whereas we model the motion as a
continuous effect that takes place while the action is being
executed. Moreover, since POPCORN only supports linear
constraints, its authors model the maximum power of the
vehicle as a simple linear constraint on the displacements at
the end of the action (3dx + 4dy ≤ 60), while we can use
the new features of our SOCP model to limit the magnitude
of the velocity (v2x + v2y ≤ v2max). In the simplified linear
version of this domain we place no constraints on the vx, vy
velocities other than their simple independent bounds.
The ROV domain: This domain is based on the motivat-
ing example presented at the beginning of this paper but
without an AUV. As in the motivating example, the ROV
needs to take samples in multiple regions and end, together
with the ship, in the destination region. Note that our plan-
ner decides where to station the ship while the ROV is tak-
ing samples, and that good selections of that position may
allow the ROV to visit several regions without having to
be recovered by the ship first. The optimization objective
for this domain minimizes a linear combination of the plan
makespan and the distance traveled by the ship. In the sim-
plified linear version of this domain we remove the velocity
norm constraints. Furthermore, the maximum distance con-
straints, which are modeled with the convex quadratic con-
straints of being inside a circle, are replaced by a simpler
linear polygonal over approximation of such a circle (an oc-
tagon in this case). Since we cannot model the distance trav-
eled by the ship without quadratic constraints, the simplified
version only optimizes the makespan of the plan.
The air refueling domain: In this final domain, an au-
tonomous Unmanned Aerial Vehicle (UAV) needs to take
pictures of several regions before landing at the destination
location. Since the UAV has limited fuel, it needs to refuel
in-air from a tanker plane. While refueling, both planes can
keep moving but they need to stay within a maximum dis-
tance. The UAV fuel decreases as a function of the distance
traveled and the square of the velocity (ḟ = −k1v − k2v

2).
As in the ROV domain, the objective for this domain is to
minimize a linear combination of the plan makespan and
the distance traveled by the tanker plane. In instances 11-

4578

AUV ROV Air Refueling

t L S N T t L S N T t L S N T

01 0.53 4 4 17 2 1.16 16 19 153 3 0.97 8 11 111 3
02 0.55 8 10 41 2 1.74 20 35 281 4 1.68 12 19 191 5
03 0.66 12 18 73 2 2.79 24 57 457 4 2.44 16 30 301 6
04 0.84 16 28 113 2 4.34 36 79 633 5 5.78 18 74 669 7
05 0.94 20 40 161 2 7.26 40 119 953 6 3.82 20 45 433 7
06 0.89 20 40 161 2 10.71 52 157 1225 7 5.68 24 60 583 8
07 1.18 24 54 217 2 16.38 56 213 1665 9 11.18 28 98 927 11
08 1.24 24 54 217 2 19.75 68 236 1822 9 10.93 32 96 916 11
09 1.46 28 70 281 2 32.24 72 338 2607 11 12.03 32 105 997 11
10 1.49 28 70 281 2 35.09 84 350 2659 12 17.14 38 115 1124 14
11 1.87 32 88 353 3 40.10 88 392 2993 12 2.14 10 18 289 5
12 1.86 32 88 353 3 56.63 100 451 3410 15 10.77 14 64 1025 10
13 2.29 36 108 433 3 52.82 96 412 3094 15 15.43 16 80 1281 11
14 2.30 36 108 433 3 68.63 108 497 3683 17 21.33 18 98 1569 13
15 2.85 40 130 521 3 87.77 120 586 4315 18 49.61 22 165 2581 19
16 2.75 40 130 521 3 95.51 124 630 4659 18 60.67 24 191 2907 20
17 3.57 44 154 617 3 119.82 136 712 5301 20 78.57 26 222 3373 23
18 4.48 48 180 721 4 151.10 140 885 6531 21 658.30 32 1147 17003 38
19 5.04 52 208 833 4 161.05 144 923 6802 21 563.87 34 906 13972 39
20 6.15 56 238 953 4 218.39 156 1181 8658 22 249.25 36 419 6210 39

(a) Benchmarking results

AUV-simplified ROV-simplified

cqScotty Scotty POPCORN cqScotty Scotty POPCORN

t L S N T t L t L t L S N T t L t L

01 0.54 4 4 17 2 0.48 4 0.05 4 0.86 16 19 153 2 0.89 16 0.57 16
02 0.55 8 10 41 1 0.49 8 0.15 8 1.25 20 35 281 2 1.48 20 1.95 20
03 0.61 12 18 73 1 0.56 12 0.30 12 1.74 24 57 457 2 2.33 24 3.59 24
04 0.72 16 28 113 1 0.64 16 0.58 16 2.54 36 79 633 3 5.58 36 6.53 36
05 0.80 20 40 161 1 0.77 20 0.94 20 4.07 40 119 953 3 7.54 40 16.34 40
06 0.83 20 40 161 1 0.74 20 0.91 20 5.46 52 156 1214 3 12.79 52 24.77 52
07 0.92 24 54 217 1 0.92 24 1.50 24 7.85 56 213 1621 4 16.73 56 49.84 56
08 0.99 24 54 217 1 0.94 24 1.52 24 9.06 68 233 1753 4 55.40 84 77.21 68
09 1.15 28 70 281 1 1.24 28 2.22 28 14.36 72 328 2478 5 86.75 96 107.27 72
10 1.13 28 70 281 1 1.14 28 2.23 28 15.53 84 345 2565 5 119.23 100 150.69 84
11 1.43 32 88 353 1 1.44 32 3.29 32 18.34 88 396 2952 5 96.59 96 175.83 88
12 1.42 32 88 353 1 1.43 32 3.26 32 24.79 100 450 3335 6 142.33 108 242.64 92
13 1.49 34 92 369 2 1.53 34 3.89 34 23.36 96 411 3023 6 126.13 104 278.46 96
14 1.48 34 92 369 2 1.57 34 3.90 34 30.35 108 495 3639 7 180.93 116 343.66 108
15 1.80 38 114 457 2 2.12 38 4.88 38 38.62 120 578 4261 7 254.07 128 460.56 112
16 1.75 38 114 457 2 2.19 38 5.60 38 45.26 124 660 4826 8 158.47 108 525.74 116
17 2.22 42 138 553 2 2.50 42 6.58 42 56.49 136 743 5469 8 204.34 120 617.31 128
18 2.81 46 164 657 2 3.53 46 9.91 46 68.51 140 890 6484 8 271.64 132 783.90 140
19 3.31 50 192 769 2 4.12 50 13.01 50 73.40 144 926 6737 9 391.01 152 834.64 136
20 3.93 54 222 889 2 5.30 54 17.18 54 98.11 156 1177 8479 9 500.96 164 1028.76 148

(b) Benchmarking results for simplified domains

Table 1: Results of Empirical Evaluation. t: Planning time in seconds; L: Plan length; S: Number of nodes expanded; N: Number
of optimization problems solved; T: Mean solving time for each optimization problem in milliseconds.

20 there is an additional UAV, and only one UAV can refuel
at a time. This domain is challenging for several reasons.
First, the planner needs to consider the simultaneous trajec-
tories of multiple vehicles and also their fuel levels. Second,
and more importantly, while our optimization model sup-
ports the resource-constrained norm effects (such as the fuel
decrease depending on the norm or squared norm of the ve-
locity), the heuristic does not consider these effects directly.
Therefore, our planner only chooses the refuel activities by
backtracking when reaching other regions becomes infeasi-
ble due to having insufficient fuel.

We do not present a simplified version of this domain be-
cause neither POPCORN nor Scotty would be able to solve
a linear alternative. The reason is that the refuel activity
requires continuous effects since both the tanker and the
UAV have to be flying simultaneously while staying close to
each other. POPCORN cannot model this since the numeric
change can only be applied at the beginning or end of an
activity and not continuously in time. This domain also re-
quires that the fuel of each UAVs decreases as a function of
the magnitude of their velocities, which neither POPCORN
nor Scotty can model.
Results: We benchmarked our planner on an Intel Core i7-
3770 3.40 GHz with the Gurobi 7.0.1 solver. As seen in
column T of Table 1(a), our convex optimization model, a
key contribution of our work, is solved very quickly. The
mean optimization time per problem grows for more com-
plicated instances since these have more state variables and
require more activities, which results in far more decision
variables and constraints at later stages of the search. How-
ever, most optimization problems are solved in less than 10
ms in average for small to medium domain instances and in
less than 50 ms for larger ones. This is important since large
domain instances require solving tens of thousands of opti-
mization problems, as seen in the table. This kind of perfor-
mance would not be possible if we used a straightforward
non-convex non-linear optimization model with a general
purpose non-linear optimizer.

Table 1(b) shows the results for the simplified domains.
These results let us answer the question of what is the per-
formance penalty of switching from a linear program for-
mulation to a SOCP one. As seen in the table, the differ-
ence between the mean optimization time for the linear prob-
lems solved in the simplified domains and the SOCP ones
from the full domains is very small for the simpler instances
and significant for more complicated instances. However,
this difference is always well within an order of magnitude.
Moreover, we should highlight that the linearized version
is significantly simpler, as it not only linearizes some con-
straints (such as the ROV tether range ones) but also drops
many other constraints, like the norm ones or the ones re-
quired to minimize the traveled distances. We can conclude
that using SOCPs for consistency checking is not only prac-
tical, but that the performance tradeoff is well worth it con-
sidering the added expressivity that they provide. Finally, we
compare our planner in these simplified domains to Scotty
and POPCORN. Since our optimization model is signifi-
cantly more complex than theirs, even in these linear do-
mains, given the extra variables and constraints that we re-
quire, we expected that our planner would be slower. How-
ever, Table 1 shows that this is not the case and our plan-
ner performs significantly better. We hypothesize that this is
due to the superior performance of the Gurobi solver com-
pared to the solvers used by Scotty (CPLEX 12.4) and POP-
CORN (lpsolve 5.5). Additionally, POPCORN’s test were
kindly run on a slower i5-M540 2.53GHz processor by its
authors, since they could not share the planner with us.

Conclusion
We have presented a new planner capable of solving more
expressive hybrid problems than the current state of the art
while maintaining the same level of performance. By using
an efficient convex optimization model based on SOCPs,
we can solve problems requiring convex quadratic con-
straints on control and state variables and control variables
that affect multiple continuous effects. While this work ad-

4579

vances the expressivity of the hybrid problems that can be
solved with heuristic forward search techniques, our plan-
ner presents some limitations that we would like to address.
First, our planner only supports linear dynamics and practi-
cal constraints such as maximum curvature cannot be han-
dled in our model. Moreover, we currently do not support
obstacles, since their associated non-convex constraints can-
not be represented in our framework. Finally, while returned
plans are optimal conditioned on the chosen sequence of ac-
tivities, our search does not explicitly take the optimization
objective into account, and we cannot make any guarantees
with respect to the optimality of the chosen sequence. All
of these are active areas of research that we are currently
pursuing.

Acknowledgments
We thank the SUTD-MIT Graduate Fellows Program for
providing financial support to Enrique Fernández during this
work. We would also like to thank Emre Savas for running
the POPCORN benchmarks.

References
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ Planning with Hybrid Automata: Foun-
dations of Translating Must Behavior. In Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2015, 42–46.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling, ICAPS 2016, 79–
87.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with Problems Requiring Temporal Coordination. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, 892–897.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: A Tool for Universal Planning on
PDDL+ Problems. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009.
Do, M. B., and Kambhampati, S. 2003. Sapa: A Multi-
objective Metric Temporal Planner. J Artif Intell Res(JAIR)
20:155–194.
Fernandez, E.; Karpas, E.; and Williams, B. C. 2015. Mixed
Discrete-Continuous Heuristic Generative Planning Based
on Flow Tubes. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, 1565–1572.
Fox, M., and Long, D. 2003. PDDL2. 1: An Extension to
PDDL for Expressing Temporal Planning Domains. J Artif
Intell Res(JAIR).
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J Artif Intell Res(JAIR).

Hadfield-Menell, D.; Lin, C.; Chitnis, R.; Russell, S.; and
Abbeel, P. 2016. Sequential Quadratic Programming for
Task Plan Optimization . In In the proceedings of the 29th
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2016).
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J Artif Intell
Res(JAIR) 14:253–302.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables. J
Artif Intell Res(JAIR) 20:291–341.
Li, H. X., and Williams, B. C. 2008. Generative Planning
for Hybrid Systems Based on Flow Tubes. In Proceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling, ICAPS 2008, 206–213.
Long, D., and Fox, M. 2003. Exploiting a Graphplan Frame-
work in Temporal Planning. In Proceedings of the Thir-
teenth International Conference on Automated Planning and
Scheduling, ICAPS 2003, 52–61.
Lozano-Pérez, T., and Kaelbling, L. P. 2014. A constraint-
based method for solving sequential manipulation planning
problems. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, 3684–3691.
IEEE.
Pantke, F.; Edelkamp, S.; and Herzog, O. 2016. Sym-
bolic discrete-time planning with continuous numeric ac-
tion parameters for agent-controlled processes. Mechatron-
ics 34:38–62.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic Planning for PDDL+ Domains.
In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, 3213–3219.
Savas, E.; Fox, M.; Long, D.; and Magazzeni, D. 2016. Plan-
ning Using Actions with Control Parameters. In ECAI 2016 -
22nd European Conference on Artificial Intelligence, 1185–
1193.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S. J.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and Au-
tomation, ICRA 2014, 639–646. IEEE.
Toussaint, M. 2015. Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and Mo-
tion Planning. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, 1930–1936.

4580

