
VINet: Visual-Inertial Odometry as a
Sequence-to-Sequence Learning Problem

Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, Niki Trigoni
Department of Computer Science,University of Oxford, United Kingdom

Email: {firstname.lastname}@cs.ox.ac.uk

Abstract

In this paper we present an on-manifold sequence-to-
sequence learning approach to motion estimation us-
ing visual and inertial sensors. It is to the best of our
knowledge the first end-to-end trainable method for
visual-inertial odometry which performs fusion of the
data at an intermediate feature-representation level. Our
method has numerous advantages over traditional ap-
proaches. Specifically, it eliminates the need for tedious
manual synchronization of the camera and IMU as well
as eliminating the need for manual calibration between
the IMU and camera. A further advantage is that our
model naturally and elegantly incorporates domain spe-
cific information which significantly mitigates drift. We
show that our approach is competitive with state-of-the-
art traditional methods when accurate calibration data is
available and can be trained to outperform them in the
presence of calibration and synchronization errors.

Introduction

A fundamental requirement for mobile robot autonomy is
the ability to be able to accurately navigate where no GPS
signals are available. One of the most promising approaches
to achieving this goal is through the fusion of images from a
monocular camera and inertial measurement unit. This setup
has the advantages of being both cheap and ubiquitous and,
through the complementary nature of the sensors, has the po-
tential to provide pose estimates which are on-par in terms of
accuracy with more expensive stereo and LiDAR setups. As
such monocular visual-inertial odometry (VIO) approaches
have received considerable attention in the robotics commu-
nity (Gui et al. 2015) and current state-of-the-art approaches
to VIO (Leutenegger et al. 2015) are able to achieve impres-
sive accuracy. However, these approaches still suffer from
strict calibration and synchronization requirements.

Inspired by the recent success of deep-learning models
for processing raw, high-dimensional data, we propose in
this paper a fresh approach to VIO by regarding it as a
sequence-to-sequence regression problem. The resulting ap-
proach, VINet, is a fully trainable end-to-end model for per-
forming visual-inertial odometry. Our contributions are as
follows

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Non-linear
Optimization

IMU

Cam

Tight Clock
Synchronization

Pose

Calibration
Transform

IMU Bias

Thresholds
Flow

algorithm
Matching
algorithm

Feature detection/
description
algorithm

Optimization
Parameters

Feature
Extraction Matching Optical

Flow

Cam

IMU
Pose

Error

Ground-Truth
Pose

Traditional

VINet

Figure 1: Comparison between a standard visual-inertial
odometry framework and our learning-based approach. Ele-
ments in blue need to be specified during setup. The param-
eters of VINet are hidden from the user and fully learned
from data.

• We present the first system for visual-inertial aided navi-
gation that is fully end-to-end trainable.

• We introduce a novel recurrent network architecture and
training procedure to optimally train the parameters of
model

• This includes a novel differentiable pose concatenation
layer which allows the network’s predictions to conform
to the structure of the SE(3) manifold

• We evaluate our method and the demonstrate its advan-
tages over traditional methods on real-world data

Related work

In this section we briefly outline works strictly focused on
monocular cameras and inertial measurement unit data in
the absence of other sensors such as stereo setups and laser
range finders.
Visual Odometry: VO algorithms estimate the incremental
ego-motion of a camera. A traditional VO algorithm, illus-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3995

trated in Fig. 1 a., operates by extracting features in an im-
age, matching the features between the current and succes-
sive images and then computing the optical flow. The motion
can then be computed using the optical flow. The fast semi-
direct monocular visual odometry (SVO) algorithm (Forster,
Pizzoli, and Scaramuzza 2014) is an example of a state-of-
the-art VO algorithm. It is designed to be fast and robust
by operating directly on the image patches, not relying on
slow feature extraction. Instead, it uses probabilistic depth
filters on patches of the image itself. The depth filters are
then updated through whole image alignment. This visual
odometry algorithm is efficient and runs in real-time on an
embedded platform. Its probabilistic formulation, however,
makes it difficult to tune and it also requires a bootstrapping
procedure to start the process. As expected, its performance
depends heavily on the hardware to prevent tracking failures
- typically global shutter cameras operating at higher than
50 fps needs to be used to ensure the odometry estimates
remain accurate.
Visual-Inertial Odometry: Regardless of the algorithm,
traditional monocular VO solutions are unable to observe
the scale of the scene and are subject to scale drift and a
scale ambiguity. Dedicated loop closure methods (eg. FAB-
MAP (Cummins and Newman 2008)) are integrated to re-
duce scale drift. Scale ambiguity, however, cannot be re-
solved using loop-closure and requires the integration of
external information. This usually takes the form of de-
tecting the scale objects in the scene (Castle, Klein, and
Murray 2010) (Pillai and Leonard 2015) (Salas-Moreno et
al. 2013) or fusing information from an inertial measure-
ment unit (IMU) to create a visual-inertial odometry (VIO)
setup. Fusing inertial and visual information not only re-
solves the scale ambiguity but also increases the accuracy
of the VO itself. In theory, the complementary nature be-
tween inertial measurements from an IMU and visual data
should enable highly accurate ego-motion estimation un-
der any circumstances: visual localization techniques are en-
tirely reliant on observing distinctive features in the environ-
ment and in indoor situations these techniques are plagued
by intermittent occlusions. On the other hand, the pose of
an IMU device can be tracked through double integration
of the acceleration data or more complex schemes such as
the on-manifold pre-integration strategy of (Forster et al.
2015), and then integrated with a visual-odometry method
such as SVO to form a VIO system in which the IMU drift
remains constrained. In state-of-the-art systems, fusion is
then achieved either through a filter-based or optimization-
based procedure. Filter-based methods such as the Multi-
state Constraint Kalman Filter (MSCKF) (Mourikis and
Roumeliotis 2007), although being more robust, consistently
under-perform their optimization-based counterparts, such
as the Sliding Window Filter (SWF) (Sibley, Matthies, and
Sukhatme 2008) and Open Keyframe VISual-inertial odom-
etry (OK-VIS) (Leutenegger et al. 2015) for accuracy. In
(Forster et al. 2015) it is shown that a system using the pre-
integration strategy slightly outperforms OK-VIS in terms
of accuracy. However, the (Forster et al. 2015) system relies
on iSAM2 (Kaess et al. 2011) as the back-end optimization
and SVO as the front-end tracking system which we found

fails more often than OK-VIS. We therefore compare against
OK-VIS in this paper and compare against MSCKF for ro-
bustness.
Deep-learning: Some deep-learning approaches have been
proposed for visual odometry, however, to the best of our
knowledge, a neural network approach has never been used
in any form for monocular visual-inertial odometry. In
(Konda and Memisevic 2015), a Stereo-VO method is pre-
sented where they extract motion by detecting “synchronic-
ity” across the stereo frames. (Costante et al. 2016) investi-
gated the feasibility of using a CNN to extract ego-motion
from optical flow frames. Finally, in (DeTone, Malisiewicz,
and Rabinovich 2016) the feasibility of using a CNN for ex-
tracting the homography relationship between frame pairs
was shown.

Background: Recurrent and Convolutional

Networks

Recurrent Neural Networks (RNN’s) refer to a general type
of neural network where the layers operate not only on
the input data but also on delayed versions of the hidden
layers and/or output. In this manner, the network has an
internal state which it can use as a “memory” to keep track
of past inputs and its corresponding decisions. RNN’s,
however, have the disadvantage that using standard training
techniques they are unable to learn to store and operate
on long-term trends in the input and thus do not provide
much benefit over standard feed-forward networks. For this
reason, the Long Short-Term Memory (LSTM) architecture
was introduced to allow RNN’s to learn longer-term trends
(Hochreiter and Schmidhuber 1997). This is accomplished
through the inclusion of gating cells which allow the
network to selectively store and “forget” memories.

There are numerous variations of the LSTM architec-
ture. However, these have been shown to have similar
performance on real world data (Zaremba 2015). The
contents of the memory cell is stored in ct. The input gate
it controls how the input enters into the contents of the
memory cell for the current time-step. The forget gate, ft,
determines when the memory cell should be emptied by
producing a control signal in the range 0 to 1 which clears
the memory cell as needed. Finally, the output gate ot

determines whether the contents of the memory cell should
be used at the current time-step.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (2)
zt = tanh(Wxcxt +Whcht−1 + bc) (3)
ct = ft � ct−1 + it � zt (4)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)
ht = ot � tanh(ct) (6)

Where the weights W:,: and biases b: fully parameterise
the operation of the network and are learned during train-
ing. In order to process high-dimensional input data (such as
images), convolutional layers can be integrate in the RNN

3996

LSTM

LSTM

RGBt

RGBt+1

RGBt+1

RGBt+2

Pose

Poset+1

LSTM

LSTM

LSTM

IMU

IMU

IMU

LSTM

LSTM

LSTM

IMU

IMU
1024

Visual-inertial Fusion by
concatenating feature vectors

SE3 Composition Layer

se3

SE3 Composition Layer

se3

512512512
256

512
473

25612864

1024512512512
256

512
473

25612864

6

6

6

6

6

6

VInitialised by ownet weights
5x5 1x1

3x3

5x5 1x1

3x3

Co
rr

Co
rr

IMU

t

Figure 2: The proposed VINet architecture for visual-inertial odometry. The network consists of a core LSTM processing the
pose output at camera-rate and an IMU LSTM processing data at the IMU rate.

structure. At each convolutional layer, multiple convolu-
tional operations are applied to extract a number of features
from the output map of the previous layer. The filter ker-
nels with which the maps are convolved are learned during
training. Specifically, the output of a convolutional layer is
computed as

yx,yl,f =
∑
l,f

act

(
bl,f +

∑
m

Pl−1∑
p=0

Ql−1∑
q=0

wp,q
l,f,myx+p,y+q

(l−1)m

)

(7)
where yx,yl,f is the value of the output of feature map f of

the l’th layer at location x, y, bl,f is a constant bias term also
learned during training, wp,q

l,f,m is the kernel value at location
p, q and Pi, Qj are the width and height of the kernel.

Our Approach

Our sequence-to-sequence learning approach to visual-
inertial odometry, VINet, is shown in Fig. 2. The model con-
sists of an CNN-RNN netowork which has been tailored to
the task of visual-inertial odometry estimation. The entire
network is differentiable and thus trainable end-to-end for
the purpose of egomotion estimation. The input to the net-
work is monocular RGB images and IMU data which is a 6
dimensional vector containing the x, y, z components of ac-
celeration and angular velocity measured using a gyroscope.
The output of the network is a 7 dimensional vector - a 3 di-
mensional translation and 4 dimensional orientation quater-
nion - representing the change in pose of the robot from the
start of the sequence. In essence, our network learns the fol-
lowing mapping which transforms input sequences of im-
ages and IMU data to poses

VIO :
{(RW×H ,R6

)
1:N

}→ {(R7
)
1:N

}
(8)

Where W × H is the width and height of the input im-
ages and 1 : N are the timesteps of the sequence. We now

describe the detailed structure of our VINet model which in-
tegrates the following components.

SE(3) Concatenation of Transformations

The pose of a camera relative to an initial starting point
is conventionally represented as an element of the special
Euclidean group SE(3) of transformations. SE(3) is a dif-
ferentiable manifold with elements consisting of a rotation
from the special orthogonal group SO(3) and a translation
vector,

T =

{(
R T
0 1

) ∣∣∣∣ R ∈ SO(3) , T ∈ R3

}
. (9)

Producing transformation estimates belonging to SE(3) is
not straightforward as the SO(3) component needs to be
an orthogonal matrix. However, the Lie Algebra se(3) of
SE(3), representing the instantaneous transformation,

ΔT

Δt
=

{(
ω v
0 1

) ∣∣∣∣ ω ∈ so(3) , v ∈ R3

}
, (10)

can be described by components which are not subject to
orthogonality constraints. Conversion between se(3) and
SE(3) is then easily accomplished using the exponential
map

exp: se(3) → SE(3) (11)
In our network, a CNN-RNN processes the monocular

sequence of images to produce an estimate of the frame-
to-frame motion undergone by the camera. The CNN-RNN
thus performs the mapping from the input data to the lie al-
gebra se(3). An exponential map is used to convert these to
the special euclidean group SE(3) where the individual mo-
tions can then be composed in SE(3) to form a trajectory.
In this manner, the function that the network needs to ap-
proximate remains bounded over time as the frame-to-frame
motion undergone by the camera is defined by the, albeit

3997

complex, dynamics of the platform over the course of the
trajectory. With the RNN we aim to learn the complex mo-
tion dynamics of the platform and account for sequential de-
pendencies which are very difficult to model by hand.

RNN RNN RNN RNN

Figure 3: Illustration of the SE(3) composition layer - a
parameter-free layer which concatenates transformations be-
tween frames on SE(3).

Furthermore, in the traditional LSTM model, the hidden
state is carried over to the next time-step, but the output it-
self is not fed back to the input. In the case of odometry es-
timation the availability of the previous state is particularly
important as the output is essentially an accumulation of in-
cremental displacements at each step. Thus for our model,
we directly connect the output pose produced by the SE(3)
concatenation layer, back as input to the Core LSTM for the
next timestep.

Multi-rate LSTM

In the problem of visual-inertial odometry we are faced with
the challenge of the data streams being multi-rate i.e. the
IMU data often arrives at an order of magnitude (typically
10×) faster (100 Hz) than the visual data (10 Hz). To ac-
commodate for this in our proposed network, we process the
IMU data using a small LSTM at the IMU rate. The final
hidden-layer activation of the IMU-LSTM is then carried
over to the Core-LSTM.

Optical Flow Weight Initialization

The CNN takes two sequential images as input and, similar
to the IMU LSTM, produces a single feature-vector describ-
ing the motion that the device underwent during the pass-
ing of the two frames which is used as input to the Core
LSTM. We initially experimented with two frames fed di-
rectly into a CNN pre-trained on the imagenet dataset, how-
ever, this showed incredibly slow training convergence and
disappointing test performance. We therefore used as our
base a network trained to predict optical flow from RGB im-
ages (Fischer et al. 2015). Our CNN mimics the structure of
Flownet up to the Conv6 layer (Fischer et al. 2015) where we
removed the layers which produce the high-resolution opti-
cal flow output and feed in only a 1024×6×20 vector which
we flatten and concatenate with the feature vector produced
by the IMU-LSTM before being fed to the Core LSTM. The
Core-LSTM fuses the intermediate feature-level representa-
tions of the visual and inertial data to produce a pose esti-
mate.

Computational requirements

The computational requirements needed for odometry pre-
diction and the storage space required for the model are di-
rectly affected by the number of parameters used to define
the model. For our network in Fig. 2, the parameters are the
weight matrices of the LSTM for both the IMU LSTM and
the Core LSTM as well as the CNN network which process
the images. For our network we use LSTMs with 2 layers
with cells of 1000 units. Our CNN total of 55, 897 trainable
weights. A forward pass of images through the CNN part of
the network takes on average 160ms (≈ 10Hz) on a single
Tesla k80. The LSTM updates are much less computation-
ally expensive and can run at > 200Hz on the Tesla k80.

Training

The entire network is trained using Backpropagation
Through Time (BPTT). We use standard BPTT which works
by unfolding the network for a selected number of timesteps,
T , and then applying the standard backpropagation learning
method involving two passes- a forward pass and backward
pass. In the forward pass of BPTT, the activations of the net-
work from Equations 1 to 6 are calculated successively for
each timestep from time t = 1 to T . Using the resulting ac-
tivations, the backward pass proceeds from time t = T to
t = 1 calculating the derivatives of each output unit with
respect to the layer input (xl) and weights of the layer (wl).
The final derivatives are then determined by summing over
the time-steps. Stochastic Gradient Decent (SGD) with an
RMSProp adaptive learning rate is used as the to update the
weights of the networks determined by the BPTT. SGD is a
simple and popular method that performs very well for train-
ing a variety of machine learning models using large datasets
(Bottou and Bousquet 2008). Using SGD, the weights of the
network are updated as follows

wl = wl − λ
∂L(wl, xt)

∂wl
(12)

where wl represents a parameter (weight or bias) of the net-
work indexed by l and the learning rate (λ), which deter-
mines how strongly the derivatives influence the weight up-
dates during each iteration of SGD. For all our training we
select the best learning rate.

1

2

3

4

Batch 1

Batch N

1

2

3

4

1

2

3

4

Figure 4: Batch structure used for training on long odometry
sequences.

Training long, continuous sequences with the high-
dimensional images as input requires an excessive amount of

3998

memory. To reduce the memory required, but still keep con-
tinuity during training, we use the training structure where
the training is carried out over a sliding window of batches,
with the hidden state of the LSTM carried over between win-
dows illustrated in Fig. 4. Finally, we found that training the
network directly through the SE(3) accumulation is particu-
larly difficult as the training procedure suffers from many lo-
cal minima. In order to overcome this difficulty, we consider
two losses, one based on the se(3) frame-to-frame (F-2-F)
predictions and the other on the SE(3) full concatenated
pose relative to the start of the sequence. The loss computed
from the F-2-F pose is

Lse(3) = α
∑

||ω − ω̂||+ β||v − v̂|| (13)

For full concatenated pose in SE(3), we use a quaternionic
representation for the orientation, giving the loss

LSE(3) = α
∑

||q− q̂||+ β||T − T̂ || (14)

We consider three types of training; training only the Lse(3)

loss, only the LSE(3) and joint training of both losses. The
weight updates for the joint training is shown in Algorithm
1.

Algorithm 1 Joint training of se(3) and SE(3) loss
while i ≤ niter do

w1:n = w1:n − λ1
∂LSE(3)(w

l,xt)

∂wl

w1:j = w1:j − λ2
∂Lse(3)(w

l,xt)

∂wl

end while

Where niter is each training iteration, w1:j are the train-
able weights of the layers the SE(3) concatenation layer and
wi:n are the weights of all the layers in a network with n
layers. During training we start with a high relative learning
rate for the se(3) loss with λ2/λ1 ≈ 100 and then reduce this
to a very low value λ2/λ1 ≈ 100 during the later epochs to
fine-tune the concatenated pose estimation.

Results

In this section we present results evaluating the proposed
method in terms of accuracy and robustness to calibration
and synchronization errors and provide comparisons to tra-
ditional methods. For our experiments, we implemented our
model using the Theano library (Bergstra et al. 2010) and
carried out all our training on a Tesla k80. We trained the
model for each dataset for 200 epochs, which took on av-
erage 6 hours per dataset. The training process did not re-
quire any user intervention, apart from setting an appropriate
learning rate.

UAV: Challenging Indoor Trajectory

We first evaluate our approach on the publicly-available in-
door EuRoC micro-aerial-vehicle (MAV) dataset (Burri et
al. 2016). The data for this dataset was captured using a
AscTec Firefly MAV with a front-facing visual-inertial sen-
sor unit with tight synchronization between the camera and

IMU timestamps. The images were captured by a global-
shutter camera at a rate of 20 Hz, and the acceleration and
angular rate measurements from the IMU at 200 Hz. The
6-D ground-truth pose was captured using a Vicon motion
capture system at 100 Hz. In order to provide an objective
comparison to the closest related method in the literature,
the optimization-based OK-VIS (Leutenegger et al. 2015)
method is used for comparison. As we are interested in eval-
uating the odometric performance of the methods, no loop-
closures are performed. We test the robustness of our method
against camera-sensor calibration errors. We introduce cal-
ibration errors by adding a rotation of a chosen magnitude
and random angle ΔRSC ∼ vMF(·|μ, κ) to the camera-
IMU rotation matrices RSC . For our VI Net we present two
sets of results - one where we have augmented the training
set by artificially mis-calibrated training data and one where
only the calibrated data has been used to train the network.

-4
-2

-15

0
2

-10

4

10-5

5

0 0

-5
5 -10

OKVIS (Perfect Calibration)
Ground Truth
OKVIS (2°RSC error)

OKVIS (6°RSC error)

Proposed (6°RSC error)

Proposed (Perfect Calibration)

Figure 5: 6D MAV reconstructed trajectory using the pro-
posed neural network compared to OK-VIS (Leutenegger et
al. 2015).

Fig. 5 shows the comparison of the estimated MAV tra-
jectory by OK-VIS and VINet for various levels of mis-
calibration. It is evident that even when trained using no aug-
mentation, the neural network degrades more gracefully in
the face of mis-calibrated sensor data. Numerical results for

Table 1: Robustness of the VINet to sensor-camera calibra-
tion errors.

0◦ 5◦ 10◦ 15◦

VI Net (no-aug) 0.1751 0.8023 1.94 3.0671
VI Net (w/ aug) 0.1842 0.1951 0.2218 0.5178
OK-VIS 0.1644 0.7916 1.9138 FAILS

the robustness test is shown in Table 1. VINet trained using
no augmentation performs competitively compared to OK-
VIS and does not fail with high calibration errors. The re-
sults for VINet trained using calibration augmentation show
a significantly hindered decrease in accuracy as the calibra-
tion errors increase. This indicates that simply by training
the network using mis-calibrated data, it can be made ro-

3999

bust to mis-calibration errors. This property is unique to the
network-based approach and rather surprising as it is very
difficult, if not impossible, to increase the robustness of tra-
ditional approaches in this manner. Time synchronization is
another important calibration aspect which severely affects
the performance of traditional methods. We tested VINet in
this regard and found that it copes with time-synchronization
error even better than extrinsic calibration error. When the
streams are entirely unsynchronized, the IMU data are ig-
nored and the network resorts to vision-only motion esti-
mation. The training performance in Fig. 6 shows the dif-
ference between training solely on the F-2-F displacements,
solely on the full SE(3) pose and using our joint training
method. The results show that joint training allows the net-
work to converge more quickly towards low-error estimates
over the training and validation sequences, while the F-2-F
training converges very slowly and training on the full pose
converges to a high-error estimate.

0 20 40 60 80 100 120 140 160 180 200
Epoch (no.)

Fram-to rame Training Only
Joint Training
Full-pose Training Only

-2000200
X (m)

-100

0

100

200

300

400

500

Y
(m

)

-2000200
X (m)

-100

0

100

200

300

400

500

Y
(m

)

-2000200
X (m)

-100

0

100

200

300

400

500

Y
(m

)

Figure 6: Training performance of the network when train-
ing (1) only on the frame-to-frame transformations, (2)
jointly on the SE(3) layer and frame-to-frame transforma-
tion and (3) only on the concatenated pose. The training
progress of the KITTI Seq-00 is shown for the best joint
training.

Autonomous driving: Structured Outdoor
Trajectory

We further test the performance of VINet using the KITTI
odometry benchmark (Geiger, Lenz, and Urtasun 2012;
Geiger et al. 2013). The KITTI dataset comprises of 11
sequences collected from atop a passenger vehicle driving
around a residential area with accurate ground-truth ob-
tained from a Velodyne laser scanner and GPS unit. We use
sequence 1-10 for training and 11 for testing. The monoc-
ular images and ground-truth are sampled at 10 Hz, while

the IMU data is recorded at 100 Hz. Being recorded out-
doors on structured roads, this dataset exhibits negligible
motion blur and the trajectories follow very regular paths.
However, it has different characteristics compared to the in-
door EuRoC dataset which still make it very challenging.
For example, the vehicle path contains many sharp turns and
cluttered foliage areas which make data association between
frames difficult for traditional visual odometry approaches.
As the KITTI dataset does not provide tight-synchronization
between the camera and IMU, we were unable to success-
fully run OK-VIS (Leutenegger et al. 2015) on this dataset.
For comparison, we instead mimic the system of (Weiss et
al. 2012) by fusing pose estimates from LIBVISO2 (Geiger
et al. 2013) with the inertial data using an EKF. We follow
the standard KITTI evaluation metrics where we calculate
the error for 100m, 200m, . . . , 500m sequences.

0

2

4

F
-2

-F
 tr

an
sl

at
io

n
er

ro
r

(c
m

)
Distance (m)

0

1

2

F
-2

-F
 r

ot
at

io
n

er
ro

r
(°

)

Distance (m)

0

50

100

O
rie

nt
at

io
n

er
ro

r
(°

)

Distance (m)

0

100

200

T
ra

ns
la

tio
n

er
ro

r
(m

)

Distance (m)

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500

VINet (Vision only)
VINet
EKF+Viso2

Figure 7: Translation and orientation errors on the KITTI
dataset. Method A: VNet (only image data), Method B:
VINet (visual-inertial data), Method C: Viso2

Fig. 7 shows the translation and orientation errors ob-
tained on the KITTI dataset. As expected, the visual-inertial
network (VINet) outperforms the network using visual data
alone. VINet also outperms the VISO2 method in terms of

4000

translational error, however it suffers somewhat from esti-
mating orientation where the IMU-Viso2 approach performs
better. The high translational accuracy of VINet compared
to its orientation estimation can possibly be attributed to its
ability learn to predict scale from both the image data as-
well as the IMU data which is not possible in traditional
approaches.

Conclusion and Future Work

In this paper we have presented VINet, an end-to-end train-
able system for performing monocular visual-inertial aided
navigation. We have shown that VINet performs on-par with
traditional approaches which require much hand-tuning dur-
ing setup. Compared to traditional methods, VINet has the
key advantage of being able to learn to become robust to cal-
ibration errors. We believe that the VINet approach is a first
step towards truly robust visual-inertial sensor fusion. For
future work we intend to investigate the integration of VINet
into a larger system with loop-closures and map-building as
well as to perform a more in-depth analysis of the monocular
VO and its ability to deal with the scale problem in abscene
of the inertial data.

References

Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu,
R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; and Bengio,
Y. 2010. Theano: A cpu and gpu math compiler in python.
In Proc. 9th Python in Science Conf, 1–7.
Bottou, L., and Bousquet, O. 2008. The tradeoffs of large
scale learning. In Platt, J.; Koller, D.; Singer, Y.; and Roweis,
S., eds., Advances in Neural Information Processing Sys-
tems, volume 20. NIPS Foundation (http://books.nips.cc).
161–168.
Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.;
Omari, S.; Achtelik, M. W.; and Siegwart, R. 2016. The eu-
roc micro aerial vehicle datasets. The International Journal
of Robotics Research 0278364915620033.
Castle, R. O.; Klein, G.; and Murray, D. W. 2010. Combin-
ing monoslam with object recognition for scene augmenta-
tion using a wearable camera. Image and Vision Computing
28(11):1548–1556.
Costante, G.; Mancini, M.; Valigi, P.; and Ciarfuglia, T. A.
2016. Exploring representation learning with cnns for
frame-to-frame ego-motion estimation. IEEE Robotics and
Automation Letters 1(1):18–25.
Cummins, M., and Newman, P. 2008. Fab-map: Probabilis-
tic localization and mapping in the space of appearance. The
International Journal of Robotics Research 27(6):647–665.
DeTone, D.; Malisiewicz, T.; and Rabinovich, A. 2016.
Deep image homography estimation. arXiv preprint
arXiv:1606.03798.
Fischer, P.; Dosovitskiy, A.; Ilg, E.; Häusser, P.; Hazırbaş,
C.; Golkov, V.; van der Smagt, P.; Cremers, D.; and Brox,
T. 2015. Flownet: Learning optical flow with convolutional
networks. arXiv preprint arXiv:1504.06852.

Forster, C.; Carlone, L.; Dellaert, F.; and Scaramuzza, D.
2015. Imu preintegration on manifold for efficient visual-
inertial maximum-a-posteriori estimation. In Robotics: Sci-
ence and Systems XI.
Forster, C.; Pizzoli, M.; and Scaramuzza, D. 2014. Svo: Fast
semi-direct monocular visual odometry. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
15–22. IEEE.
Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R. 2013. Vision
meets robotics: The kitti dataset. The International Journal
of Robotics Research 0278364913491297.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready
for autonomous driving? the kitti vision benchmark suite.
In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, 3354–3361. IEEE.
Gui, J.; Gu, D.; Wang, S.; and Hu, H. 2015. A review of
visual inertial odometry from filtering and optimisation per-
spectives. Advanced Robotics 29(20):1289–1301.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard,
J. J.; and Dellaert, F. 2011. isam2: Incremental smoothing
and mapping using the bayes tree. The International Journal
of Robotics Research 0278364911430419.
Konda, K., and Memisevic, R. 2015. Learning visual odom-
etry with a convolutional network. In International Confer-
ence on Computer Vision Theory and Applications.
Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; and
Furgale, P. 2015. Keyframe-based visual–inertial odome-
try using nonlinear optimization. The International Journal
of Robotics Research 34(3):314–334.
Mourikis, A. I., and Roumeliotis, S. I. 2007. A multi-
state constraint kalman filter for vision-aided inertial navi-
gation. In Proceedings 2007 IEEE International Conference
on Robotics and Automation, 3565–3572. IEEE.
Pillai, S., and Leonard, J. 2015. Monocular slam supported
object recognition. arXiv preprint arXiv:1506.01732.
Salas-Moreno, R. F.; Newcombe, R. A.; Strasdat, H.; Kelly,
P. H.; and Davison, A. J. 2013. Slam++: Simultaneous lo-
calisation and mapping at the level of objects. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1352–1359.
Sibley, G.; Matthies, L.; and Sukhatme, G. 2008. A sliding
window filter for incremental slam. In Unifying perspectives
in computational and robot vision. Springer. 103–112.
Weiss, S.; Achtelik, M. W.; Lynen, S.; Chli, M.; and Sieg-
wart, R. 2012. Real-time onboard visual-inertial state es-
timation and self-calibration of mavs in unknown environ-
ments. In Robotics and Automation (ICRA), 2012 IEEE In-
ternational Conference on, 957–964. IEEE.
Zaremba, W. 2015. An empirical exploration of recurrent
network architectures. Journal of Machine Learning Re-
search.

4001

