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Abstract

Spatial patterns embedded in human faces are crucial for dif-
ferentiating posed expressions from spontaneous ones, yet
they have not been thoroughly exploited in the literature. To
tackle this problem, we present a generative model, i.e., La-
tent Regression Bayesian Network (LRBN), to effectively
capture the spatial patterns embedded in facial landmark
points to differentiate between posed and spontaneous fa-
cial expressions. The LRBN is a directed graphical model
consisting of one latent layer and one visible layer. Due to
the “explaining away” effect in Bayesian networks, LRBN is
able to capture both the dependencies among the latent vari-
ables given the observation and the dependencies among vis-
ible variables. We believe that such dependencies are crucial
for faithful data representation. Specifically, during training,
we construct two LRBNs to capture spatial patterns inherent
in displacements of landmark points from spontaneous facial
expressions and posed facial expressions respectively. During
testing, the samples are classified into posed or spontaneous
expressions according to their likelihoods on two models. Ef-
ficient learning and inference algorithms are proposed. Ex-
perimental results on two benchmark databases demonstrate
the advantages of the proposed approach in modeling spatial
patterns as well as its superior performance to the existing
methods in differentiating between posed and spontaneous
expressions.

Introduction
Distinguishing between posed and spontaneous expressions
is crucial for human-computer interaction, even human-
human interaction, since spontaneous expressions reveal
one’s real emotions, while posed expressions may disguise
one’s inner feelings.

The main components of current work on posed and spon-
taneous expression distinction consists of feature extraction
and classification. For feature extraction, most research pro-
poses temporal features and spatial features specially de-
signed for differentiating posed expressions from sponta-
neous ones. Temporal features include duration, amplitude,
speed, acceleration, symmetry and trajectory (Cohn and
Schmidt 2004) (Valstar et al. 2006) (Dibeklioglu, Salah, and
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Gevers 2015) (Seckington 2011), and spatial features consist
of distance and angular features (Dibeklioglu et al. 2010). In
addition to defining posed vs spontaneous expression speci-
fied features, some research adopts commonly used features
for expression recognition, such as Gabor wavelet features
(Littlewort, Bartlett, and Lee 2009), Completed local binary
patterns from Three Orthogonal Planes (CLBP-TOP) (Pfis-
ter et al. 2011a), scale-invariant feature transform (SIFT)
appearance features and facial animation parameters (FAP)
geometric features (Zhang, Tjondronegoro, and Chandran
2011). Instead of using hand-crafted features, Gan et al.
(Gan et al. 2015) proposed to learn features using a deep
Boltzmann machine. After feature extraction, both static and
dynamic machine learning methods have been investigated
to distinguish posed expressions from spontaneous expres-
sions. The static classifiers include linear discriminant anal-
ysis (Cohn and Schmidt 2004), support vector machines
(Littlewort, Bartlett, and Lee 2009), Adaboost (Littlewort,
Bartlett, and Lee 2009), gentle Boost and relevance vector
machines (Valstar et al. 2006). The dynamic classifiers in-
clude hidden Markov models (Dibeklioglu et al. 2010) and
dynamic Bayesian networks (Seckington 2011). The static
classifiers capture the mapping between extracted features
and expressions ignoring the dynamic aspects of expres-
sions, while the dynamic ones can model the temporal dy-
namics. All these research demonstrates the progress in dis-
tinguishing posed and spontaneous expressions. However,
most current works employ different features and classifiers
for posed and spontaneous expression distinction, without
explicitly capturing spatial patterns embedded in posed and
spontaneous expression respectively, and leverage such spa-
tial patterns for posed and spontaneous expression distinc-
tion. We call them feature-driven methods.

Behavior research indicates that posed and spontaneous
expressions are different from each other in both temporal
and spatial patterns. Spatial patterns mainly consist of the
movement of facial muscles that show up as the occurrence
of facial action units (AUs). For example, for spontaneous
disgust, the three most frequently observed AUs are AU6,
AU7 and AU10, while for posed disgust, they are AU4, AU7
and AU17. For posed sadness, the three most frequently ob-
served AUs are AU4, AU7, AU17, and this pattern doesn’t
apply to spontaneous sadness (Namba et al. 2016). Both
zygomatic major and orbicularis oculi are contracted dur-
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ing spontaneous smiles, while only zygomatic major is con-
tracted for posed smiles (Ekman and Friesen 1982); the con-
traction of zygomatic major is more likely to occur asym-
metrically for posed smiles than spontaneous ones (Ekman,
Hager, and F. 1981). These observations from nonverbal
behavior research prove that spatial patterns embedded in
posed and spontaneous expressions are crucial for differen-
tiating posed expressions from spontaneous ones.

Only recently, Wang et al. (Wang et al. 2015) proposed
multiple Bayesian networks (BN) to capture posed and
spontaneous spatial facial patterns respectively given gen-
der and expression categories. We call it a model-based
method. However, due to the first-order Markov assump-
tion of their model, only the the local dependencies among
geometric features are captured. Compared with their BN
model, restricted Boltzmann machines (RBM) can model
higher-order dependencies among random variables by in-
troducing a layer of latent units (Hinton 2010). Wu (Wu
and Wang 2016) proposed to use restricted Boltzmann ma-
chines to explicitly model complex joint distributions over
feature points, i.e., spatial patterns, embedded in posed and
spontaneous expressions respectively. Specifically, they con-
structed multiple RBMs to model spatial patterns from facial
geometric features. Their experimental results demonstrate
the effectiveness of RBMs in modelling global spatial pat-
terns as well as its superior posed and spontaneous expres-
sion distinction performance over existing approaches.

Although RBM can effectively capture global dependen-
cies among visible units through introducing hidden units,
hidden units are independent to each other given visible
units. Introducing dependencies among hidden units will in-
crease the model power in explaining the patterns embedded
in the visible units. Unlike RBM, which is an undirected
latent variable model, LRBN is a directed latent variable
model. It can better represent the visible units through di-
rected links among hidden units and visible units. Due to
the strong ability for data representation, LRBN can be ap-
plied to wide range of domains for both data representation
and classification. Therefore, in this paper, we propose em-
ploying the LRBN to effectively capture the high-order and
global dependencies among facial geometric features.

During training, we train two LRBN models using posed
and spontaneous expression data respectively. The visible
variables of LRBN represent the displacements of feature
points. Thus, spatial patterns of posed and spontaneous ex-
pressions are captured by the dependences among visible
nodes and the dependencies among hidden nodes of the two
LRBN models respectively. During testing, the images are
assigned the expression type labels whose models have the
maximum likelihood. Experimental results on two bench-
mark databases show the advantage of our proposed method
and demonstrate the strong ability of the LRBN model to
capture spatial patterns which are helpful to differentiate be-
tween posed and spontaneous expressions.

Proposed method
The LRBN is a special kind of Bayesian Network, consisting
of one visible layer and one latent layer, every latent variable

Figure 1: The framework of capturing spatial patterns.

connects to every visible variable with a directed edge as
shown in Fig. 1 .

According to the chain rule in Bayesian Networks, the
joint probability of all variables is factorized into the product
of prior probabilities and conditional probabilities as shown
in Eq. 1,

P (x,h) =

nh∏
j=1

P (hj)

nd∏
i=1

P (xi|h) . (1)

The prior probability for a latent variable hj is defined as
Eq. 2,

P (hj = 1) = sigm(dj) , (2)
where sigm(dj) = 1/(1 + exp(−dj)) is the sigmoid func-
tion, and dj is the parameter. This formulation is essentially
a Bernoulli distribution.

The conditional probability of a visible variable given all
the latent variables is defined as a linear Gaussian, as shown
in Eq. 3,

P (xi|h) ∼ N (
wT

i h+ bi, σi

)
, (3)

where the mean is a linear combination of the values of
the latent variables. wij is the weight for node hj and xi;
bi is a constant term; and σi is the standard deviation. Thus,
the LRBN can be viewed as a mixture of Gaussian with the
number of components exponential in the number of latent
variables.

Plugging in the prior distributions and conditional distri-
butions, the joint distribution of visible variables and hidden
variables has the following formulation,

PΘ(x,h) =
∏
j

exp(djhj)

1 + exp(dj)

∏
i

N (xi : w
T
i h+ bi, σi)

=
exp(−ψΘ(x,h))

(2π)nd/2
∏

i σi

∏
j (1 + exp(dj))

(4)

where Θ = {W ,σ, b,d}, and

ψΘ(x,h) =
∑
i

(xi − bi)
2

2σ2
i

−
∑
i

xi − bi
σ2
i

wT
i h

+
∑
i

1

2σ2
i

(wT
i h)

2 − dTh ,

(5)
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Compared with the Gaussian-Bernoulli Restricted Boltz-
mann Machine (GRBM) (Hinton and Salakhutdinov 2006),
the LRBN adopts directed links between visible nodes and
hidden nodes instead of undirected links. This leads to an
extra term

∑
i

1
2σ2

i
(wih)

2 in Eq. (5) compared with the en-
ergy function of GRBM. This extra term explicitly captures
the relationship among latent variables. The dependencies
among the latent layer given the visible layer can help better
explain the patterns in the input data. Furthermore, unlike
the GRBM, the LRBN has no intractable partition function
issue, because the joint distribution is obtained by multiply-
ing all the prior probabilities and conditional probabilities.

Capturing spatial patterns through model learning
of LRBN
We construct two LRBN models using posed and sponta-
neous data respectively. The input of the models are the dis-
placements of facial feature points. Through model learning,
the learned LRBN can capture both dependencies among
visible variables, i.e., feature point displacements, and the
dependencies among hidden variables. Thus, it can repre-
sent the feature point displacements faithfully, and capture
the spatial patterns embedded in posed or spontaneous ex-
pressions successfully.

Consider the model defined in the above subsection, the
goal of parameter learning is to estimate the parameters Θ
given a set of data samples D = {x(m)}Mm=1 by maximizing
the marginal log-likelihood,

L(D; Θ) =
∑
m

logPΘ(x
(m))

=
∑
m

log

(∑
h

PΘ(x
(m),h)

)
.

(6)

This objective function can be maximized through gradient
ascent. The exact gradient with respect to a parameter θ is,

�θL(D; Θ) =
∑
m

∑
h

PΘ(h|x(m))
∂ − EΘ(x

(m),h)

∂θ
.

(7)
Computing the gradient has two difficulties:

1. Computing the posterior probability PΘ(h|x) is in-
tractable even for one configuration h, also known as the
intractable inference;

2. There are exponentially terms to evaluate in the summa-
tion.
To address the first issue, typically variational infer-

ence algorithms are employed to approximate the true pos-
terior distribution PΘ(h|x) with a factorized distribution
QΦ(h|x), by minimizing their KL-divergence,

KL(QΦ(h|x)‖PΘ(h|x)) . (8)

Some examples are the mean field algorithm (Saul, Jaakkola,
and Jordan 1996), the wake-sleep algorithm (Hinton et al.
1995), and inference networks (Mnih and Gregor 2014;
Kingma and Welling 2014; Rezende, Mohamed, and Wier-
stra 2014; Gregor, Mnih, and Wierstra 2014). However, such

approximations introduce a gap between the true posterior
and the approximate ones, since the dependencies are not
captured in the approximate distribution. In this work, we in-
tend to preserve such dependencies by directly using the true
posterior probability. Specifically, we employ Gibbs sam-
pling to draw samples for the latent variables. One latent
variable are sampled conditioned on all the other variables.
Therefore, dependencies are preserved to some degree.

To address the second issue, typically Markov Chain
Monte Carlo (MCMC) methods are used to estimate the
summation using samples. An intuitive estimation is,

�θL(D; Θ) ≈ 1

n

∑
m

∑
s

∂ − EΘ(x
(m),h(m,s))

∂θ
, (9)

where h(m,1), ...,h(m,n) are n samples from P (h|x(m)). In
this work, we employ the stochastic approximation proce-
dure (SAP) framework (Robbins and Monro 1951), in which
only one sample of the latent variables are used to estimate
the gradient, so multiple Gibbs chains are avoided.

Under some mild assumptions, the SAP is guaranteed to
converge to a local optimum (Yuille 2006) if the learning
rate γt satisfies,

∞∑
t=1

γt = ∞ ,

∞∑
t=1

γ2
t < ∞ .

(10)

The gradient is then estimated as,

�θL(D; Θ) ≈
∑
m

∂ − EΘ(x
(m),h(m))

∂θ
, (11)

The derivative has a simple formulation because the energy
function is merely a linear function of the parameters,

∂ − EΘ(x
(m),h(m))

∂wij
=

h
(m)
j (x

(m)
i −wT

i h
(m))

σ2
i

. (12)

The gradient of other parameters can be derived similarly.
To preserve the dependencies among latent variables, we

draw a sample from P (h|x) through Gibbs sampling, in
which one latent node is sampled with all others fixed,

ht
j ∼ P (hj |x,ht−1

−j ) . (13)

where h−j denotes the set of all latent variables except hj .
The procedure is repeated for several iterations until mixing,
and then a sample is collected for updating the parameters.
Due to the requirement of taking Gibbs samples for the la-
tent variables, the training complexity is nh times greater
than that of an RBM, if the same epochs are applied to both
models.

To speed up the learning phase and scale up to large
databases, we employ the stochastic gradient ascent algo-
rithm, which estimates the gradient using a minibatch of
training samples. Several passes is made over the train-
ing set until convergence. In practice, LRBN usually needs
fewer epochs to converge than RBMs do. In Algorithm 1 we
present the SAP for learning an LRBN.
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Algorithm 1 Parameter Learning for an LRBN.

Input database D = {x(m)}Mm=1;
Output parameters Θ = {W ,σ, b,d}.

1: Randomly initialize the parameters Θ;
2: Generate Gibbs samples at time step 0;
3: while parameters not converged, do
4: Randomly choose a batch of data samples x;
5: Perform Gibbs sampling to obtain one sample of

the latent variables for one input data, h(t) ∼
P (h|x,h(t−1));

6: Compute the gradient using Eq. 12;
7: Update the parameters,

θt = θt−1 + γt�θL(x) .
8: end while

Posed and spontaneous expression recognition
through LRBN Inference
After training two models M1 and M2 to represent the
posed and spontaneous expression respectively, given the
features of a test image x, binary classification is performed
based on its likelihoods on the two models P (x|Mi).

Directly computing P (x) is intractable due to the expo-
nentially many terms in the summation,

P (x) =
∑
h

P (x,h) . (14)

In this work, we estimate the log-probability using the
conservative sampling-based log-likelihood (CSL) method
(Bengio, Yao, and Cho 2014). The CSL estimator is based
on a collection samples draws from the model given the in-
put variables,

log P̂ (x) = logmeanh∈SP (x|h) , (15)

where S is a set of samples h of the latent variables col-
lected from P (h|x). It is shown (Bengio, Yao, and Cho
2014) that the CSL estimator approaches to the ground truth
log-likelihood as the length of the Markov chain approaches
to infinity, and the expectation of the estimator is a lower
bound of the true log-likelihood.

Experiments
Experimental conditions
As far as we know, there are several databases that include
both posed and spontaneous expressions, such as the BBC
smile database, the UvA-Nemo smile database (Dibek-
lioğlu, Salah, and Gevers 2012), the MAHNOB-Laughter
database (Petridis, Martinez, and Pantic 2012), the sponta-
neous vs. posed facial expression (SPOS) database (Pfister
et al. 2011b) and the USTC-NVIE (NVIE) database (Wang
et al. 2010). The first four databases only contain the smile
expression, while the last two contain six basic expression
categories ( i.e. happiness, sadness, anger, surprise, fear and
disgust). We want to conduct experiments in the general case
instead of in the case of being given a specific expression,
thus we adopted the SPOS database and the NVIE database
in our experiments.

Table 1: Experimental results on SPOS and NVIE databases

SPOS database NVIE database

Confusion matrix
Posed Spontaneous Posed Spontaneous

Posed 49 35 501 13
Spontaneous 21 129 0 514

Accuracy(%) 76.07 98.74
F1 score 0.64 0.98

The SPOS database captures posed and spontaneous ex-
pressions from 7 subject. The SPOS database consists of 84
posed and 147 spontaneous expressions, and each expres-
sion sequence starts with a onset frame and ends with a apex
frame. In our experiments, the onset and apex frames of all
the expression sequences are used.

The NVIE database provides both posed and spontaneous
expressions. The onset and apex frames are provided for
both posed and spontaneous subsets in the database. Both
apex and onset frames from all posed and spontaneous ex-
pression samples, which come in pairs from the same sub-
ject are selected. During this procedure, we discarded spon-
taneous samples whose maximum evaluation value on six
expression categories are zero, since these samples have no
expression. Finally 1028 samples, including 514 posed and
514 spontaneous expression samples from 55 male and 25
female subjects, are selected.

Following Wang et al. (Wang, Wu, and Ji 2016), the dis-
placement of 27 feature points (as shown in Fig. 1) be-
tween apex frames and onset frames are used as the fea-
tures. Then, the features are normalized using the Z-score
normalization (Abdi and Williams 2010), which makes fea-
tures satisfy standard Gauss distribution and become unit-
free. For the SPOS database, we adopt leave-one-subject-
out cross-validation. For the NVIE database, we divide sub-
jects into 10 groups, and each group contains 8 subjects,
then we apply leave-one-group-out cross validation. During
training phase, we limit the number of lattent nodes to avoid
complex networks which may cause overfitting. During test
phase, for each test sample, 100 thousand samples are col-
lected from a Markov chain to approximate the exact value
of log-likelihood. Accuracy and F1-score (Powers 2011) are
adopted as evaluation metrics.

Experimental results and analysis
Results and analysis of posed and spontaneous expres-
sion distinction The experimental results on posed and
spontaneous expression distinction are shown in Table 1.
From Table 1, we can find that the proposed LRBN model
achieves good performance of posed and spontaneous ex-
pression recognition on both the SPOS database and the
NVIE database, with accuracy of 76.07% and 98.94%, as
well as 0.64 and 0.99 of F1 score respectively. It demon-
strates the effectiveness of LRBN models in capturing facial
spatial patterns for posed and spontaneous expression recog-
nition.

Comparing the results on two databases, we find that the
results on the NVIE database are much better than those
on the SPOS database. Since the number of samples of
the NVIE database is nearly 5 times more than that of the
SPOS database, and learning a LRBN model usually re-
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quires enough training data, it is reasonable that the pro-
posed method works better on the NVIE database.

Analysis of spatial patterns inherent in feature points
To investigate the spatial patterns embedded in feature point
displacements for posed and spontaneous expressions, we
conducted t-test to analyze whether there exist significant
differences between the displacements of posed expressions
and those of spontaneous expressions. The p-values are
shown in Table 2. P-value less than 0.05 means significant
difference. The results show that there exist more statisti-
cally significant differences between posed and spontaneous
expressions on the NVIE database than those on the SPOS
database. It also suggests there exists database bias. In addi-
tion, the displacements on the Y axis are significantly larger
than those on the X axis for both databases. It is reasonable
since the muscle movements on the Y axis are more obvi-
ously than those on the X axis.

We further analyze the spatial patterns embedded in fea-
ture point displacements for each kind of posed and spon-
taneous expressions (as shown in the supplementary), and
find that the position with significantly differences between
posed and spontaneous expressions has its own pattern for
each expression. For example, for anger and surprise, there
exists very few points that have significantly differences be-
tween posed and spontaneous expressions on X axis while
existing much more points with significantly differences
on Y axis; For sadness expression on the SPOS database,
feature points 20-27 show significant differences between
posed and spontaneous expression. This is consistent with
the observation in (Namba et al. 2016), i.e., AU25 is one
of the most frequently observed AUs in spontaneous expres-
sion but not in posed ones. Furthermore, on both databases,
four expressions, i.e. disgust, fear, surprise and sadness,
show greater displacements for posed expressions. On aver-
age, posed expressions also show greater displacements for
all of the six expressions.

Analysis of spatial patterns captured by LRBN In order
to know the mechanism of our LRBN model for capturing
spatial patterns embedded in posed and spontaneous expres-
sions, we visualize the parameter W in Fig. 2. Wi is the set
of parameters wij which ties the visible node vi and the la-
tent node hj’s. Intuitively, the greater the parameter Wi is,
the more vi affects the captured spatial patterns. From Fig. 2,
we can find that the W learning from posed expressions are
quite different with that learning from spontaneous expres-
sions on both databases, further suggesting that the spatial
patterns embedded in posed and spontaneous expressions
are different. Furthermore, we analyze the captured spatial
patterns inherent in posed and spontaneous expression for
each kind of expressions. As shown in Fig. 3 and Fig. 4,
we take the captured spatial patterns of disgust and sadness
from the SPOS databases for example. From Fig. 3, we can
find the weights of feature points 20-24 of spontaneous dis-
gust are larger than those of posed one, demonstrating the
more importance of the facial area for spontaneous expres-
sions. This is consistent with the observation that AU10 (i.e.
the upper lip raiser, corresponds to the feature points 20-
24) occurs more often in spontaneous disgust than in posed

Table 2: P-values of difference between posed and sponta-
neous features on SPOS and NVIE databases

SPOS database NVIE database
X Y X Y

1 0.080 0.001 0.015 1.71e-13
2 0.125 4.86e-6 0.021 5.73e-10
3 0.050 1.58e-6 0.025 2.48e-24
4 0.065 1.12e-5 0.080 8.36e-15
5 0.124 5.55e-5 0.006 2.29e-6
6 0.162 0.005 0.006 1.02e-7
7 0.069 0.08 0.919 7.92e-17
8 0.071 0.017 0.428 0.046
9 0.038 0.079 0.906 1.61e-22
10 0.062 0.029 0.677 0.309
11 0.136 0.007 0.276 1.91e-22
12 0.192 0.028 7.82e-11 0.005
13 0.324 0.055 0.893 2.01e-5
14 0.226 0.061 0.024 0.001
15 0.061 0.038 0.020 0.470
16 0.038 0.113 0.378 0.803
17 0.113 0.082 0.001 0.046
18 0.082 0.082 0.407 2.03e-14
19 0.199 0.199 1.16e-11 6.27e-18
20 0.768 0.204 0.005 6.61e-8
21 0.173 0.436 0.973 0
22 0.123 0.396 0.467 0.002
23 0.217 0.299 0.795 0
24 0.740 0.446 0.785 7.17e-9
25 0.148 0.005 0.191 0.084
26 0.116 0.002 0.357 0.001
27 0.555 0.006 0.251 0.069

one, and AU10 is one of the three most frequently observed
AUs in spontaneous disgust (Namba et al. 2016) . From
Fig. 4(a), we can find that the weights of the points 1-6 in
the Y axis are greater than most of the weights of the other
points, demonstrating that points 1-6 play important roles in
posed sadness. Since the feature points 1-6 correspond to the
area of eyebrows, and these points mainly move along the Y
axis, their weights in the X axis are not obvious. This fur-
ther confirms that AU4, corresponding to feature points 1-6,
is one of the three most frequently observed AUs in posed
sadness (Namba et al. 2016) .

(a) (b)

Figure 2: (a) The parameter W ′
is of the model trained on

SPOS database; (b) The parameter W ′
is of the model trained

on NVIE database
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(a) (b)

Figure 3: (a) The parameter W ′
is of disgust expressions

along the X axis; (b) The parameter W ′
is of disgust expres-

sions along the Y axis.

(a) (b)

Figure 4: (a) The parameter W ′
is of sadness expressions

along the X axis; (b) The parameter W ′
is of sadness expres-

sions along the Y axis.

Comparison with related work
We compare our work with four related works, i.e. Zhang et
al.’s (Zhang, Tjondronegoro, and Chandran 2011), Pfister et
al.’s (Pfister et al. 2011b), Wang et al.’s (Wang, Wu, and Ji
2016) and Wang et al.’s (Wang et al. 2015). All the related
works conducted experiments on either the SPOS database
or the NVIE database, or both databases.

The first two works are based on the feature-driven
method. Zhang et al. differentiated between posed and spon-
taneous expressions using the SIFT appearance based fea-
tures and FAP features. When they conducted experiments
on the NVIE database, they selected 3572 posed and 1472
spontaneous images as the samples. Since Zhang did not
provide enough details about how they selected samples, we
can not obtain the same samples as theirs. We just compare
the experimental results for reference. Pfister et al. proposed
the spatio-temporal local texture descriptor and use it for
posed and spontaneous expression differentiation. They con-
ducted experiments on the SPOS database.

The last two works employ model-based approaches.
Wang et al. (Wang et al. 2015) proposed multiple Bayesian
networks to capture posed and spontaneous spatial fa-
cial patterns from feature points respectively. Wang et al.
(Wang, Wu, and Ji 2016) proposed to use restricted Boltz-
mann machines to explicitly model complex joint distribu-
tions over feature points.

The comparison results are shown in Table 3. From Table
3, we can obtain the following observations:

First, the three model-based approaches outperform the
two feature-driven approaches on both databases. The two

Table 3: Comparison with related works

Accuracy(%) F1 score

SPOS database

L. Zhang et al. (Zhang, Tjondronegoro, and Chandran 2011) 72.00 /
Wang et al. (Wang et al. 2015) 74.79 0.67

Wu et al. (Wang, Wu, and Ji 2016) 76.07 0.64
Ours 76.07 0.64

NVIE database

Pfister et al. (Pfister et al. 2011b) 79.43 /
Wang et al. (Wang et al. 2015) 91.63 0.91

Wu et al. (Wang, Wu, and Ji 2016) 92.61 0.92
Ours 98.74 0.98

feature-driven works use appearance features and geomet-
ric features, while the three model-based approaches adopt
geometric features only. Although two feature-driven works
extracted more complex features, model-based approaches
achieve better performance. This demonstrates that the
model-based approaches can successfully capture spatial
patterns embedded in posed and spontaneous expressions,
and effectively leverage such spatial patterns for posed and
spontaneous expression distinction.

Second, among the three model-based approaches, our
proposed LRBN model achieves the best performance with
highest evaluation metrics in most cases. Specifically, We
achieve the same performance as Wang et al.’s (Wang, Wu,
and Ji 2016), and better performance than Wang et al.’s
(Wang et al. 2015) on the SPOS database, and much better
performance on the NVIE database. Unlike BN, which can
only model local dependencies among variables, the pro-
posed LRBN can capture global dependencies among vari-
ables through introducing hidden units. Furthermore, unlike
the RBM, which capture global dependencies among visible
units through introducing hidden units, but hidden units are
independent to each other given visible units, the proposed
LRBN can capture the dependencies among the latent vari-
ables given the observation. These dependencies are crucial
for faithful data representation, demonstrated by the superior
performance of the LRBN.

Conclusion
In this paper, we propose LRBNs to explicitly model com-
plex joint distributions over feature points, i.e., spatial pat-
terns, embedded in posed and spontaneous expressions re-
spectively, and leverage such spatial patterns for posed and
spontaneous expression distinction. Specifically, we con-
struct two LRBNs to model spatial patterns embedded in
posed and spontaneous expressions respectively. During
training, an efficient algorithm is proposed to learn the pa-
rameters of LRBNs. During testing, the samples are clas-
sified into posed or spontaneous expressions according to
the LRBN with the largest likelihood, which is estimated
by CSL method. Experimental results on two benchmark
databases demonstrate the power of the proposed model in
capturing spatial patterns as well as its advantage over ex-
isting methodologies for posed and spontaneous expression
distinction.
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