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Abstract

Graph matching problem that incorporates pair-wise con-
straints can be formulated as Quadratic Assignment Problem
(QAP). The optimal solution of QAP is discrete and com-
binational, which makes QAP problem NP-hard. Thus, many
algorithms have been proposed to find approximate solutions.
In this paper, we propose a new algorithm, called Nonnega-
tive Orthogonal Graph Matching (NOGM), for QAP match-
ing problem. NOGM is motivated by our new observation
that the discrete mapping constraint of QAP can be equiva-
lently encoded by a nonnegative orthogonal constraint which
is much easier to implement computationally. Based on this
observation, we develop an effective multiplicative update al-
gorithm to solve NOGM and thus can find an effective ap-
proximate solution for QAP problem. Comparing with many
traditional continuous methods which usually obtain contin-
uous solutions and should be further discretized, NOGM can
obtain a sparse solution and thus incorporates the desirable
discrete constraint naturally in its optimization. Promising ex-
perimental results demonstrate benefits of NOGM algorithm.

Introduction

Many problems of interest in computer vision and machine
learning area can be formulated as a problem of finding con-
sistent correspondences between two sets of features. This
problem can usually be formulated and solved by graph
matching model. From optimization aspect, previous ap-
proaches have formulated graph matching as a Quadratic
Assignment Problem (QAP).

It is known that the optimal solution of QAP matching
problem should satisfy both discrete and mapping (one-to-
one or one-to-many) constraints simultaneously. This com-
binatorial constraints make QAP problem NP-hard. Thus
many algorithms have been proposed to find approximate
solutions for graph matching problem (Enqvist, Josephon,
and Kahl 2009; Leordeanu, Hebert, and Sukthankar 2009;
Zhou and la Torre 2012; van Wyk and van Wyk 2004;
Zaslavskiy, Bach, and Vert 2009; Liu, Qiao, and Xu 2012;
Zhang et al. 2016; Adamczewski, Suh, and Lee 2015).
Among them, one kind of popular methods is to use contin-
uous optimization techniques (Gold and A 1996; Leordeanu
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and Hebert 2005; Cour, Srinivasan, and Shi 2006; En-
qvist, Josephon, and Kahl 2009; Choi and Kweon 2009;
Cho, Lee, and Lee 2010). These methods generally first de-
velop an approximate continuous problem for QAP by re-
laxing its discrete mapping constraint and then find the opti-
mal solution for this continuous problem. At last, they use
some discretization techniques to obtain the final permu-
tation solution (Cho, Lee, and Lee 2010; Leordeanu and
Hebert 2005). One drawback of these continuous algorithms
is that the discrete constraint of QAP matching problem is
entirely ignored and thus need to be further discretized to
obtain a discrete solution for the problem. Obviously, this
post-discretization step is independent of QAP matching ob-
jective and thus leads to weak local optimal solution (Jiang
et al. 2017; Zhou and la Torre 2012). In additional to contin-
uous algorithm, Leordeanu and Hebert (Leordeanu, Hebert,
and Sukthankar 2009) also propose an iterative matching
method (IPFP) which optimizes the QAP in the discrete do-
main and thus finds a discrete solution strictly in the opti-
mization process. In this paper, we focus on continuous op-
timization methods.

This paper proposes a new algorithm, called Nonnegative
Orthogonal Graph Matching (NOGM), for QAP problem.
NOGM is based on our new observation that the discrete
mapping constraint of QAP can be equivalently encoded by
a nonnegative orthogonal constraint. This motivates us to de-
velop a multiplicative update algorithm to find an effective
solution for QAP. Comparing with many traditional continu-
ous methods which usually obtain continuous solutions and
need to be further discretized, NOGM can generate a sparse
solution for the problem and thus better incorporates the de-
sirable discrete constraint in its optimization. To the best of
our knowledge, this nonnegative orthogonal constraint has
not been studied or emphasized in QAP problem. Promising
experimental results demonstrate the benefits and effective-
ness of the proposed NOGM method.

Problem Formulation and Related Works

Assume that two graphs to be matched are GD = (V D, ED)
and GM = (V M , EM ) where V represents a set of
nodes and E denotes edges. The graph matching prob-
lem, in its most recent and general from, can be formu-
lated as Quadratic Assignment Problem (QAP) problem,
i.e., finding the indicator matrix X ∈ {0, 1}n×n where
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n = |GD| = |GM |1 that maximizes the following quadratic
score function (Leordeanu, Hebert, and Sukthankar 2009;
Cho, Lee, and Lee 2010),

max
X

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Wij,klXijXkl = vec (X)
T

W vec (X)

s.t. X1 = 1,XT1 = 1,Xij ∈ {0, 1}. (1)

where Wij,kl measures how similar the pair of nodes
(vi, vk) ∈ GD is with the pair of their corresponding nodes
(vj , vl) ∈ GM in both local appearance and pair-wise geom-
etry. The two-way affine constraints ensure the one-to-one
matching between nodes of graph GD and GM (Cho, Lee,
and Lee 2010; Gold and A 1996).

The above QAP problem (Eq.(1)) with the discrete con-
straint is NP-hard. Thus relaxation models and algorithms
are required to find approximate solutions (Conte et al. 2004;
Zhou and la Torre 2012; Leordeanu and Hebert 2005;
Cour, Srinivasan, and Shi 2006). Here, we briefly review
some most related relaxation works.
Spectral Matching (SM): Leordeanu et al. (Leordeanu and
Hebert 2005) proposed to solve the following relaxation
problem,

max
X

vec (X)
T

W vec (X) (2)

s.t. vec (X)T vec (X) = 1. (3)

One main advantage of SM relaxation is that it has a global
closed-form solution which is the leading eigenvector of W.
Balanced Graph Matching: Cour et al. (Cour, Srinivasan,
and Shi 2006) presented a tighter relaxation by further in-
corporating the affine mapping constraint into SM relaxation
(SMAC),

max
X

vec (X)
T

W vec (X) (4)

s.t. Ax = b, xTx = 1, (5)

where x = vec (X). Similar to SM, SMAC also has a closed-
form eigenvector solution. However, the optimal solution is
not necessarily nonnegative in SMAC. A and b are defined
to make constraint Ax = b represent the doubly stochastic
constraint.
Re-weighted Random Walk Matching (RRWM): Cho et
al (Cho, Lee, and Lee 2010) introduced a probabilistic al-
gorithm to interpret and find a local optimal solution for the
following general relaxation model, i.e., solving the match-
ing problem in the doubly (sub-)stochastic domain,

max
X

vec (X)
T

W vec (X) (6)

s.t. X1 = 1,XT1 = 1,Xij ≥ 0. (7)

Many other algorithms, such as graduated assignment (GA)
(Gold and A 1996), POCS (van Wyk and van Wyk 2004) etc,
have also been developed to solve this problem.

1Here, we focus on equal size graph matching. For the graphs
with different sizes, one can transform it to equal size problem by
adding dummy nodes to the smaller graph.

The optimal solutions generated by the above methods are
usually continuous and thus should be abruptly discretized
to obtain the final discrete solutions. This discretization step
is independent of original graph matching objective and thus
usually leads to weak local optimum for the original prob-
lem. This is one main drawback of these methods.

Nonnegative Orthogonal Graph Matching

In this section, we show that the discrete mapping constraint
of Eq.(1) can be equivalently encoded by a nonnegative or-
thogonal constraint. This can be seen as follows.

Using orthogonal constraint, the above QAP problem
(Eq.(1)) can be equivalently formulated as,

max
X

vec (X)
T

W vec (X) (8)

s.t. XXT = I,Xij ∈ {0, 1}.
Similar to constraint of Eq.(1), the orthogonal constraint
here is used to encode the one-to-one mapping between two
graphs. The discrete constraint in this problem is also com-
binational and thus difficult to implement computationally.
One natural relaxation to this problem is to replace the dis-
crete constraint Xij ∈ {0, 1} with nonnegative constraint
and solve the following approximate problem, i.e.,

max
X

vec (X)
T

W vec (X) (9)

s.t. XXT = I,Xij ≥ 0.

We call it as Nonnegative Orthogonal Graph Matching
(NOGM). We show that NOGM is equivalent to Eq.(8).

Proposition 1 For any matrix X,X ∈ R
n×n, if X is non-

negative orthogonal, i.e., XXT = I,Xij ≥ 0, then X is a
permutation matrix.

Proof. (1) Under the nonnegative constraint Xij ≥ 0, the
orthogonal constraint XXT = I indicates that each row Xi·
of solution matrix X has only one non-zero element. (2) The
orthogonal constraint XXT = I also enforces Xi·XT

i· = 1,
which indicates that the only one non-zero element in each
row Xi· should be equal to 1. Thus, Xij ∈ {0, 1}.�
Remark. Comparing with discrete constraint in origi-
nal problem Eq.(8), the nonnegative constraint in NOGM
(Eq.(9)) is much easier to implement computationally. To
the best of our knowledge, this particular observation has
not been explored before. Our aim in the following is to de-
rive an effective multiplicative algorithm to solve NOGM
problem approximately and thus can obtain an approximate
solution for QAP problem.

Optimization

Recently, multiplicative update algorithms have been widely
adopted in many optimization problems with nonnegative
constraint (Li et al. 2007; Lee and Seung 2001; Ding, Li,
and Jordan 2010; 2008; Jiang et al. 2015; Ding et al. 2006;
Chen, Wang, and Zhang 2007). Inspired by these works, in
this section we propose develop a new multiplicative update
algorithm to solve the proposed NOGM problem.
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Update algorithm

Starting from an initial matrix solution X(0), the proposed
algorithm iteratively updates a current solution X(t) as fol-
lows,

X
(t+1)
ij = X

(t)
ij

( K
(t)
ij

(ΔX(t))ij

)1/2

, (10)

where the multiplicatives Δ is computed as

Δ =
1

2
(K(t)X(t)T + X(t)K(t)T), (11)

and K(t) is the matrix form of the vector (W vec (X(t))),
i.e., K(t) = mat (W vec (X(t))). The iteration starts with
an initial X(0) and is repeated until convergence. Since both
K(t) and Δ are nonnegative (because W is a real nonneg-
ative symmetric matrix for the matching problem), thus the
nonnegativity of X(t) is always guaranteed.

Theoretical analysis

Theorem 1 Under the update rule of Eq.(10), the conver-
gence solution satisfies the first-order Karush-Kuhn-Tucker
(KKT) optimality condition.

Proof. The Lagrangian function is

L(X) = vec (X)
T

W vec (X)− TrΔ(XXT − I). (12)

Note that, since XXT−I is symmetric, thus Δ is symmetric,
i.e., Δ = ΔT. Thus,

∂L
∂Xij

= 2 (K −ΔX)ij . (13)

where K is the matrix form of the vector (W vec (X)), i.e.,
K = mat (W vec (X)). This leads to the following KKT
complementary slackness condition,

∂L
∂Xij

Xij = 2 (K −ΔX)ij Xij = 0. (14)

Because XXT = I, summing over index j, we can obtain
the diagonal elements of the Lagrangian multipliers Δ as,

(KXT)ii = (ΔXXT)ii = Δii (15)

In order to obtain the off-diagonal elements of Δ, we ignore
the nonnegative constraint of X temporarily and set,

∂L(X)

∂Xij
= 0. (16)

Thus, we have

Δij = (KXT)ij , (i �= j). (17)

Integrating Eq.(15) and Eq.(17), we have a closed form so-
lution for the Lagrangian multipliers Δ as

Δ = KXT. (18)

Since Δ is symmetric, thus we further set Δ = 1
2 (KXT +

XKT). Clearly, the fixed points of the update rule Eq.(10)

satisfy (K −ΔX)ij X2
ij = 0, which is identical to Eq.(14).

�
Remark. It is noted that in Eq.(18), the off-diagonal el-
ements of the Lagrangian multipliers Δij , (i �= j) are
computed approximately. Therefore, the converged solution
X does not satisfy the orthogonal constraint (XXT = I)
strictly. In other words, update algorithm Eq.(10) generally
returns an approximate solution for the proposed NOGM
problem (Eq.(9)). However, although approximately, X can
still satisfy the orthogonal constraint (XXT = I) strongly
in the nonnegative domain and thus closes to a discrete so-
lution. This is one important benefit of the proposed update
algorithm and will be further illustrated in the following sec-
tion in detail.

The convergence of our algorithm is guaranteed by the
following theorem.
Theorem 2 Under the update rule of Eq.(10), the La-
grangian function L(X) of Eq.(12) is monotonically increas-
ing.

Proof. We use the auxiliary function approach (Ding, Li,
and Jordan 2010; Lee and Seung 2001). An auxiliary func-
tion function Z(X,X′) of Lagrangian function L(X) satis-
fies following,

Z(X,X) = L(X), Z(X,X′) ≤ L(X). (19)

We define

X(t+1) = argmax
X

Z(X,X(t)). (20)

Then by construction, we have

L(X(t)) = Z(X(t),X(t)) ≤ Z(X(t+1),X(t)) ≤ L(X(t+1)).
(21)

This proves that L(X(t)) is monotonically increasing.
In the following, we first give an appropriate auxiliary

function and then find the global maximum of the auxiliary
function. We rewrite Eq.(12) as

L(X) =
∑
ij

∑
kl

Wij,klXijXkl − TrΔ(XXT − I) (22)

We can show that one auxiliary function of L(X) can be
defined as

Z(X,X′) =
∑
ij

∑
kl

Wij,klX
′
ijX′

kl(1 + log
XijXkl

X′
ijX′

kl

) (23)

−
∑
i

∑
j

(ΔX′)ijX2
ij

X′
ij

.

Using the inequality z ≥ 1 + log z and setting Z =
XijXkl

X′
ijX′

kl
,

the first term of Eq.(23) is a lower bound of the first term in
Eq.(22). Also, for any positive matrices A,B, S and S′ with
A and B symmetric, the following inequality always holds
(Ding, Li, and Jordan 2010; 2008),

∑
i

∑
j

(AS′B)ijS2
ij

S′
ij

≥ Tr(STASB) = Tr(SBSTA). (24)
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Using this equality, we can see that the second term in
Eq.(23) is a lower bound of the second term in Eq.(22).
Thus, Z(X, X̃) is an auxiliary function of L(X).

According to Eq.(20), we need to find the global maxi-
mum of Z(X,X′) for X. The gradient is

∂Z(X,X′)
∂Xij

= 2
[ (W vec (X′))ijX′

ij

Xij
− (ΔX′)ijXij

X′
ij

]
(25)

Note that WT = W and the second derivative is

∂2Z(X,X′)
∂Xij∂Xkl

= −
[ (

W vec (X′)
)
ij

X′
ij

X2
ij

+
(ΔX′)ij

X′
ij

]
δikδjl

≤ 0 (26)

where δuv is defined as

δuv =

{
1 if u = v
0 otherwise. (27)

Therefore, Z(X,X′) is a concave function in X and has a
unique global maximum. The global optimum can be ob-
tained by setting the first derivative to zero, i.e.,

Xij = X′
ij

√(
W vec (X′)

)
ij

(ΔX′)ij
. (28)

Therefore, we obtain the update rule in Eq.(10) by setting
X(t+1) = X and X(t) = X′. �

Figure 1: (a) Image corner points; (b) ground truth solution
(permutation matrix); (c) solution matrix X(t) across differ-
ent iterations with different initializations (top: start from
uniform solution; middle: start from SM solution; bottom:
start from RRWM solution). Note that as the iteration in-
creases, X(t) approximates the ground truth permutation ma-
trix more and more closely

Figure 2: Objective function, sparsity and orthogonality of
the solution vector X(t) across the iterations with different
initializations under the update Eq.(10)

Orthogonality and Approximate Discrete

As discussed before, the above multiplicative update al-
gorithm can generate an approximate solution for NOGM
problem. Here, we show experimentally that although the
algorithm solves NOGM problem approximately, it can still
return a desired nonnegative (approximate) orthogonal and
thus sparse solution for this QAP problem. This is one im-
portant benefit of the proposed algorithm.

Figure 1(c) shows the solution X(t) across different it-
erations under the update rule Eq.(10) with three differ-
ent initializations on matching two graphs generated from
CMU image corner points (Figure 1(a)). The feature points
and their geometric relationships correspond to the nodes
and edges of the graph (see Experimental section in de-
tail). Intuitively, we note that regardless of initialization,
as the iteration increases, X(t) becomes more and more
sparse and approximates the ground truth (permutation ma-
trix, Figure 1(b)) more and more closely. For further il-
lustration, we use two measurements, namely orthogonal-
ity and sparsity. For any matrix A, the orthogonality is
computed as follows. First, compute the normalized matrix
N = D−1/2AATD−1/2, where D = diag(AAT). Thus, we
have diag(N) = I. Then, we compute the orthogonality of
matrix A as follows,

Orthogonality(A) = 1− u(N)

where u(N) denotes the average value of the off-diagonal
elements in N. For any matrix A, the sparsity measures the
percentage of zero (close-to-zero) elements in A.

Figure 2 shows the objective, sparsity and orthogonality
of the solution X(t) across different iterations under the up-
date algorithm Eq.(10). Here, we can observe the follow-
ing: (1) Regardless of initialization, the objective of X(t) in-
creases and converges after some iterations, which demon-
strates the convergence of the proposed update algorithm, as
discussed in Theorem 2. (2) The orthogonality of the solu-
tion X(t) increases and almost converges to an orthogonal
(permutation) matrix at convergence. It clearly indicates the
strong ability of the approximate algorithm to maintain the
orthogonal constraint in the nonnegative domain, although
this orthogonal constraint has been partly relaxed in the al-
gorithm, as shown in Theorem 1. (3) The solution X(t) be-
comes more and more sparse and converges to a desired ap-
proximate discrete solution.
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Figure 3: Comparison of graph matching results on synthetic point matching with deformation noise

Experiments

In order to evaluate the practicality of the proposed NOGM
matching method, we have applied it to several match-
ing tasks including synthetic graph matching, feature point
matching across image sequences and feature matching
on real images. Our method has been compared with
some recent state-of-the-art relaxation models and algo-
rithms including SM (Leordeanu and Hebert 2005), IPFP
(Leordeanu, Hebert, and Sukthankar 2009), SMAC (Cour,
Srinivasan, and Shi 2006) and RRWM (Cho, Lee, and Lee
2010). We implemented IPFP with two versions: (1) IPFP-
U, that is initialized by the uniform solution; (2) IPFP-S
that is initialized by SM. These compared methods gener-
ally have the similar computational complexity and are most
related with our NOGM algorithm.

Synthetic data

In this section, we evaluated our NOGM algorithm on ran-
dom graph matching problems. Following the experimen-
tal setting (Cho, Lee, and Lee 2010), we first generated
two graphs GM and GD. Both of them contain nin nodes.
To evaluate the robustness of the our method w.r.t outlier
nodes. Here, we added nout outlier nodes in both GM and
GD. For each pair of nodes, the edge is randomly gener-
ated according to the edge density ρ ∈ [0, 1], and the at-
tribute of the edge in GD is assigned with a random value
rMij distributed uniformly as rMij ∼ U [0, 1]. The corre-
sponding edge rDij in GD was perturbed by adding a ran-
dom Gaussian noise σ to rMij . Here, σ controls the level of

deformation noise. The affinity matrix W is computed by

Wij,kl = exp(−‖rDik−rMjl ‖2
F

σr
), where scaling factor σr has

been set to 0.025 in this experiment. For each noise level σ
or nout, we have generated 100 random graph pairs and then
computed the average performances including matching ac-
curacy, objective score, sparsity and orthogonality. Figure
3 summarizes the comparison results. It is noted that: (1)
NOGM algorithm can always generate an approximate or-
thogonal and sparse solution for QAP matching problem,
which demonstrates the ability of NOGM to maintain the
discrete mapping constraint in its optimization. (2) NOGM
generally performs better than other methods, which demon-
strates the effectiveness and benefits of NOGM.

Image sequence matching

We perform feature matching on CMU and YORK image
sequences (Cho, Lee, and Lee 2010; Caetano et al. 2009;
Luo, Wilson, and Hancock 2003). For each CMU hotel
image, 30 landmark points have been manually marked
with known correspondences. We have matched all images
spaced by different frames and computed the average perfor-
mances. For each image in YORK sequence, 40 landmark
points have been manually marked with known correspon-
dences. We have matched all images spaced by different
computed the average performances per separation gap. For
each pair of images in these two sequences, we have first
generated two graphs GM , GD with the nodes represent-
ing the landmark points and the edges denoting the relation-
ship (Euclidean distance) between nodes. Figure 4 summa-
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Figure 4: Comparison results across on CMU and YOKR image sequences. Top: CMU sequence; Bottom: YORK sequence

rizes results. We can observe that: (1) NOGM always gen-
erates approximate orthogonal and sparse solutions, which
further demonstrates the sparse property of NOGM solu-
tion. (2) In CMU image dataset, as the separation exceeds
75, RRWM as well as IPFP, SM and SMAC generally break
down, while our NOGM still keeps the desirable matching
results. It suggests the robustness of NOGM algorithm. (3)
In YORK image dataset, NOGM consistently outperforms
other compared relaxation methods, indicating the effective-
ness of NOGM .

Real-world image matching

In this section, we tested our method on some real-world
image feature matching tasks. Our first evaluation is con-
ducted on the image pairs selected from Caltech-101 and
MSRC datasets (Cho, Lee, and Lee 2010). Following the ex-
perimental setting (Cho, Lee, and Lee 2010), the candidate
correspondences have been generated using the MSER de-
tector and SIFT feature descriptors. Our second evaluation
is performed on the image pairs (20 pairs) selected from
Zurich Building Image Database (ZuBud) (Ng and Kings-
bury 2010). Feature points and candidate correspondences
have been detected and generated using the SIFT descriptor
(Ng and Kingsbury 2010). Using the distance of SIFT de-
scriptor, each feature in first image can match to the 8 clos-
est features in the second image. The ground truths (correct
matches) have been manually labeled for each image pair.
For all image pairs in these two datasets, the average perfor-
mances including true positive and false positive are com-
puted. The comparison results are summarized in Figure 5,
and some examples are shown in Figure 5. From Figure 5,
we can note that NOGM algorithm returns higher true pos-
itive and lower false positive value than other comparison
methods. It shows the effectiveness of the proposed NOGM
method on real-world image matching tasks.

Figure 5: Matching results on the Caltech-101-MSRC and
ZuBud datasets. Correct matches are marked by yellow
lines, false matches by red lines
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Conclusion

NOGM aims to solve QAP problem in nonnegative orthog-
onal domain. NOGM can generate an optimal sparse solu-
tion for QAP problem. Promising experimental results show
the effectiveness of the proposed method, which further sug-
gests that searching for an approximate optimal solution un-
der the nonnegative orthogonal constraint may be more im-
portant or essential for optimizing QAP problem. In our
future, we will explore some more effective algorithms to
solve the proposed NOGM problem.
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