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Abstract

Hashing has been proven a promising technique for fast near-
est neighbor search over massive databases. In many practical
tasks it usually builds multiple hash tables for a desired level
of recall performance. However, existing multi-table hash-
ing methods suffer from the heavy table redundancy, without
strong table complementarity and effective hash code learn-
ing. To address the problem, this paper proposes a multi-
table learning method which pursues a specified number of
complementary and informative hash tables from a perspec-
tive of ensemble learning. By regarding each hash table as
a neighbor prediction model, the multi-table search proce-
dure boils down to a linear assembly of predictions stem-
ming from multiple tables. Therefore, a sequential updating
and learning framework is naturally established in a boosting
mechanism, theoretically guaranteeing the table complemen-
tarity and algorithmic convergence. Furthermore, each boost-
ing round pursues the discriminative hash functions for each
table by a discrete optimization in the binary code space. Ex-
tensive experiments carried out on two popular tasks includ-
ing Euclidean and semantic nearest neighbor search demon-
strate that the proposed boosted complementary hash-tables
method enjoys the strong table complementarity and signifi-
cantly outperforms the state-of-the-arts.

Introduction

The past decades have witnessed the explosive growth of big
data, especially visual data like images, videos, etc., which
brings great challenges to scalable nearest neighbor search.
Recently, hashing techniques have become one of the most
promising solutions, owing to its attractive performance in
a variety of applications including large-scale visual search
(He et al. 2012; Song, Liu, and Meyer 2016), query-by-
humming (Liu et al. 2016a), classification (Mu et al. 2014;
Liu et al. 2016b) and recommendation (Liu et al. 2014b).
As the pioneering work, Locality-Sensitive Hashing (LSH)
first studied how to index similar data samples via repre-
senting them as adjacent hash codes (Datar et al. 2004),
promising fast nearest neighbor search at the cost of sub-
linear time. The conventional LSH generates hash func-
tions randomly and independently, and thus requires rela-
tively long hash codes to meet the specific level of search
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quality. Instead of the random and data-independent way,
a number of following hashing studies have been proposed
to learn informative hash functions that can achieve satis-
fying performance using compact hash codes. These meth-
ods place great efforts in how to capture the neighbor-
ing relationships among the data, by exploiting different
techniques including supervised learning (Xia et al. 2014;
Lin, Shen, and van den Hengel 2015; Zhu et al. 2016;
Kang, Li, and Zhou 2016), nonlinear mapping (Weiss, Tor-
ralba, and Fergus 2008; Liu et al. 2011; Liong et al. 2015;
Li et al. 2016), discrete optimization (Gong et al. 2012;
Liu et al. 2014a; Shen et al. 2015; Song, Liu, and Meyer
2016), structural information embedding (Yu et al. 2014;
Wang, Si, and Shen 2015; Mu et al. 2016), multi-bit quanti-
zation (Kong and Li 2012; Mu et al. 2012; Deng et al. 2015;
Li et al. 2016) etc.

Even encoding massive data into compact binary codes
achieves compressed storage and efficient computations, it
may be still beyond the requirement for balanced search per-
formance in many practical tasks. To address this issues, in
the literature LSH-based multiple table indexing is usually
adopted to independently build a set of hash tables using
LSH functions, which can faithfully improve the recall per-
formance (Lv et al. 2007; Norouzi, Punjani, and Fleet 2012;
Xia et al. 2013; Cheng et al. 2014). However, without elimi-
nating the table redundancy it often requires a huge number
of tables, at the cost of significantly sacrificing precision. To
maximally cover the nearest neighbors using as few as pos-
sible tables, complementary multi-table methods have been
studied to leverage the mutual benefits between tables. Xu
et al. proposed a sequential learning method to build com-
plementary hash tables, and obtained the promising perfor-
mance with much fewer tables. Liu, He, and Lang studied
a general multi-table construction strategy using bit selec-
tion over existing hashing algorithms. To further improve
the search performance, Liu et al. introduced an exemplar-
based feature fusion and reweighting strategy that can lead
to discriminative and complementary hash tables accounting
for input data with multiple views.

Although existing complementary multi-table methods
can reach promising balanced search performance using a
small number of tables, they still suffer from the table redun-
dancy caused by both the heuristic updating scheme with-
out a strong complementarity guarantee and the inefficient
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Figure 1: The nearest neighbor search results on a subset of
SIFT-1M dataset: there are totally 300 samples (blue dots)
projected in 2D space and 1-nearest neighbor for each sam-
ple (connected by green lines). The first and second row
respectively demonstrates the results of the popular LSH
method and our BCH method using three hash tables. The
red lines indicate the correctly identified nearest neighbors
(without repetition) using hash table lookup.

hash code learning procedure for each table. Motivated by
the fact that multi-table based nearest neighbor search can
be regarded as a combination of neighbor predictions stem-
ming from multiple tables, we leverage the idea of ensem-
ble learning and propose a boosted complementary hash ta-
bles (BCH) method which optimizes multiple tables and en-
joys fast convergence. To the best of our knowledge, this is
the first work that jointly formulates the multi-table learning
problem for nearest neighbor search and meanwhile theo-
retically guarantees the table complementarity and algorith-
mic convergence. Our proposed method serves as a general
framework directly applicable to many practical tasks like
(He et al. 2012; Cheng et al. 2014) with a promising perfor-
mance. Figure 1 illustrates the search results of the classical
LSH tables and our BCH, where BCH retrieves much more
nearest neighbors than LSH.

Boosted Complementary Hash Tables

Next, we introduce the notations and formulate our comple-
mentary hash-tables learning as a sequential neighbor pre-
diction problem from the ensemble learning view.

Problem Formulation

Given a set of N training examples X = [x1, . . . ,xN ],
xi ∈ R

D of D dimension, our goal is to learn L comple-
mentary hash tables {Hl}Ll=1, each of which consists of B
hash functions, i.e.,Hl = {h(l)

j (·)}Bj=1, where hash function

h
(l)
j (·) : RD → {−1, 1} is a binary mapping. In each table,

using its B hash functions any point xi can be encoded into
a binary code y

(l)
i = [h

(l)
1 (xi), . . . , h

(l)
B (xi)]

T ∈ {−1, 1}B ,
forming a code matrix Y(l) = [y

(l)
1 , . . . ,y

(l)
N ] for all the N

training data. For each table, we simply adopt the common

linear projection based hash functions

h
(l)
j (x) = sgn(w(l)T

j xi), (1)

where W(l) = [w
(l)
1 , . . . ,w

(l)
B ] are the projection vectors.

In practice, there are two types of neighbor sets for each
sample xi, i.e., homogenous neighbors N o(xi) and hetero-
geneous neighbors N e(xi). The former set refers to the
ko-nearest neighbors of xi according to certain metric, and
while the later contains the ke neighbors far away from xi.
The two types of neighbor sets can be represented in one
similarity matrix S = (sij): sij = 1, if xj ∈ N o(xi);
sij = 0, if xj ∈ N e(xi); otherwise, sij = 0.

Intuitively, we expect that each sample shares similar hash
codes with its homogeneous neighbors (i.e., within a small
Hamming distance to them), and different codes from its
heterogenous neighbors. This means that a good hash table
should index homogeneous neighbors in the adjacent buck-
ets. When performing nearest neighbor search over multi-
ple tables, the data samples belonging to the buckets with a
quite small Hamming distance r0 to the query are merged
from each table and treated as the search results. This ac-
tually can be regarded as a simple combination of neighbor
predictions generated by each hash table.

Formally, the neighbor prediction of the l-th table is de-
termined according to the Hamming distance:

f (l)(xi,xj) = sgn(r0 − dH(y
(l)
i ,y

(l)
j )), (2)

where dH(y
(l)
i ,y

(l)
j ) = 1

4‖y(l)
i −y(l)

j ‖2 is the Hamming dis-
tance, and r0 is the specified Hamming distance threshold.
f (l)(xi,xj) = 1 indicates xi and xj are predicted as the
homogenous neighbors, and otherwise heterogeneous ones.

Then totally using L hash tables, the neighbor prediction
can be formulated as a joint one based on the linear combi-
nation of L result sets from all tables:

F (L)(xi,xj) =

L∑
l=1

β(l)f (l)(xi,xj), (3)

where β(l) is the weight for the l-th table.
With the neighbor prediction, we can quantitatively mea-

sure its quality according to the pre-defined similarity ma-
trix. We introduce the exponential loss function of L hash
tables over each neighbor pair xi and xj :

c(xi,xj) =

{
e−sijF

(L)(xi,xj) , |sij | = 1
0 , otherwise

(4)

The total cost over the training data should be mini-
mized when pursuing the desired L complementary tables.
Namely, the multi-table learning can be formulate as fol-
lows:

min
{W(l)},{β(l)}

J =
∑

ij

c(xi,xj) =
∑

sij �=0

e−sijF
(L)(xi,xj), (5)

with respect to hash function parameters {W(l)} and the
additive coefficients {β(l)} for L tables.
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Boosting-based Sequential Learning

The multi-table learning has been formulated as a joint
neighbor prediction problem. However, it is quite difficult to
jointly find the optimal {W(l)} and {β(l)} at the same time
by directly solving the problem (5). Following the spirit of
the well-known AdaBoost algorithm (Friedman, Hastie, and
Tibshirani 1998), we can sequentially learn the hash tables
Hl, l = 1 . . . L, which together generate a reasonable pre-
diction that minimizes the overall loss.

According to Equation (3), the function F (xi,xj) is ad-
ditive, and thus for l hash tables it can be decomposed:

F (l)(xi,xj) = F (l−1)(xi,xj) + β(l)f (l)(xi,xj). (6)
The loss function in Equation (5) can be therefore simplified:

e−sijF
(l)(xi,xj) = π

(l−1)
ij · e−sijβ

(l)f(l)(xi,xj), (7)

where the variable π(l) =
(
π
(l)
ij

)
∈ R

N×N , whose elements

π
(l)
ij = e−sijF

(l)(xi,xj) maintain a probabilistic distribution
over all neighbor pairs after normalization:

π
(l)
ij =

e−sijF
(l)(xi,xj)∑

si′j′ �=0 e
−si′j′F (l)(xi′ ,xj′ )

. (8)

By abandoning the high-order components in Taylor
expansion and using the fact that both sij and function
f (l)(xi,xj) are discrete over {−1, 1}, we can further ap-
proximate the second term in Equation (7) by:

e−sijβ
(l)f(l)(xi,xj) ≈ −sijβ(l)f (l)(xi,xj) + const. (9)

Subsequently, the loss function in the l-th round with (l−
1) tables learnt in previous rounds turns to

J = −
∑
sij �=0

π
(l−1)
ij · sij · f (l)(xi,xj), (10)

and Problem (5) can be reformulated equivalently as follows

max
W(l),β(l)

∑
z
(l)
ij �=0

z
(l)
ij · f (l)(xi,xj) (11)

s.t. Y(l) = sgn(W(l)TX)

where z
(l)
ij = π

(l−1)
ij · sij , which is composition of the simi-

larity S and the weight distribution π(l−1) in each round.
The above formulation indicates that we can learn L ta-

bles in a sequential manner, where for each table we can
learn B hash functions by solving a similar problem like
(11). Besides, since Z(l) = (z

(l)
ij ) takes account of both the

neighbor prediction on each pair and the overall prediction
error of previous tables, it will help pursue the l-th table
complementary to the previous (l− 1) tables, by amplifying
the weights on the misclassified neighbor pairs of previous
tables and discarding those on the correctly classified ones.

Let define the neighbor prediction error of the l-th table
ε(l) =

∑
sijf(l)(xi,xj)<0 π

(l−1)
ij . Then the optimal β(l) mini-

mizing loss in Equation (10) can be obtained

β(l) =
1

2
ln

1− ε(l)

ε(l)
. (12)

We can further guarantee that the learnt multiple tables to-
gether can monotonically decrease the prediction error:

Theorem 1 The neighbor prediction error using L hash ta-
bles over the training set X is bounded above by:

E =
1

‖S‖0
∑
sij �=0

I

[
sijF

(L)(xi,xj) ≤ 0
]
≤ e−2γ2L

where I[·] is an indicator function, ‖S‖0 denotes the number
of the non-zero elements in S, and γ = argminl=1,...,L γ(l)

with γ(l) = 1
2 − ε(l).

Discrete Hash Table Optimization

Now we have turn the multi-table construction into sequen-
tial learning in a boosting manner, where each round learns a
hash table that minimizes the loss function in Problem (11).

For the l-th tables, Problem (11) can be approximated by
relaxing the sign function to its real-valued surrogate:

max
W(l)

∑
z
(l)
ij �=0

z
(l)
ij · y(l)T

i y
(l)
j = Tr(Y(l)TZ(l)Y(l))

s.t. Y(l) = sgn(W(l)TX). (13)

where the optimal W(l) is expected to maximally preserve
the neighbor relations defined by Z(l), mainly focusing on
the misclassified neighbor pairs of the previous (l−1) tables.

Without loss of the generality, for simplicity we omit the
upper script l of all variables in the following discussions.
Therefore, if we introduce and penalize the quantization loss
‖WTX −Y‖F on the binary codes Y, we can rewrite the
problem in (13) with a positive parameter λ > 0:

maxW,Y Tr
(
YZYT

)− λ‖WTX−Y‖F
s.t. Y ∈ {−1, 1}B×N (14)

To further guarantee the independence and balance of the
learnt hash codes, we require the following two constraints:

WTXXTW = NIB and WTX1 = 0. (15)

The later one can be easily satisfied by centering the training
data X. Besides, Tr(WTXXTW) = Tr(YYT) = BN
holds. Therefore, the above problem can be simplified as

maxW,Y Tr
(
YZYT + λWTXYT

)
(16)

s.t. Y ∈ {−1, 1}B×N , WTXXTW = NIB .

Alternating Optimization

The above hashing problem is essentially a nonlinear mixed-
integer program involving a discrete variable Y and contin-
uous one W, which is generally difficult to solve or approx-
imate. To this end, we propose a similar efficient alternat-
ing optimization algorithm to pursue the near-optimal solu-
tion, which consists of the following two subproblems with
respect to Y (Y-subproblem) and W (W-subproblem) re-
spectively. The algorithm improves and extends the optimiz-
ing technique in (Liu et al. 2014a) to a more general problem
with more complex constraints in Problem (16).
Y-subproblem: With W fixed, the problem turns to

maxY Tr
(
YZYT + λWTXYT

)
s.t. Y ∈ {−1, 1}B×N (17)
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The above subproblem is NP-hard, due to the discrete
variable Y. However, we can find a near-optimal one us-
ing the powerful gradient method. Specifically, this can be
solved using the signed gradient ascend method proposed in
(Liu et al. 2014a), where in each iteration the hash codes can
be updated in the following way

Y := sgn
(C(2YZ+ λWTX,Y)

)
(18)

with the element-wise operator C(x, y) = xI[x �=0]yI[x=0].
According to signed gradient ascend method, using the it-

erative updating of hash codes, we can guarantee that the ob-
jective monotonically increases and the algorithm converges
to a local optimal solution. This is can be easily verified fol-
lowing (Liu et al. 2014a). Therefore, in practice only a very
few iterations are required to get the near-optimal hash codes
Y∗ using the above updating.
W-subproblem: Next with Y fixed, the problem turns to

maxW Tr
(
WTXYT

)
s.t. WTXXTW = NIB . (19)

As to this subproblem, the following theoretical result
tells us that we can get the optimum W∗ in analytical form
by singular value decomposition (SVD):

Theorem 2 Let M = (XXT)−
1
2 , z = MX1 and

J = IN − 1
‖z‖zz

T. Then with the SVD decomposition
SVD

(
JMXYT

)
= UΣV, the optimal solution to W-

subproblem will be

W∗ =
√
NM

[
U Ū

] [
V V̄

]T
, (20)

where Ū and V̄ are the complement of U and V.
By iteratively alternating the two subproblems we can get

the near-optimal hash code Y∗ and projection vectors W∗
for each table. Moreover, our theoretical results state that the
alternating optimization will monotonically increase the ob-
jective, which guarantees the fast optimization convergence.
See the experimental results in the supplementary material.

As to the initialization of W(l) in each round, the popu-
lar eigen-decomposition solution like (Xu et al. 2011) can
be adopted. Algorithm 1 lists the main steps of our boosted
complementary hash-tables method.

Experiments

In this section we will evaluate the proposed boosted com-
plementary hash-tables (BCH for short) method. In the lit-
erature most of research devoted great efforts to pursuing
informative hash codes for Hamming distance ranking or
single hash table lookup. There are very few related work
regarding multiple complementary hash tables from the in-
dexing aspect, except the three existing methods: bit selec-
tion (BS) (Liu, He, and Lang 2013), complementary hashing
(CH) (Xu et al. 2011), and multi-view complementary hash
tables (MVCH) (Liu et al. 2015). All these methods concen-
trate on the table complementarity to pursue balanced re-
trieval performance in a sequential way. However, only our
BCH jointly considers the complementarity among all tables
and theoretically guarantees the convergence.

Algorithm 1 Boosted Complementary Hash-Tables (BCH).
1: Input: the training data X, the code length B of each

table, the desired table number L.
2: Output: hash tablesHl = {h(l)

j }Bj=1, l = 1, . . . , L.
3: Initialize: the similarity matrix S, the probabilistic dis-

tribution π(0) = 1
‖S‖0
|S|.

4: for l = 1, . . . , L do
5: update Z(l) = π(l−1) ◦ S;
6: initialize W(l) using eigen-decomposition;
7: repeat
8: Y-subproblem: repeat updating hash codes Y(l)

according to (18), until converge;
9: W-subproblem: update projection vectors W(l)

according to (20);
10: until converge
11: update neighbor prediction F (l) according to (6) ;
12: update the distribution π(l) according to (8) ;
13: end for

We also compare BCH to the state-of-the-art well-known
unsupervised hashing algorithms: Local Sensitive Hashing
(LSH) (Datar et al. 2004) and Iterative Quantization (ITQ)
(Gong and Lazebnik 2011). In this case, when building L ta-
bles with B hash functions in each table, we adopt the com-
mon way that totally BL hash functions are generated first
using each hashing algorithm, and then divided equally to
L parts correspondingly forming L hash tables with B hash
functions. This is similar to Multi-Index Hashing (Norouzi,
Punjani, and Fleet 2012) that can speedup the search based
on Hamming distance ranking.

Evaluation Protocols

In our experiments we respectively build a different number
(i.e., L) of hash tables using different methods. As to the
parameter B, which has direct effects on the collision prob-
ability in nearest neighbor search, we fix it to the empirical
value log2 N for N database points (Norouzi, Punjani, and
Fleet 2012; Slaney, Lifshits, and He 2012).

As we mainly focus on multi-table indexing technique,
we adopt the common hashing search scheme: hash table
lookup to evaluate the performance. In each hash table, those
points falling within certain Hamming radius from the query
code are returned and merged as the retrieved results. For
efficiency problem, usually a small search radius (less than
4, and r0 = 4) is used to avoid the expensive computation
stemming from too many buckets with combinatorial explo-
sion in each table (Liu et al. 2011).

In all experiments, for MVCH method we employ 300 ex-
emplars generated by k-means clustering, and 5 nearest ones
for the feature transformation of each sample. As to BCH,
for each training sample we choose 50 homogenous neigh-
bors and 100 heterogenous neighbors based on Euclidean
distance. Moreover, the parameter λ is simply set to 1.0. All
experiments are conducted on a workstation with Intel Xeon
CPU E5-4607@2.60GHz and 48GB memory, and the results
are averaged over 10 runs.
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Figure 2: Precision-Recall performance of different multi-table methods on SIFT-1M and GIST-1M
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Figure 3: Precision-Recall performance of different multi-table methods in image retrieval task on CIFAR-10 and NUS-WIDE

Euclidean Nearest Neighbor Search

Multi-table indexing has been widely used in the popu-
lar tasks including Euclidean and semantic nearest neigh-
bor search. We first conduct experiments on the Euclidean
one. We employ two widely-used large data sets: SIFT-
1M and GIST-1M1, consisting of one million 128-D SIFT
and 960-D GIST features respectively. On both datasets, the
groundtruth for each query is defined as the top �5 nearest
neighbors with the smallest Euclidean distances. For each
dataset, we construct a training and a testing set respectively
with 10,000 and 3,000 random samples.

Figure 2(a) and (b) depict the precision-recall curves of
different methods using 8 and 16 hash tables on SIFT-1M.
Here, each table consists of hash codes with B = 20 bits.
The performance curves are obtained by varying the lookup
radius from 0 to 3. From the results, we can see that as we
enlarge the search range using a large radius, more sam-
ples falling in the nearest buckets will be returned and thus
the recall performance increases. However, the precision
drops due to the false positive and redundant samples from
multiple tables. The multi-table methods (BS, CH, MVCH
and BCH) can alleviate the effects by considering the ta-
ble complementarity, and thus outperform the basic hashing
algorithms LSH and ITQ. Moreover, in all cases our BCH
achieves the best performance with largest areas under the
curves. This indicates that BCH can boost the table comple-
mentarity to cover more nearest neighbors using fewer tables
than state-of-the-art multi-table methods.

Figure 4(a) further investigates the overall performance

1http://corpus-texmex.irisa.fr

with respect to the table number. We adopt the common
metric F1-measure within Hamming radius 2 for compre-
hensive evaluation, which takes both precision and recall
into consideration. It can be observed that most methods in-
crease their search performances when using more hash ta-
bles, except LSH and ITQ. This further confirms the fact that
the traditional hashing algorithms are not suitable for multi-
table indexing, and while multi-table methods can achieve
better performance. Compared to other multi-table meth-
ods, though BCH gives a low F1 performance when using
1 table, but it gains significant performance improvements
when using more tables, and gets the best performance us-
ing 4 or more tables. This fact indicates that BCH enjoys the
strongest table complementarity so that only a few tables are
required to get a specified performance level, e.g., BCH us-
ing 4 tables can get close F1-measure performance to CH
using 8 tables. Similar observation can be obtained in the
demo case in Figure 1.

Besides the results on SIFT-1M, we also compare differ-
ent multi-table methods on GIST-1M, which contains GIST
features of much higher dimension. With respect to different
table numbers, Figure 2 (c) and (d) show the precision-recall
curves, and Figure 4(b) depicts F1-measure bars. On GIST-
1M, we can obtain same conclusions that (1) the comple-
mentary multi-table methods owns greater superiority than
the conventional hashing algorithms. For instance, BS, CH
and BCH significantly boosts the F1-measure when using
multiple hash tables. (2) in most cases, BCH attains the best
performance in term of both precision-recall curves (espe-
cially when the lookup radius less than 2) and F1-measure
(up to e.g., 23.8% gains compared to the best competitor CH
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Table 1: Precision (%) and time cost (seconds) of different multi-table methods on four datasets.

METHOD
SIFT-1M GIST-1M CIFAR-10 NUS-WIDE

L = 4 L = 16 TRAIN TIME L = 4 L = 16 TRAIN TIME L = 4 L = 16 TRAIN TIME L = 4 L = 16 TRAIN TIME

LSH 20.06 20.45 1.63 7.98 8.46 1.46 19.26 19.82 1.39 30.94 31.24 1.71
ITQ 22.22 - - 12.19 9.27 79.65 22.13 21.26 17.81 34.65 32.24 68.10
LSH-BS 22.68 25.65 552.49 6.81 9.51 504.47 17.63 19.20 489.51 32.11 32.38 476.80
CH 38.45 40.03 53.20 14.59 16.03 91.04 22.72 23.45 49.69 36.78 37.43 128.91
MVCH 17.75 15.73 1106.85 11.62 10.58 1570.12 21.84 21.41 1214.07 34.69 34.40 1394.10
BCH 41.30 46.17 153.52 15.85 17.15 236.46 25.03 26.13 156.01 38.63 39.10 192.63

1 tables 4 tables 8 tables 16 tables0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F1
−M

ea
su

re

 

 

LSH
ITQ
LSH−BS
CH
MVCH
BCH

(a) 1-16 tables @ SIFT-1M
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(b) 1-16 tables @ GIST-1M

Figure 4: F1-Measure performance using different number
of hash tables on SIFT-1M and GIST-1M

when using 8 hash tables).

Semantic Nearest Neighbor Search

Besides the Euclidean nearest neighbor search that can be
applied to accelerating tasks like image matching, cluster-
ing etc., semantic neighbor search also has extensive ap-
plications in visual search, recommendation etc. Thus, we
next evaluate BCH on semantic neighbor search for the im-
age retrieval task. We employ two widely-used large image
datasets: CIFAR-102 and NUS-WIDE3. CIFAR-10 con-
tains 60K 32×32 color images of 10 classes and 6K images
in each class, represented by a 384-D GIST feature. NUS-
WIDE comprises over 269K images with 81 ground truth
concept tags. We consider 25 most frequent tags and con-
catenate three presentative features including 128-D wavelet
texture, 225-D block-wise color moments and 500-D SIFT-
based BoW histograms as a 853-D feature for each image.
Here, the groundtruth for each query is defined as those sam-
ples with common tags as the query.

Figure 3(a) and (b) report the precision-recall curves us-
ing 8 and 16 hash tables on CIFAR-10. We set the code
length B = 16 for each table according to the database size.
From the figures, we can get a similar conclusion that ei-
ther building multiple hash tables or enlarging the lookup
radius can find more nearest neighbors, subsequently im-
proving the recall performance, but at the cost of precision
drops. Fortunately, the complementary multi-table methods
can balance precision and recall well using fewer tables.
Here although the basic ITQ method performs better than

2https://www.cs.toronto.edu/˜kriz/cifar.html
3lms.comp.nus.edu.sg/research/NUS-WIDE.htm

LSH and BS, and very close to CH and MVCH, however, it
neglects the reciprocal relations among the multiple tables,
and thus gets a much lower performance than BCH.

In Figure 3(c) and (d) we further evaluate different meth-
ods over the much larger and more complex dataset NUS-
WIDE (we use B = 18 bits for each table). Different from
CIFAR-10, due to the complex semantics, ITQ on NUS-
WIDE cannot well discover the neighbor relations using the
basic image features. However, the complementary multi-
table methods including BS, CH, MVCH and BCH, attempt-
ing to eliminate the redundancy between tables, can get
much better performance when using different number of
tables. Among them, our BCH still enjoys significant per-
formance gains over all the baselines, owing to the adaptive
aggregating of the learnt informative hash tables.

Hamming Distance Ranking over Multi-Tables

Besides table lookup, we can also adopt Hamming distance
to rank the samples indexed in the tables. Specifically, the
distance between the query xq and any database sample xi

falling within the specified Hamming radius is computed as
follows (Xu et al. 2011; Liu, He, and Lang 2013):

d(xq,xi) = min
l=1,...,L

dH(y(l)
q ,y

(l)
i ).

Such a distance can reflect how close it is between the
database point and query. Based on this distance, all the can-
didates looked up from multiple tables can be ranked, incor-
porating the discriminative power of each table.

Table 1 investigates the average precision (AP) of the top
1,000 ranked results on SIFT-1M and GIST-1M. We can eas-
ily observe that our BCH can boost its precision when using
more hash tables, while the others increase a little or even
decrease. Moreover, in all cases BCH consistently achieves
the best performance, e.g., on SIFT-1M it respectively gets
7.4% and 15.3% precision gains over the best competitor
CH when using 4 and 16 tables. On CIFAR-10 and NUS-
WIDE, the reported AP performance of the top 500 ranked
results further verifies our conclusion that with more hash ta-
bles BCH consistently outperforms all the baseline methods
with a considerable performance gaps over them. This obser-
vation indicates that even the similarity matrix is computed
based on Euclidean distance, the multiple tables of BCH can
jointly approximate the complex semantic similarities better
than other methods.

Table 1 also reports the training time of different multi-
table methods on SIFT-1M. Among all complementary
multi-table methods, MVCH consumes much more time
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than others, which is partially because it heavily relies on
the expensive exemplar-based feature transformation. Com-
pared to BS and CH, our BCH takes comparable time and is
able to learn multiple hash tables in an efficient way.

Conclusions

Motivated by the fact that multi-table search can be re-
garded as an aggregation of neighbor predictions stemming
from multiple tables, we proposed a boosted complemen-
tary hash-tables (BCH) method that jointly optimizes multi-
ple hash tables in a boosting framework. Based on the idea
of ensemble learning, we devised a sequential table learn-
ing algorithm, and guaranteed the table complementarity for
the maximal coverage of the nearest neighbors. To further
improve the discriminative power of each table, we intro-
duced an discrete alternating optimization algorithm to di-
rectly pursue the near-optimal binary codes. The signifi-
cant performance gains of our proposed method over several
large-scale benchmarks encourage the future study on joint
multi-table learning with strong complementarity.
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