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Abstract

In this paper, we consider the scene parsing problem and pro-
pose a novel Multi-Path Feedback recurrent neural network
(MPF-RNN) for parsing scene images. MPF-RNN can en-
hance the capability of RNNs in modeling long-range context
information at multiple levels and better distinguish pixels
that are easy to confuse. Different from feedforward CNNs
and RNNs with only single feedback, MPF-RNN propagates
the contextual features learned at top layer through multiple
weighted recurrent connections to learn bottom features. For
better training MPF-RNN, we propose a new strategy that con-
siders accumulative loss at multiple recurrent steps to improve
performance of the MPF-RNN on parsing small objects. With
these two novel components, MPF-RNN has achieved signifi-
cant improvement over strong baselines (VGG16 and Res101)
on five challenging scene parsing benchmarks, including tradi-
tional SiftFlow, Barcelona, CamVid, Stanford Background as
well as the recently released large-scale ADE20K.

Introduction

Scene parsing has drawn increasing research interestdue to its
wide applications in many attractive areas like autonomous
vehicles, robot navigation and virtual reality. However, it
remains a challenging problem since it requires solving seg-
mentation, classification and detection simultaneously.

Recently, convolutional neural networks (CNNs) have been
widely used for learning image representations and applied
for scene parsing. However, CNNs can only capture high-
level context information learned at top layers that have large
receptive fields (RFs). The bottom layers are not exposed
to valuable context information when they learn features. In
addition, several recent works have demonstrated that even
the top layers in a very deep model e.g. VGG16 (Simonyan
and Zisserman 2014) have limited RFs and receive limited
context information (Liu, Rabinovich, and Berg 2015) in
fact. Therefore, CNNs usually encounter difficulties in distin-
guishing pixels that are easy to confuse locally and high-level
context information is necessary. For example, in Figure 1,
without the information of global context, the “field” pixels
and “building” pixels are categorized incorrectly.

To address this challenge, we propose a novel multi-path
feedback recurrent neural network (MPF-RNN). The over-
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all architecture of our proposed MPF-RNN is illustrated
in Figure 2. It has following two appealing characteris-
tics. Firstly, MPF-RNN establishes recurrent connections
to propagate downwards the outputs of the top layer to
multiple bottom layers so as to fully exploit the context in
the training process of different layers. Benefited from the
enhanced context modeling capability, MPF-RNN gains a
strong discriminative capability. Note that compared with
previous RNN-based methods (Pinheiro and Collobert 2013;
Liang, Hu, and Zhang 2015) which use only one feedback
connection from the output layer to the input layer and
the layer-wise self-feedback connections, respectively, MPF-
RNN is superior by using a better architecture, i.e. explicitly
incorporating context information into the training process
of multiple hidden layers, which learns concepts with dif-
ferent abstractness. Secondly, MPF-RNN effectively fuses
the output features across different time steps for classifi-
cation or a more concrete parsing purpose. We empirically
demonstrate that such multi-step fusion greatly boosts the
final performance of MPF-RNN.

To verify the effectiveness of MPF-RNN, we have con-
ducted extensive experiments over five popular and challeng-
ing scene parsing datasets, including SiftFlow (Liu, Yuen,
and Torralba 2009), Barcelona (Tighe and Lazebnik 2010),
CamVid (Brostow et al. 2008), Stanford Background (Gould,
Fulton, and Koller 2009) and recently released large-scale
ADE20K (Zhou et al. 2016) and demonstrated that MPF-
RNN is capable of greatly enhancing the discriminative
power of per-pixel feature representations.

Related Work

Image Context Modeling One type of context model-
ing approaches for scene parsing is to use the probabil-
ity graphical models (PGM) (e.g. CRF) to improve pars-
ing results. In (Chen et al. 2015; Zhang and Chen 2012;
Roy and Todorovic 2014; Zheng et al. 2015; Schwing and
Urtasun 2015), CNN features are combined with a fully con-
nected CRF to get more accurate parsing results. Compared
to MPF-RNN, such methods usually suffer from intense cal-
culation in inference due to their used time consuming mean
field inference, which hinders their application in real-time
scenario. Farabet et al. (Farabet et al. 2013) encoded context
information through surrounding contextual windows from
multi-scale images. (Socher et al. 2011) proposed a recursive
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Input Image CNN MPF-RNN Ground Truth 

Figure 1: Illustration on importance of context information
for distinguishing pixels. Without context, the field pixels
in the first image are misclassified as desert. Similarly, the
street pixels in the second image are misclassified as building.
MPF-RNN can better model context information and thus
produces more smooth and semantically meaningful parsing
results. Best viewed in color.

neural network to learn a mapping from visual features to the
semantic space for pixel classification In (Sharma, Tuzel, and
Liu 2014), a parsing tree was used to propagate global context
information. In (Liu, Rabinovich, and Berg 2015), the global
context feature is obtained by pooling the last layer’s output
via global average pooling and then concatenated with local
feature maps to learn a per-pixel classifier. Our method is
different from them in both the context modeling scheme and
the network architecture and achieves better performance.

Recurrent Neural Networks RNN has been employed to
model long-range context in images. For instance, (Pinheiro
and Collobert 2013) built one recurrent connection from
the output to the input layer, and (Liang, Hu, and Zhang
2015) introduced layer-wise self-recurrent connections. Com-
pared with those methods, the proposed MPF-RNN models
the context by allowing multiple forms of recurrent connec-
tions. In addition, MPF-RNN combines the output features
at multiple time steps for pixel classification. (Stollenga et
al. 2015) utilized a parallel multi-dimensional long short-
term memory for fast volumetric segmentation. However,
its performance was relatively inferior. (Shuai et al. 2015;
Visin et al. 2015) were based on similar motivations that used
RNNs to refine the learned features from a CNN by modeling
the contextual dependencies along multiple spatial directions.
In comparison, MPF-RNN incorporates the context informa-
tion into the feature learning process of CNNs.

The MPF-RNN Model

Multi-Path Feedback

Throughout the paper, we use the following notations. For
conciseness, we only consider one training sample. We de-
note a training sample as (I,Y) where I is the raw image
and Y is the ground truth parsing map of the image with
Yi,j ∈ {1, . . . ,K} as the ground truth category at the lo-
cation (i, j) in which K is the number of categories. Since
MPF-RNN is built upon CNNs by constructing recurrent

(a) MPF-RNN in recurrent format

(b) Unfolded MPF-RNN

Figure 2: The framework of MPF-RNN. Top: an MPF-RNN
built upon a shallow CNN of four convolution layers (i.e.,
C1 to C4) and shown in recurrent format. Multiple feed-
back connections are constructed from the top layer (C4)
to hidden layers, the outputs of which are combined with
the back-propagated features via an element-wise sum op-
eration (denoted as ⊕). Convolution and deconvolution lay-
ers (i.e., Conv and Deconv) are used to model the feedback
connections from C4 to hidden layers whose outputs have
equal and larger spatial size than C4 respectively. Bottom:
the corresponding unfolded MPF-RNN for two time steps.
The parameters of convolution layers at different time steps
are shared. To be discriminative to small objects, MPF-RNN
combines output features across different time steps as the
input for the pixel classifier which uses a deconvolution layer
to produce the full-size labeling map. All notations in this
figure are defined in Eqn. (2) and Eqn. (3).

connections from the top layer to multiple hidden layers, we
therefore firstly consider a CNN composed of L layers. Each
layer outputs a feature map and we denote it as X�. Here X0

and XL represent the input and final output of CNN. W�

denotes the parameter of filters or weights to be learned in the
l-th layer. Using above notations, the outputs of an L-layered
CNN at each layer can be written as

X(�) = f (�)(W(�)X(�−1)), � = 1, . . . , L and X(0) Δ
= I, (1)

where W(�)X(�−1) performs linear transformations on
X(�−1) and f (�)(·) is a composite of multiple specific func-
tions including the activation function, pooling and softmax.
Here the bias term is absorbed into W(�).

MPF-RNN chooses M layers out of L layers and con-
structs recurrent connections from the top layer to each se-
lected layer. Let S = {rm,m = 1, . . . ,M} denote the set of
selected layers and let rm ∈ {1, . . . , L} index the layers. By
introducing the recurrent connections, each layer in S takes
both the output of its previous layer and the output of the top
layer at the last time step as inputs. With t denoting the index
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of time steps, Eqn. (1) can be rewritten as

X(�)(t) =

⎧⎪⎨
⎪⎩
f (�)(g(�)(W(�)X(�−1)(t))

+g(�)(U(�)(t)X(L)(t− 1))), � ∈ S,

f (�)(W(�)X(�−1)(t)), otherwise,
(2)

where X(�)(t) and U(�)(t) denote the output of the �-th layer
and the transformation matrix from the output of the L-th
layer to the hidden layer � ∈ S at time step t, respectively.
Note that W(�) is time-invariant, which means parameters in
weight layers are shared across different time steps to reduce
the model’s memory consumption. U(�)(t) is time-variant so
as to learn time step specific transformations for absorbing
the context information from top layers. The output of top
layers at different time steps conveys context information at
different scales thus should have different transformations.
The advantages of such a choice are verified in our experi-
ments.

Following (Liu, Rabinovich, and Berg 2015), function
g(�)(·) normalizes the input x as g(�)(x) = γ(�)x/||x||2
where γ(�) is a learnable scaler and ||x||2 denotes the L2

norm of x. As verified in (Liu, Rabinovich, and Berg 2015),
normalizing two feature maps output at different layers before
performing combination is beneficial for convergence during
training. One reason is that those two feature maps generally
have different magnitude scales and they may slow down the
convergence when their magnitudes are not balanced.

Now we proceed to explain the intuitions behind con-
structing multiple feedback connections. Since the RF of
each layer in a deep neural network increases along with
the depth, bottom and middle layers have relatively small
RF. This limits the amount of context information that
is perceptible when learning features in lower layers. Al-
though higher layers might have larger RF and encode
longer-range context, the context captured by higher layers
cannot explicitly influence the states of the units in subse-
quent layers without top-down connections. Moreover, ac-
cording to recent works (Liu, Rabinovich, and Berg 2015;
Zhou et al. 2014), the effective RF might be much smaller
than its theoretical value. For example, in a VGG16 model,
although the theoretical RF size for the top layer fc7 is equal
to 224×224, the effective RF size for the top layer fc7 is only
about 1/4 of the theoretical RF. Due to the inadequate context
information, layers in a deep model might not be able to learn
context-aware features with strong discriminative power to
distinguish local confusing pixels. Figure 1 shows examples
of local confusion labeling by a CNN. To make layers in
CNN incorporate context information, we therefore propose
to propagate the output of the top layer to multiple hidden
layers. Modulated with context, the deep model is context-
aware when hierarchically learning concepts with different
abstract levels. As a result, the model captures context depen-
dencies to distinguish confusing local pixels. Actually, as the
time step increases, the states of every unit in recurrent lay-
ers would have increasingly larger RF sizes and incorporate
richer context.

We would also like to explain the reasons why we only
build recurrent connections from the last layer: First, the

Figure 3: The features learned with a small number of time
steps have stronger capability of depicting small objects com-
pared to the features learned with a large number of time
steps. Left: Input image. Middle: Output of fc7 at t = 1.
Right: Output of fc7 at t = 3. The plant in the bottom-left
coner of the left image is captured in the middle image but
ignored in the right image.

last layer has the largest receptive field among all the lay-
ers whose output feature contains the richest contexts. Thus
putting other layers in recurrent connections will introduce
redundant context information and may hurt performance.
Secondly, including more layers significantly increases com-
putation cost. Only applying on the last layer gives a good
trade-off between performance and efficiency.

Multi-Step Fusion Loss

As shown in Figure 2, MPF-RNN is trained through a back
propagation through time (BPTT) method which is equivalent
to unfolding the recurrent network to a deep feedforward
network according to the time steps by sharing parameters of
weight layers across different time steps. The conventional
objective function is minimizing the weighted sum of cross-
entropy losses between the output probability of the unfolded
network and the binary per-pixel ground truth label.

There are two disadvantages with this objective function.
First, features for small objects in an image might be incon-
spicuous in the higher-level feature map due to a stack of
convolution and pooling operations, which hurts the parsing
performance since scene images have many small objects.
Secondly, since the depth of an unfolded feedforward model
with many time steps is large, training bottom layers in early
time steps may suffer from a vanishing gradient problem.
To handle the above two disadvantages, we propose a new
objective function with respect to the output feature maps
from multiple time steps. Formally, the objective function we
propose is given as

L = −
∑

(i,j)∈I
ωyi,jhyi,j (w,O),O =

T∑

t=1

λtX
(L)(t). (3)

Here T denotes the number of time steps, O denotes the
combined feature of the top layer’s output at each time step,
and hyi,j

(w,O) denotes the logarithmic prediction proba-
bility produced by a classifier which maps from input O
to per-pixel category label yi,j . The specific formulation of
hyi,j

(w,O) depends on the chosen classifier for predicting
per-pixel label, such as MLP, SVM and logistic regression
classifier, etc.
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In our method, the classifier contains a deconvolution layer
which resizes the discriminative representation O to be the
same size as the input image for producing dense predictions,
followed by a softmax loss layer to produce per-pixel cate-
gorical prediction probabilities. w denotes the parameters in
the deconvolution layer. Note that yi,j ∈ {1, . . . , L} denotes
the category of the pixel at location (i, j). λt balances the
importance of feature maps at time step t and ω is the class
weight vector. We further discuss them in the experiments.

The benefits of using Eqn. (3) are two-fold. On one hand, it
improves MPF-RNN’s discriminability for small objects. Be-
cause the output features at later time steps have increasingly
larger receptive field (RF) which receives wider-range con-
text information, they may fail to distinguish small objects.
In contrast, output features at earlier time steps have smaller
RF and are more discriminative in capturing small objects.
Therefore the combination of features in the last time step
with those of ealier time steps helps the model identify small
objects. On the other hand, for deep models with hundreds or
thousands layers and large time steps, it may avoid the gra-
dient vanishing problem in bottom layers at early time steps
by giving shorter paths from them to the loss layer. Note that
the multi-step fusion used in our method is different from
the feature fusion method used in FCN (Long, Shelhamer,
and Darrell 2015). While FCN combines feature maps from
hidden layers in a CNN, we combine the outputs at different
time steps in an RNN model, which retains stronger context
modeling capabilities.

Discussions

To better understand MPF-RNN, we compare it with several
existing RNN models. Conventional RNN is trained with a
sequence of inputs {x(t)}t=1:T by computing the following
sequences: h(t) = s(Ux(t)+Wh(t−1)) and y(t) = z(V h(t)),
where h(t)and y(t) are the hidden layer and output layer at
time step t, respectively, while Uand W are weights matrices
between the input and hidden layers, and among the hidden
units themselves, respectively. V is the output matrix between
hidden and output layers. s(·) and z(·) are activation func-
tions. Compared with the conventional RNNs, MPF-RNN
has multiple recurrent connections from the output layer to
hidden layers (as indicated by Eqn. (2)) and moreover, MPF-
RNN combines the outputs of multiple time steps as the final
output (see Eqn. (3)).

Compared with those two recently proposed RNN-based
models (Pinheiro and Collobert 2013; Liang, Hu, and Zhang
2015), which have one recurrent connection from the output
layer to the input layer and layer-wise self-recurrent con-
nections, respectively, our model can be deemed as a gen-
eralization by allowing more general recurrent connections.
Specifically, when 1 ∈ S (recall S is the index set of selected
layers with which the output layer has feedback connections),
there will be a recurrent connection from the output layer to
the input layer in our model, as in (Pinheiro and Collobert
2013); when L ∈ S, there will be self-recurrent connections,
as in (Liang, Hu, and Zhang 2015). By utilizing context infor-
mation in different layers, our model has a stronger capability
to learn discriminative features for each pixel. We also high-

light the main difference of network architecture between
MPF-RNN and RCN (Honari et al. 2015). RCN is still es-
sentially a feed-forward network which utilizes features in
higher layers to aggregate features in bottom layer for facial
keypoint localization problem, while MPF-RNN is a novel
RNN architecture for better modeling the long-range context
information in scene parsing problem.

The way to build multiple recurrent connections from the
top layer to subsequent layers is a reminiscent of fully re-
current nets (FRN) (Williams and Zipser 1989) which is an
MLP with each non-input unit receiving connections from
all the other units. Different from FRN, we employ convolu-
tion/deconvolution layers to model the recurrent connections
in MPF-RNN so as to preserve the spatial dependencies of
2D images. Besides, we do not build recurrent connections
from the output layer to every subsequent layer, since the
neighboring layers contain redundant information and the
“fully recurrent” way is prone to over-fitting in scene parsing
tasks. In addition, we perform multi-step fusion to improve
the final performance, while FRN only uses the output of the
final layer. To the best of our knowledge, we are among the
first to apply multiple convolutional recurrent connections
for solving scene parsing problems.

Experiments

Experiment Settings and Implementation Details

Evaluation Metrics Adopted by most previous works as
evaluation metrics, the per-pixel accuracy (PA) and the aver-
age per-class accuracy (CA) are used. PA is defined as the
percentage of all correctly classified pixels while CA is the
average of all category-wise accuracies.

Baseline Models Following (Chen et al. 2015), we use a
variant of the ImageNet pre-trained VGG16 network as the
baseline model and fine-tune it on four scene parsing datasets,
including SiftFlow, Barcelona, CamVid and Stanford Back-
ground. Here, fully connected (FC) layers (fc6 and fc7) are
replaced by convolution layers. To accelerate the dense label-
ing prediction, the kernel size of fc6 is reduced to 3× 3 and
the number of channels at FC layers is reduced to 1,024. This
model is referred to as “VGG16-baseline” in the following
experiments. Note that the VGG16-baseline model is equiva-
lent to the MPF-RNN model with time step equal to 1. For
simplicity, in the following text, we denote conv5 as conv5 1,
conv4 as conv4 1 and conv3 as conv3 1.

Multi-Path Feedback A practical problem with using
MPF-RNN is how to choose the layer set S, to which the re-
current connections from the top layer are constructed. There
are two thumb rules. First, the layers at very bottom should
not be chosen since they generally learn basic and simple
patterns like edges, circles and dots, in which global context
is not helpful. Secondly, it should be avoided to choose too
many neighboring layers so that abundant information may
be reduced in the features learned from neighboring layers.
Following the above two rules, we conduct experiments with
various S on the validation set of SiftFlow and choose the one
with best validation performance. The comparative results
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are shown in Table 1, from which we can see that choosing
S = {conv4, conv5, fc6, fc7} gives the best performance.

Multi-Step Fusion There is a trade-off between the com-
putation efficiency and model complexity when choosing the
number of time steps for unfolding MPF-RNN. A deeper
network can learn more complex features and give better
performance. On the other hand, a large model is time con-
suming to train and test, which turns out to be problematic
when applied to real-time scenarios, e.g. automatic driving.
Table 2 compares the performance of MPF-RNN with dif-
ferent time steps on SiftFlow, from which we observe that
among other time steps, T = 3 achieves the best performance
with fast speed. Therefore, we choose T = 3 as the default
time step for all datasets. Besides, we set λ1 = λ2 = 0.3
and λ3 = 1 throughout our experiments. As an alternative,
we can also see λt as learnable parameters and train them
jointly with the whole model end-to-end. However, we do
not explore this method in the paper.

Hyperparameters The hyperparameters introduced by
MPF-RNN, including S, T and λ are fine-tuned on the vali-
dation set of SiftFlow as introduced above and then fixed for
other datasets where MPF-RNN uses VGG16 network. Our
experiments verified that such values of hyperparameters are
optimum in all datasets.

Loss Re-Weighting Since in scene parsing tasks, the
class distribution is extremely unbalanced, it is common
to re-weight different classes during training to attend rare
classes (Farabet et al. 2013; Shuai et al. 2015). In our
model, we adopt the reweighting strategy by (Shuai et al.
2015) because of its simplicity and effectiveness. Briefly, the
weight for class yi,j is defined as ωyi,j = 2�log 10(η/fyi,j

)�
where fyi,j is the frequency of class yi,j and η is a dataset-
dependent scalar, which is defined according to 85%/15%
frequent/rare classes rule.

Fine-Tuning Strategy Our model is fine-tuned over target
datasets using the stochastic gradient descent algorithm with
momentum. For models using VGG16 network, settings of
hyper-parameters including learning rate, weight decay and
momentum follow (Liu, Rabinovich, and Berg 2015). The
reported results are based on the model trained in 40 epochs.
Data augmentation is used to reduce the risk of over-fitting
and improve the generalization performance of deep neu-
ral network models. To make a fair comparison with other
state-of-the-art methods, we only adopt the common random
horizontal flipping and cropping during training.

Computational Efficiency On a NVIDIA Titan X GPU,
the training of MPF-RNN (the model in Table 3) on SiftFlow
dataset finishes in about 6 hours and the testing time for an
image with the resolution of 256×256 is 0.06s.

Results

We test MPF-RNN on five challenging scene parsing bench-
marks, including SiftFlow (Liu, Yuen, and Torralba 2009),
Barcelona (Tighe and Lazebnik 2010), CamVid (Brostow et
al. 2008), Stanford Background (Gould, Fulton, and Koller
2009) and ADE20K. We report the quantitative results here

Table 1: Comparative study of effects of different recurrent
connections on final performance of MPF-RNN over Sift-
Flow dataset. The time step of MPF-RNN is fixed as 2 in all
experiments in this table. The best results are shown in bold.

Recurrent connections PA(%) CA(%)
VGG16-baseline 84.7 51.5
{fc7} 85.4 55.1
{fc6, fc7} 85.9 55.5
{conv5, fc6, fc7} 86.2 55.8
{conv4, conv5, fc6, fc7} 86.4 56.3
{conv3, conv4, conv5, fc6, fc7} 85.9 55.7

Table 2: Comparative study of effects of different re-
current time steps and multi-step fusion (MSF) on final
performance of MPF-RNN over SiftFlow dataset. S =
{conv4, conv5, fc6, fc7} herein.

w/ MSF w/o MSF

Time steps PA(%) CA(%) PA(%) CA(%)
VGG16-baseline 84.7 51.5 N.A. N.A.
T = 2 86.4 56.3 86.0 55.5
T = 3 86.9 56.5 85.2 55.1
T = 4 86.8 55.9 84.7 54.8

and more qualitative results of MPF-RNN are given in the
Supplementary Material which is available online.

SiftFlow The SiftFlow dataset (Liu, Yuen, and Torralba
2009) consists of 2,400/200 color images with 33 semantic
labels for training and testing.

Model Analysis We analyze the MPF-RNN by investigat-
ing the effects of its two important components separately, i.e.
multi-path feedback and multi-step fusion. Table 1 lists the
performance of MPF-RNN, as well as the baseline models
when different recurrent connections are used. The number
of time steps is set as 2 for all MPF-RNN models and combi-
nation weights are λ1 = 0.3 and λ2 = 1. Compared with the
baseline model which has achieved 84.7%/51.5% PA/CA on
this dataset, adding recurrent connections to multiple subse-
quent layers significantly improves the performance in terms
of PA and CA. Only adding one recurrent connection to
the layer fc7 can increase the performance to 85.4%/55.1%,
which proves the benefit of global context modulating to
the performance. Continuing adding recurrent connections
to conv5 and conv4 consistently improves the performance.
The reason for the continuous improvement is the sufficient
utilization of the context information in learning context-
aware features in different hidden layers. Based on above
experimental results, it is verified that multi-path feedback
is beneficial for boosting the performance of scene parsing
systems. We also note that the performance tends to slow
down its increasing (although still much higher than the base-
line model) when adding too many recurrent connections
(S = {conv4, conv5, fc6, fc7}). Such a phenomenon implies
the overfitting due to the increased number of parameters.

Table 2 shows the effects of different time steps and multi-
step fusion on the performance. We conduct experiments
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Table 3: Comparison with the state-of-the-art methods on
SiftFlow.

Methods PA(%) CA(%)
Tighe et al. (2010) 79.2 39.2
Sharma et al. (2014) 79.6 33.6
Singh et al. (2013) 79.2 33.8
Yang et al. (2014) 79.8 48.7
Liang et al. (2015) 84.3 41.0
Long et al. (2015) 85.2 51.7
Liu et al. (2015) 86.8 52.0
Shuai et al. (2015) 85.3 55.7
MPF-RNN(ours) 86.9 56.5

when T = 1, 2, 3, 4 by setting S = {conv4, conv5, fc6, fc7}.
Concluded from Table 2, the PA/CA consistently improves
from T = 1(VGG16-baseline) to T = 3. Such improvement
is attributed to the more complex discriminative features
learned using larger time steps, which is proportional to the
depth of the feedforward deep model after MPF-RNN is
unfolded. The improvement is also consistent with observa-
tions in (Simonyan and Zisserman 2014; Szegedy et al. 2014;
He et al. 2015) that deeper and larger models have stronger
feature representation capabilities compared with shallow
ones. When T = 4, the performance is worse than that when
T = 3 due to the overfitting problem.

We also conduct experiments when only the top layer’s
feature in the last time step is used as the input to the classi-
fier. Specifically, we set λt = 0, t = 2, · · · , T and λT = 1
and keep the other conditions unchanged. It is observed from
Table 2 that under any time steps, the PA/CA are worse than
those when multi-step fusion is applied. There are two rea-
sons for the inferior performance. Updating bottom layers
parameters is insufficient since it takes many hidden layers
to propagate the error message from the output layer to bot-
tom layers. In addition, as illustrated in Figure 3, the output
layer at the last time step might ignore small objects, which
could otherwise be complemented by using multi-step fu-
sion. Above experiment demonstrates the effectiveness of
multi-step fusion. Note that although the conclusions made
in model analysis are based on the results on SiftFlow, we
have verified through experiments that they also hold on other
three datasets where MPF-RNN uses VGG16 network.

Comparison with State-of-the-Art The comparison re-
sults of MPF-RNN with other state-of-the-art methods are
shown in Table 3, from which we can see that MPF-RNN
achieves the best performance against all the compared meth-
ods. Specifically, our method significantly outperforms Pin-
heiro et al. (Pinheiro and Collobert 2013) and Liang et
al. (Liang, Hu, and Zhang 2015) by increasing the PA/CA by
9.2%/26.7% and 2.6%/15.5%, respectively. Note that (Pin-
heiro and Collobert 2013) and (Liang, Hu, and Zhang 2015)
are all RNN-based methods. The remarkable improvement of
MPF-RNN over them is attributed to MPF-RNN’s powerful
context modeling strategy by constructing multiple recurrent
connections in various forms. Compared with (Liu, Rabi-
novich, and Berg 2015), MPF-RNN achieves much better CA
due to its superior capability of distinguishing small objects.

Table 4: Comparison results of MPF-RNN on ADE20K val
set. The results of FCN, SegNet and DilatedNet are referred
from the reported number in (Zhou et al. 2016)

Methods PA(%) mIOU(%)
FCN (2015) 71.32 29.39
SegNet (2015) 71.0 21.64
DilatedNet (2015) 73.55 32.31
Res101-Baseline 73.71 32.65
MPF-RNN (ours) 76.49 34.63

ADE20K To further verify scalability of the MPF-RNN to
large-scale dataset and deeper networks, we conduct experi-
ments using ResNet101 (He et al. 2015) on recently released
ADE20K dataset (Zhou et al. 2016) which also serves as the
dataset of scene parsing challenge in ILSVRC161. Containing
20K/2K/3K fully annotated scene-centric train/val/test im-
ages with 150 classes, ADE20K has more diverse scenes and
richer annotations compared to other scene parsing dataset,
which make it a challenging benchmark. Following (Chen et
al. 2016), all convolution layers in original ResNet101 (He
et al. 2015) after conv3 4 are replaced with dilated convo-
lution layers to compute dense scores at stride of 8 pixels,
followed by a deconvolution layer to reach original image res-
olution. This model is used as a strong baseline and referred
to as ResNet101-Baseline. Since the test set is not available
till submission of the paper, we use the val set to test the
performance of MPF-RNN. In order to fine-tune hyperpa-
rameters, we randomly extract 2K images from train set as
our validation data and retrain our model using whole train
set after fixing hyperparameters. Through validation, we set
S = {conv4 1, conv4 9, conv4 17, conv5 1, conv5 3} and
the value of T and λ are the same as those in the last section.
MPF-RNN and ResNet101-Baseline are trained for 20 epochs
by fine-tuning ResNet1012 on ADE20K with the same solver
configurations of (Chen et al. 2016). Data augmentation only
include random horizontal flipping and cropping. We do not
use loss re-weighting in this dataset.

In Table 4, we compare the performance of MPF-RNN
and baseline models. Following the evaluation metric in
ILSVRC16 scene parsing challenge, we compare the PA
and mean IOU (the mean value of intersection-over-union be-
tween the predicted and ground-truth pixels across all classes)
between different models. It is observed from Table 4 that
Res101-Baseline has achieved better performance compared
to other models based on VGG16 due to its superior deep
architecture. By using MPF-RNN, MPF-RNN significantly
surpasses this strong baseline model by 2.78%/1.98 in terms
of PA/mIOU, again demonstrating the capability of MPF-
RNN to improve the scene parsing performance of deep
networks.

Results on Other Datasets We further evaluate MPF-
RNN on Barcelona, Stanford Background and Camvid
datasets. MPF-RNN achieves the best performance on these
three datasets: (i) Stanford Background: 86.6% (PA) and 79%

1https://image-net.org/challenges/LSVRC/2016/#sceneseg
2https://github.com/KaimingHe/deep-residual-networks
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(CA), outperforming state-of-the-art with 3% (PA) and 5%
(CA) absolutely; (ii) Barcelona: 78.5% (PA) and 29.3% (CA)
higher than state-of-the-art with around 4% (PA) and 5%
(CA) absolutely; (iii) Camvid: 92.8% (PA) and 82.3% (CA),
outperforming state-of-the-art with 1% (PA) and 4% (CA)
absolutely. Due to space limits, more numbers and details of
experimental results on these three datasets are deferred to
Supplementary Material which is available online.

Conclusion

We proposed a novel Multi-Path Feedback recurrent neu-
ral network (MPF-RNN) for better solving scene parsing
problems. In MPF-RNN, multiple recurrent connections are
constructed from the output layer to hidden layers. To learn
features discriminative for small objects, output features
at each time step are combined for per-pixel prediction in
MPF-RNN. Experimental results over five challenging scene-
parsing datasets, including SiftFlow, ADE20K, Barcelona,
Stanford Background, and CamVid clearly demonstrated the
advantages of MPF-RNN for scene parsing.
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