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Abstract

We present a novel approach to online multi-target tracking
based on recurrent neural networks (RNNs). Tracking mul-
tiple objects in real-world scenes involves many challenges,
including a) an a-priori unknown and time-varying number of
targets, b) a continuous state estimation of all present targets,
and c) a discrete combinatorial problem of data association.
Most previous methods involve complex models that require
tedious tuning of parameters. Here, we propose for the first
time, an end-to-end learning approach for online multi-target
tracking. Existing deep learning methods are not designed for
the above challenges and cannot be trivially applied to the
task. Our solution addresses all of the above points in a prin-
cipled way. Experiments on both synthetic and real data show
promising results obtained at ≈300 Hz on a standard CPU,
and pave the way towards future research in this direction.

Introduction

Tracking multiple targets in unconstrained environments is
extremely challenging. Even after several decades of re-
search, it is still far from reaching the accuracy of human
labelling. (cf . MOTChallenge (Leal-Taixé et al. 2015)). The
task itself constitutes locating all targets of interest in a video
sequence and maintaining their identity over time. One of
the obvious questions that arises immediately is how to
model the vast variety of data present in arbitrary videos that
may include different view points or camera motion, various
lighting conditions or levels of occlusion, a varying number
of targets, etc. Tracking-by-detection has emerged as one of
the most successful strategies to tackle this challenge. Here,
all “unused” data that is available in a video sequence is dis-
carded and reduced to just a few single measurements per
frame, typically by running an object detector. The task is
then to associate each measurement to a corresponding tar-
get, i.e. to address the problem of data association. More-
over, due to clutter and an unknown number of targets, the
option to discard a measurement as a false alarm and a strat-
egy to initiate new targets as well as terminate exiting ones
must be addressed.

With the recent rise of deep learning, there has been sur-
prisingly little work related to multi-target tracking. We pre-
sume that this is due to several reasons. First, when deal-
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Figure 1: A schematic illustration of our architecture. We use
RNNs for temporal prediction and update as well as track
management. The combinatorial problem of data association
is solved via LSTMs for each frame.

ing with a large number of parameters, deep models re-
quire huge amounts of training data, which is not yet avail-
able in the case of multi-target tracking. Second, both the
data and the desired solution can be quite variable. One
is faced with both discrete and continuous variables, un-
known cardinality for input and output, and variable lengths
of video sequences. One interesting exception in this di-
rection is the recent work of Ondrúška and Posner (2016)
that introduces deep recurrent neural networks to the task
of state estimation. Although this work shows promising re-
sults, it only demonstrates its efficacy on simulated data with
near-perfect sensor measurements, a known number of tar-
gets, and smooth, linear motion. Their follow-up work in-
troduces real-world measurements and multi-class scenar-
ios (Ondruska et al. 2016), however, in both cases, tracking
is formulated as estimating the world occupancy, without ex-
plicit data association.

With this paper, we make an important step towards end-
to-end model learning for online tracking of multiple targets
in realistic scenarios. Our main contributions are as follows:

1. Inspired by the well-studied Bayesian filtering idea, we
present a recurrent neural network capable of performing
all multi-target tracking tasks including prediction, data
association, state update as well as initiation and termina-
tion of targets within a unified network structure (Fig. 1).
One of the main advantages of this approach is that it is
completely model-free, i.e. it does not require any prior
knowledge about target dynamics, clutter distributions,
etc. It can therefore capture linear (cf . Kalman filter), non-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4225



linear (cf . particle filter), and higher-order dependencies.

2. We further show, that a model for the challenging com-
binatorial problem of data association including birth and
death of targets can be learned entirely from data. This
time-varying cardinality component demonstrates that it
is possible to utilise RNNs not only to predict sequences
with fixed-sized input and output vectors, but in fact to
infer unordered sets with unknown cardinality.

3. We present a way to generate arbitrary amounts of train-
ing data by sampling from a generative model.

4. Qualitative and quantitative results on simulated and real
data show encouraging results, confirming the potential of
this approach. We firmly believe that it will inspire other
researchers to extend the presented ideas and to further
advance the performance.

Related Work

Multi-object tracking. A multitude of sophisticated mod-
els have been developed in the past to capture the complex-
ity of the problem at hand. Early works include the multiple
hypothesis tracker (MHT) (Reid 1979) and joint probabilis-
tic data association (JPDA) (Fortmann, Bar-Shalom, and
Scheffe 1980). Both were developed in the realm of radar
and sonar tracking but were considered too slow for com-
puter vision applications for a long time. With the advances
in computational power, they have found their way back and
have recently been re-introduced in conjunction with novel
appearance models (Kim et al. 2015), or suitable approxi-
mation methods (Rezatofighi et al. 2015). Recently, a large
amount of work focused on simplified models that could
be solved to (near) global optimality (Jiang, Fels, and Lit-
tle 2007; Zhang, Li, and Nevatia 2008; Berclaz et al. 2011;
Butt and Collins 2013). Here, the problem is cast as a linear
program and solved via relaxation, shortest-path, or min-
cost algorithms. Conversely, more complex cost functions
have been considered in (Leibe, Schindler, and Van Gool
2007; Milan, Roth, and Schindler 2014), but without any
theoretical bounds on optimality. The optimization tech-
niques range from quadratic boolean programming, over
customised alpha-expansion to greedy constraint propaga-
tion. More recently, graph multi-cut formulations (Tang et
al. 2016) have also been employed.

Deep learning. Early ideas of biologically inspired learn-
ing systems date back many decades (Ivakhnenko and Lapa
1966). Later, convolutional neural networks (also known as
CNNs) and the back propagation algorithm were developed
and mainly applied to hand-written digit recognition (Le-
Cun et al. 1998). However, despite their effectiveness on
certain tasks, they could hardly compete with other well-
established approaches. This was mainly due to their major
limitation of requiring huge amounts of training data in or-
der not to overfit the high number of parameters. With faster
multi-processor hardware and with a sudden increase in la-
belled data, CNNs have become increasingly popular, ini-
tiated by a recent breakthrough on the task of image clas-
sification (Krizhevsky, Sutskever, and Hinton 2012). CNNs

achieve state-of-the-art results in many applications (Wang
et al. 2012; Eigen and Fergus 2015) but are restrictive in
their output format. Conversely, recurrent neural networks
(RNNs) (Goller and Küchler 1996) include a loop between
the input and the output. This not only enables to simulate a
memory effect, but also allows for mapping input sequences
to arbitrary output sequences, as long as the sequence align-
ment and the input and output dimensions are known in ad-
vance.

Our work is inspired by the recent success of recurrent
neural nets (RNNs) and their application to language mod-
eling (Vinyals et al. 2015). However, it is not straightfor-
ward to apply the same strategies to the problem of multi-
target tracking for numerous reasons. First, the state space
is multi-dimensional. Instead of predicting one character or
one word, at each time step the state of all targets should be
considered at once. Second, the state consists of both contin-
uous and discrete variables. The former represents the actual
location (and possibly further properties such as velocities)
of targets, while a discrete representation is required to re-
solve data association. Further indicator variables may also
be used to infer certain target states like the track state, the
occlusion level, etc. Third, the desired number of outputs
(e.g. targets) varies over time. In this paper, we introduce a
method for addressing all these issues and demonstrate how
RNNs can be used for end-to-end learning of multi-target
tracking systems.

Background

Recurrent Neural Networks

Broadly speaking, RNNs work in a sequential manner,
where a prediction is made at each time step, given the pre-
vious state and possibly an additional input. The core of an
RNN is its hidden state h ∈ R

n of size n that acts as the
main control mechanism for predicting the output, one step
at a time. In general, RNNs may have L layers. We will de-
note hl

t as the hidden state at time t on layer l. h0 can be
thought of as the input layer, holding the input vector, while
hL holds the final embedded representation used to produce
the desired output yt. The hidden state for a particular layer
l and time t is computed as hl

t = tanhW l
(
hl−1
t , hl

t−1

)�
,

where W is a matrix of learnable parameters.
The RNN as described above performs well on the task

of motion prediction and state update. However, we found
that it cannot properly handle the combinatorial task of data
association. To that end, we consider the long short-term
memory (LSTM) recurrence (Hochreiter and Schmidhuber
1997). Next to the hidden state, the LSTM unit also keeps an
embedded representation of the state c that acts as a mem-
ory. A gated mechanism controls how much of the previous
state should be “forgotten” or replaced by the new input (see
Fig. 2, right, for an illustration). More formally, the hidden
representations are computed as hl

t = o � tanh
(
clt
)

and
clt = f�clt−1+i�g, where � represents element-wise mul-
tiplication. The input, output and forget gates are all vectors
of size n and model the memory update in a binary fashion
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using a sigmoid function:

i, o, f = σ
[
W l

(
hl−1
t , hl

t−1

)�]
, (1)

with a separate weight matrix W l for each gate.

Bayesian Filtering

In Bayseian filtering, the goal is to estimate the true state x
from noisy measurements z. Under the Markov assumption,
the state distribution at time t given all past measurements is
estimated recursively as

p(xt|z1:t) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1,

(2)
where p(zt|xt) is the last observation likelihood and
p(xt|xt−1) the state transition probability. Typically, Eq. (2)
is evaluated in two steps: a prediction step that evaluates
the state dynamics, and an update step that corrects the be-
lief about the state based on the current measurements. Two
of the most widely used techniques for solving the above
equation are Kalman filter (Kalman 1960) and particle fil-
ter (Doucet, Godsill, and Andrieu 2000). The former per-
forms exact state estimation under linear and Gaussian as-
sumptions for the state and measurements models, while the
latter approximates arbitrary distributions using sequential
importance sampling.

When dealing with multiple targets, one is faced with two
additional challenges. 1) Before the state update can be per-
formed, it is crucial to determine which measurements are
associated with which targets. A number of algorithms have
been proposed to address this problem of data association
including simple greedy techniques, and sophisticated prob-
abilistic approaches like JPDA (see (Bar-Shalom and Fort-
mann 1988) for an overview). 2) To allow for a time-varying
number of targets, it is necessary to provide a mechanism to
spawn new targets that enter the scene, and remove existing
ones that disappear indefinitely. Like data association, this
task is non-trivial, since each unassigned measurement can
potentially be either the start of a new trajectory or a false
alarm. Conversely, a missing measurement for a certain tar-
get could mean that the target has disappeared, or that the de-
tector has failed. To address this challenge, online tracking
approaches typically base their decisions about births and
deaths of tracks on heuristics that consider the number of
consecutive measurement errors.

Our Approach

We will now describe our approach to cast the classical
Bayesian state estimation, data association as well as track
initiation and termination tasks as a recurrent neural net, al-
lowing for full end-to-end learning of the model.

Preliminaries and Notation

We begin by defining xt ∈ R
N ·D as the vector containing

the states for all targets at one time instance. In our set-
ting, the targets are represented by their bounding box co-
ordinates (x, y, w, h), such that D = 4. Note that it is con-
ceptually straightforward to extend the state to an arbitrary

dimension, e.g. to incorporate velocity, acceleration or ap-
pearance model. N is the number of interacting targets that
are represented (or tracked) simultaneously in one particular
frame and xi

t refers to the state of the ith target. N is what we
call the network’s order and captures the spatial dependen-
cies between targets. Here, we consider a special case with
N = 1 where all targets are assumed to move independently.
In other words, the same RNN is used for each target. Sim-
ilar to the state vector above, zt ∈ R

M ·D is the vector of all
measurements in one frame, where M is maximum number
of detections per frame.

The assignment probability matrix A ∈ [0, 1]N×(M+1)

represents for each target (row) the distribution of assign-
ing individual measurements to that target, i.e. Aij ≡
p(i assigned to j) and ∀i : ∑j Aij = 1. Note that an extra
column in A is needed to incorporate the case that a mea-
surement is missing. Finally, E ∈ [0, 1]N is an indicator
vector that represents the existence probability of a target
and is necessary to deal with an unknown and time-varying
number of targets. We will use (∼) to explicitly denote the
ground truth variables.

Multi-Target Tracking with RNNs

As motivated above, we decompose the problem at hand
into two major blocks: state prediction and update as well as
track management on one side, and data association on the
other. This strategy has several advantages. First, one can
isolate and debug individual components effectively. Sec-
ond, the framework becomes modular, making it easy to re-
place each module or to add new ones. Third, it enables one
to (pre)train every block separately, which not only signif-
icantly speeds up the learning process but turns out to be
necessary in practice to enable convergence. We will now
describe both building blocks in detail.

Target Motion

Let us first turn to state prediction and update. We rely on
a temporal RNN depicted in Fig. 2 (left) to learn the tem-
poral dynamic model of targets as well as an indicator to
determine births and deaths of targets (see next section).
At time t, the RNN outputs four values1 for the next time
step: A vector x∗t+1 ∈ R

N ·D of predicted states for all tar-
gets, a vector xt+1 ∈ R

N ·D of all updated states, a vector
Et+1 ∈ (0, 1)N of probabilities indicating for each target
how likely it is a real trajectory, and E∗t+1, which is the abso-
lute difference to Et. This decision is computed based on the
current state xt and existence probabilities Et as well as the
measurements zt+1 and data association At+1 in the follow-
ing frame. This building block has three primary objectives:

1. Prediction: Learn a complex dynamic model for predict-
ing target motion in the absence of measurements.

2. Update: Learn to correct the state distribution, given
target-to-measurement assignments.

1We omit the RNN’s hidden state ht at this point in order to
reduce notation clutter.
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Figure 2: Left: An RNN-based architecture for state prediction, state update, and target existence probability estimation. Right:
An LSTM-based model for data association.

3. Birth / death: Learn to identify track initiation and termi-
nation based on the state, the measurements and the data
association.

The prediction x∗t+1 for the next frame depends solely on the
current state xt and the network’s hidden state ht. Once the
data association At+1 for the following frame is available,
the state is updated according to assignment probabilities.
To that end, all measurements and the predicted state are
concatenated to form x̂ = [zt+1;x

∗
t+1] weighted by the as-

signment probabilities At+1. This is performed for all state
dimensions. At the same time, the track existence probabil-
ity Et+1 for the following frame is computed.

Loss. A loss or objective is required by any machine learn-
ing algorithm to compute the goodness-of-fit of the model,
i.e. how close the prediction corresponds to the true solu-
tion. It is typically a continuous function, chosen such that
minimising the loss maximises the performance of the given
task. In our case, we are therefore interested in a loss that
correlates with the tracking performance. This poses at least
two challenges. First, measuring the performance of multi-
target tracking is far from trivial (Milan, Schindler, and Roth
2013) and moreover highly dependent on the particular ap-
plication. For example, in vehicle assistance systems it is
absolutely crucial to maintain the highest precision and re-
call to avoid accidents and to maintain robustness to false
positives. On the other hand, in sports analysis it becomes
more important to avoid ID switches between different play-
ers. One of the most widely accepted metrics is the multi-
object tracking accuracy (MOTA) (Bernardin and Stiefel-
hagen 2008) that combines the three error types mentioned
above and gives a reasonable assessment of the overall per-

formance. Ideally, one would train an algorithm directly on
the desired performance measure. This, however, poses a
second challenge. The MOTA computation involves a com-
plex algorithm with non-differentiable zero-gradient com-
ponents, that cannot easily be incorporated into an analyti-
cal loss function. Hence, we propose the following loss that
satisfies our needs:

L(x∗, x, E , x̃, Ẽ) = λ

ND

∑
‖x∗ − x̃‖2︸ ︷︷ ︸

prediction

+

κ

ND
‖x− x̃‖2︸ ︷︷ ︸
update

+ νLE + ξE∗,︸ ︷︷ ︸
birth/death + reg.

(3)

where x∗, x, and E are the predicted values, and x̃ and Ẽ
are the true values, respectively. Note that we omit the time
index here for better readability. In practice the loss for one
training sample is averaged over all frames in the sequence.

The loss consists of four components. Let us first concen-
trate on the first two, assuming for now that the number of
targets is fixed. Intuitively, we aim to learn a network that
predicts trajectories that are close to the ground truth tracks.
This should hold for both, predicting the target’s motion in
the absence of any measurements, as well as correcting the
track in light of new measurements. To that end, we min-
imise the mean squared error (MSE) between state predic-
tions and state update and the ground truth.

Initiation and Termination

Tracking multiple targets in real-world situations is compli-
cated by the fact that targets can appear and disappear in the
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Figure 3: The effect of the pairwise smoothness prior on the
existence probability. See text for details.

area of interest. This aspect must not be ignored but is diffi-
cult to model within the fixed-sized vector paradigm in tra-
ditional neural network architectures. We propose to capture
the time-varying number of targets by an additional variable
E ∈ (0, 1)N that mimics the probability that a target exists
(E = 1) or not (E = 0) at one particular time instance. At
test time, we then simply discard all targets for which E is
below a threshold (0.6 in our experiments).

Loss. The last two terms of the loss in Eq. (3) guide the
learning to predict the existence of each target at any given
time. This is necessary to allow for target initiation and ter-
mination. Here, we employ the widely used binary cross en-
tropy (BCE) loss

LE(E , Ẽ) = Ẽ log E + (1− Ẽ) log(1− E) (4)

that approximates the probability of the existence for each
target. Note that the true values Ẽ here correspond to a box
function over time (cf . Fig. 3, left). When using the BCE
loss alone, the RNN learns to make rather hard decisions,
which results in track termination at each frame when a mea-
surement is missing. To remedy this, we propose to add a
smoothness prior E∗ that essentially minimises the absolute
difference between two consecutive values for E .

Data Association with LSTMs

Arguably, the data association, i.e. the task to uniquely clas-
sify the corresponding measurement for each target, is the
most challenging component of tracking multiple targets.
Greedy solutions are efficient, but do not yield good results
in general, especially in crowded scenes with clutter and oc-
clusions. Approaches like JPDA are on the other side of the
spectrum. They consider all possible assignment hypotheses
jointly, which results in an NP-hard combinatorial problem.
Hence, in practice, efficient approximations must be used.

In this section, we describe an LSTM-based architecture
that is able to learn to solve this task entirely from training
data. This is somewhat surprising for multiple reasons. First,
joint data association is in general a highly complex, discrete
combinatorial problem. Second, most solutions in the output
space are merely permutations of each other w.r.t. the input
features. Finally, any possible assignment should meet the
one-to-one constraint to prevent the same measurement to
be assigned to multiple targets. We believe that the LSTM’s
non-linear transformations and its strong memory compo-
nent are the main driving force that allows for all these chal-
lenges to be learned effectively. To support this claim, we
demonstrate the capability of LSTM-based data association
on the example of replicating the linear assignment problem.
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Figure 4: Results of our tracking method on a 20-frame
long synthetic sequence with clutter. Top: Ground truth (x-
coordinate vs. time). Middle: Our reconstructed trajectories.
Bottom: The existence probability E for each target. Note
the delayed initiation and termination, e.g. for the top-most
track (yellow) in the middle. This an inherent limitation of
any purely online approach that cannot be avoided.

Our model is illustrated in Figures 1 and 2 (right). The main
idea is to exploit the LSTM’s temporal step-by-step func-
tionality to predict the assignment for each target one target
at a time. The input at each step i, next to the hidden state
hi and the cell state ci, is the entire feature vector. For our
purpose, we use the pairwise-distance matrix C ∈ R

N×M ,
where Cij = ‖xi − zj‖2 is the Euclidean distance between
the predicted state of target i and measurement j. Note that it
is straight-forward to extend the feature vector to incorporate
appearance or any other similarity information. The output
that we are interested in is then a vector of probabilities Ai

for one target and all available measurements, obtained by
applying a softmax layer with normalisation to the predicted
values. Here, Ai denotes the ith row of A.

Loss. To measure the misassignment cost, we employ the
common negative log-likelihood loss

L(Ai, ã) = − log(Aiã), (5)

where ã is the correct assignment and Aij is the target i to
measurement j assignment probability, as described earlier.
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Method Rcll↑ Prcn↑ MT↑ ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑
Kalman-HA 28.5 79.0 32 334 3,031 28,520 685 837 19.2 69.9
Kalman-HA2* 28.3 83.4 39 354 2,245 28,626 105 342 22.4 69.4
JPDAm* 30.6 81.7 38 348 2,728 27,707 109 380 23.5 69.0
RNN HA 37.8 75.2 50 267 4,984 24,832 518 963 24.0 68.7
RNN LSTM 37.1 73.5 50 260 5,327 25,094 572 983 22.3 69.0

Table 1: Tracking results on the MOTChallenge training dataset. *Denotes offline post-processing.
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Figure 5: Influence of two exemplar hyper-parameters on
the overall performance on the MOTChallenge benchmark,
measured by MOTA. The optimal parameter is marked with
a red circle. Note that this graph shows the performance
of our prediction/update RNN block for only one target
(N = 1), which explains the relatively low MOTA.

Training Data

It is well known that deep architectures require vast amounts
of training data to avoid overfitting the model. Huge labelled
datasets like ImageNET (Russakovsky et al. 2014) or Mi-
crosoft COCO (Lin et al. 2014) have enabled deep learning
methods to unfold their potential on tasks like image clas-
sification or pixel labelling. Unfortunately, mainly due to
the very tedious and time-consuming task of video annota-
tion, only very limited amount of labelled data for pedestrian
tracking is publicly available today. We therefore resort to
synthetic generation by sampling from a simple generative
trajectory model learned from real data. To that end, we first
learn a trajectory model from each training sequence. For
simplicity, we only estimate the mean and the variance of
two features: the start location x1 and the average velocity
v̄ from all annotated trajectories in that sequence. For each
training sample we then generate up to N tracks by sampling
from a normal distribution with the learned parameters. Note
that this simplistic approach enables easy generation of re-
alistic data, but does not accomodate any observations.

Implementation Details

We implemented our framework in Lua and Torch7. Both
our entire code base as well as pre-trained models are pub-
licly available.2 Finding correct hyper-parameters for deep
architectures still remains a non-trivial task (Greff et al.
2015). In this section we will point out some of the most
important parameters and implementation details. We fol-
low some of the best practices found in the literature (Greff
et al. 2015; Karpathy, Johnson, and Li 2015), such as set-
ting the initial weights for the forget gates higher (1 in our
case), and also employ a standard grid search to find the best
setting for the present task.

2https://bitbucket.org/amilan/rnntracking

Network size. The RNN for state estimation and track
management is trained with one layer and 300 hidden units.
The data association is a more complex task, requiring more
representation power. To that end, the LSTM module em-
ployed to learn the data association consists of two layers
and 500 hidden units.

Optimisation. We use the RMSprop (Tieleman and Hin-
ton 2012) to minimise the loss. The learning rate is set ini-
tially to 0.0003 and is decreased by 5% every 20 000 itera-
tions. We set the maximum number of iterations to 200 000,
which is enough to reach convergence. The training of both
modules takes approximately 30 hours on a CPU. With a
more accurate implementation and the use of GPUs we be-
lieve that training can be sped up significantly.

Data. The RNN is trained with approximately 100K 20-
frame long sequences. The data is divided into mini-batches
of 10 samples per batch and normalised to the range
[−0.5, 0.5], w.r.t. the image dimensions. We experimented
with the more popular zero-mean and unit-variance data nor-
malisation but found that the fixed one based on the image
size yields superior performance.

Experiments

To demonstrate the functionality of our approach, we first
perform experiments on simulated data. Fig. 4 shows an ex-
ample of the tracking results on synthetic data. Here, five
targets with random birth and death times are generated in
a rather cluttered environment. The initiation / termination
indicators are illustrated in the bottom row.

We further test our approach on real-world data, using the
MOTChallenge 2015 benchmark (Leal-Taixé et al. 2015).
This pedestrian tracking dataset is a collection of 22 video
sequences (11/11 for training and testing, respectively), with
a relatively high variation in target motion, camera motion,
viewing angle and person density. The evaluation is per-
formed on a server using unpublished ground truth. Next
to precision and recall, we show the number of mostly
tracked (>80% recovered) and mostly lost (<20% recov-
ered) trajectories (Li, Huang, and Nevatia 2009), the num-
ber of false positive (FP), false negative (FN) targets, iden-
tity swaps (IDs) and track fragmentations (FM). MOTA and
MOTP are the widely used CLEAR metrics (Bernardin and
Stiefelhagen 2008) and summarise the tracking accuracy and
precision, respectively. Arrows next to each metric indicate
weather higher (↑) or lower (↓) values are better.
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Method MOTA↑ MOTP↑ MT%↑ ML%↓ FP↓ FN↓ IDs↓ FM↓ FPS↑
MDP (Xiang et al. 2015) 30.3% 71.3% 13.0 38.4 9,717 32,422 680 1,500 1.1
SCEA (Hong Yoon et al. 2016) 29.1% 71.7% 8.9 47.3 6,060 36,912 604 1,182 6.8
JPDAm* (Rezatofighi et al. 2015) 23.8% 68.2% 5.0 58.1 6,373 40,084 365 869 32.6
TC ODAL (Bae and Yoon 2014) 15.1% 70.5% 3.2 55.8 12,970 38,538 637 1,716 1.7
RNN LSTM (ours) 19.0% 71.0% 5.5 45.6 11,578 36,706 1,490 2,081 165.2

Table 2: Tracking results on the MOTChallenge test dataset. *Denotes an offline (or delayed) method.

Figure 6: Our RNN tracking results on the MOTChallenge sequence ADL-Rundle-3. Frames 104, 149, 203, and 235 are shown.
The colour of each bounding box indicates the person identity.

Baseline comparison. We first compare the proposed ap-
proach to three baselines. The results on the training set
are reported in Tab. 1. The first baseline (Kalman-HA) em-
ploys a combination of a Kalman filter with bipartite match-
ing solved via the Hungarian algorithm. Tracks are initi-
ated at each unassigned measurement and terminated as
soon as a measurement is missed. This baseline is the only
one that fully fulfils the online state estimation without any
heuristics, time delay or post-processing. The second base-
line (Kalman-HA2) uses the same tracking and data asso-
ciation approach, but employs a set of heuristics to remove
false tracks in an additional post-processing step. Finally,
JPDAm is the full joint probabilistic data association ap-
proach, recently proposed in (Rezatofighi et al. 2015), in-
cluding post-processing. We show the results of two variants
of our method. One with learned motion model and Hun-
garian data association, and one in which both components
were learned from data using RNNs and LSTMs. Both net-
works were trained separately. Our learned model performs
favourably compared to the purely online solution (Kalman-
HA) and is even able to keep up with similar approaches but
without any heuristics or delayed output. We believe that the
results can be improved further by learning a more sophisti-
cated data association technique, such as JPDA, as proposed
by Milan et al. (2017), or by introducing a slight time delay
to increase robustness.

Benchmark results. Next, we show our results on the
benchmark test set in Tab. 2 next to three online methods.
The current leaderboard lists over 70 different trackers, with
the top ones reaching over 50% MOTA. Even though the
evaluation is performed by the benchmark organisers, there
are still considerable differences between various submis-
sions, that are worth pointing out. First, all top-ranked track-
ers use their own set of detections. While a better detector
typically improves the tracking result, the direct comparison
of the tracking method becomes rather meaningless. There-
fore, we prefer to use the provided detections to guarantee a
fair setting. Second, most methods perform so-called offline

tracking, i.e. the solution is inferred either using the entire
video sequence, or by peeking a few frames into the future,
thus returning the tracking solution with a certain time delay.
This is in contrast to our method, which aims to strictly com-
pute and fix the solution with each incoming frame, before
moving to the next one. Finally, it is important to note that
many current methods use target appearance or other image
features like optic flow (Choi 2015) to improve the data as-
sociation. Our method does not utilise any visual features
and solely relies on geometric locations provided by the de-
tector. We acknowledge the usefulness of such features for
pedestrian tracking, but these are often not available in other
application, such as e.g. cell or animal tracking. We there-
fore refrain from including them at this point.

Overall, our approach does not quite reach the top ac-
curacy in pedestrian online tracking (Xiang, Alahi, and
Savarese 2015), but is two orders of magnitude faster. Fig. 6
shows some example frames from the test set.

Discussion and Future Work

We presented an approach to address the challenging prob-
lem of data association and trajectory estimation within a
neural network setting. To the best of our knowledge, this
is the first approach that employs recurrent neural networks
to address online multi-target tracking. We showed that an
RNN-based approach can be utilised to learn complex mo-
tion models in realistic environments. The second, some-
what surprising finding is that an LSTM network is able to
learn one-to-one assignment, which is a non-trivial task for
such an architecture. We firmly believe that, by incorporat-
ing appearance and by learning a more robust association
strategy, the results can be improved significantly.
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