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Abstract

We propose a scalable approach to learn video-based ques-
tion answering (QA): to answer a free-form natural language
question about the contents of a video. Our approach auto-
matically harvests a large number of videos and descriptions
freely available online. Then, a large number of candidate QA
pairs are automatically generated from descriptions rather
than manually annotated. Next, we use these candidate QA
pairs to train a number of video-based QA methods extended
from MN (Sukhbaatar et al. 2015), VQA (Antol et al. 2015),
SA (Yao et al. 2015), and SS (Venugopalan et al. 2015). In or-
der to handle non-perfect candidate QA pairs, we propose a
self-paced learning procedure to iteratively identify them and
mitigate their effects in training. Finally, we evaluate perfor-
mance on manually generated video-based QA pairs. The re-
sults show that our self-paced learning procedure is effective,
and the extended SS model outperforms various baselines.

Introduction

Understanding video contents at human-level is a holy grail
in visual intelligence. Towards this goal, researchers have
studied intermediate tasks such as detection of objects and
events, semantic segmentation, and video summarization.
Recently, there has been increased interest in many tasks that
bridge language and vision, which are aimed at demonstrat-
ing abilities closer to human-level understanding. For exam-
ple, many researchers (Zeng et al. 2016b; Xu et al. 2016;
Pan et al. 2016b; 2016a; Yu et al. 2016; Hendricks et al.
2016) have worked on video captioning and generated nat-
ural language descriptions of videos recently. Despite the
great progress, video captioning suffers from similar issues
as image captioning: (1) it is fairly easy to generate a rele-
vant, but non-specific, natural language description (Vinyals
et al. 2015); (2) it is hard to evaluate the quality of the gen-
erated open-ended natural language description.

An alternative task that addresses these issues is visual
question answering (QA) (Antol et al. 2015), which brings
two important properties: (1) specific parts of a visual ob-
servation need to be understood to answer a question; (2)
the space of relevant answers for each question is greatly re-
duced. Thanks to these properties, visual QA has become a
viable alternative towards human-level visual understanding
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Figure 1: Illustration of our approach. Given harvested
videos and descriptions (see harvested data section), our sys-
tem automatically generate question-answer pairs from de-
scriptions (see questions generation section (QG section)).
Then our VideoQA model takes a video and the generated
questions as input and outputs the corresponding answers
(see our method section). Anspred denotes the predicted an-
swer and Ansgt denotes the ground truth answer.

at a finer level of detail. Moreover, with the reduced answer
space, simple metrics such as standard accuracy (percentage
of correct answers) can be used to evaluate performance.

The biggest drawback of visual QA comes from the
significant human efforts required to build benchmarking
datasets. Most current collection techniques (Antol et al.
2015; Malinowski and Fritz 2014) require humans to view
the visual data and manually create QA pairs for both train-
ing and testing. Furthermore, the situation becomes worse
when the data consists of videos rather than images. One of
the earliest attempts to create a QA benchmark for videos
is the MovieQA dataset by (Tapaswi et al. 2016). Since it
is expensive to hire annotators to watch entire movies, plot
synopses are used as a proxy during the first step. Human
annotators may form any number and type of questions for
each plot paragraph. Given the initial set of questions, anno-
tators are asked to localize context in the movie to answer
the question. Annotators may correct the questions if they
cannot localize context in the movie. Finally, annotators pro-
vide one correct answer and four wrong answers. In total,
MovieQA consists of 14944 QA pairs from 408 movies.
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The MovieQA dataset and the approach to collect data
have the following limitations. First, it is unknown how to
create a large-scale QA dataset with videos in the wild with-
out available plots to be used as a proxy. Second, the task
of picking one correct answer out of five candidate answers
is less challenging than the task with 1K answer space in
VQA (Antol et al. 2015).

In this paper, we aim at building a video QA dataset that
does not require the manual construction of QA pairs for
training (see Fig. 1 for our workflow). We propose to lever-
age the fact that Internet videos with user-curated descrip-
tions can be easily harvested at a large-scale. We adopt a
state-of-the-art question generation method (Heilman and
Smith 2010) to generate candidate QA pairs automatically
from descriptions. With this approach, we have collected a
large-scale video QA dataset with 18100 videos and 175076
candidate QA pairs.

While the automatic generation of QA pairs can scale very
well, it is not perfect. In fact, we observe that 10% of the au-
tomatically generated pairs are irrelevant/inconsistent to the
visual content in the corresponding video. As we will show,
current supervised learning frameworks for video QA can
be harmed by non-perfect training QA pairs. To tackle this
challenge, we introduce a novel ratio test to automatically
identify non-perfect candidate QA pairs and a self-paced
learning procedure to iteratively train a better model. Fur-
thermore, we demonstrate that this strategy is widely appli-
cable by extending several existing models that bridge vision
and language to tackle the problem of video-based QA.

We extend four methods for our video-based QA task:
MN (Sukhbaatar et al. 2015), VQA (Antol et al. 2015),
SA (Yao et al. 2015), and SS (Venugopalan et al. 2015). We
empirically evaluate their performance on 2000 videos asso-
ciated with about 2500 manually generated ground truth QA
pairs. Our results show that self-paced learning is effective
and the extended SS method outperforms other baselines.

Related Work
Image-QA. There has been a significant recent interest in
image-based visual question answering (Bigham et al. 2010;
Geman et al. 2014; Malinowski and Fritz 2014; Malinowski,
Rohrbach, and Fritz 2015; Antol et al. 2015; Gao et al. 2015;
Noh, Seo, and Han 2016; Andreas et al. 2016; Ma, Lu, and
Li 2016), where the goal is to answer questions given a sin-
gle image as visual observation. In the following, we dis-
cuss a few of them which have collected their own Image-
QA dataset. (Bigham et al. 2010) use crowdsourced work-
ers to complete Image-QA task asked by visually-impaired
users in near real-time. (Geman et al. 2014; Malinowski
and Fritz 2014) are pioneers on automatic visual ques-
tion answering, but only consider question-answer pairs re-
lated to a limited number of objects, attributes, etc. (Mali-
nowski and Fritz 2014) also propose a new evaluation met-
ric (WUPS) that accounts for word-level ambiguities in the
answers, which we adopt for our experiments. (Malinowski,
Rohrbach, and Fritz 2015) further propose a sequence-to-
sequence-like model for Image-QA and extend their previ-
ous dataset (Malinowski and Fritz 2014). (Antol et al. 2015)
manually collected a large-scale free-form and open-ended

Image-QA dataset. They also propose a model which em-
beds question and image into a joint representation space.
(Gao et al. 2015) collected a Freestyle Multilingual Image
Question Answering (FM-IQA) dataset consisting of Chi-
nese question-answer pairs and their English translation.
They also propose a sequence-to-sequence-like model with
two set of LSTMs: one for questions and one for answers.
Most methods require being trained with manually collected
visual QA data, which must be correct. In contrast, we pro-
pose a novel way to harvest and automatically generate our
own video QA dataset, which scales to an enormous num-
ber of QA pairs with the cost of potentially containing non-
perfect QA pairs. This creates a challenge to existing meth-
ods, for which leveraging our large number of examples is
risky due to potentially non-perfect training examples. We
tackle this issue by introducing a self-paced learning proce-
dure to handle non-perfect QA pairs during training.

Question generation. Automatic question generation is an
active research topic by itself. Most existing question gen-
eration methods (Rus and Lester 2009; Rus and Graessar
2009; Gates 2008) focus on generating questions in spe-
cific domains such as English as a Second Language (ESL).
For our purposes, it is important to generate a diverse set
of QA pairs that can match the open nature of the user-
generated video domain. In particular, we adopt the method
from (Heilman and Smith 2010) to generate candidate QA
pairs from video description sentences. Their method con-
sists of a statistical ranking based framework for the gener-
ation of QA pairs in open domains. In a similar spirit, (Ren,
Kiros, and Zemel 2015) propose to automatically generate
QA pairs from image description for the image-based QA
task. However, they focus on generating high-quality ques-
tions by constraining their structure to four types of ques-
tions: objects, numbers, color, and location-related ques-
tions. In contrast, our goal is to generate an enormous num-
ber of open-domain questions that can be used to train data-
demanding models such as deep learning models.

Video-QA. In contrast to the Image-QA task, video-based
QA is a much less explored task. (Tu et al. 2014) have stud-
ied joint parsing of videos and corresponding text to an-
swer queries. (Tapaswi et al. 2016) recently collect a Mul-
timodal QA dataset consisting movie clips, plot, subtitle,
script, and Described Video Service (DVS). Similar to most
Image-QA datasets, they ask human annotators to generate
multiple choice QA pairs. This approach requires an enor-
mous amount of human efforts since annotators must verify
that the context of the answer to the question can be local-
ized in the movie. (Zhu et al. 2015) collect a larger video-
based QA dataset with 390744 fill-in-the-blank questions
automatically generated from other manually created video
caption datasets. Our proposed method focus on answering
free-form natural language questions rather than a fill-in-
the-blank questions. Moreover, our videos and descriptions
are harvested from an online video repository without any
additional manual effort to generate descriptions. Hence,
we believe our proposed method further advances towards
a large-scale setting for the video-based QA task.
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Q: What struggled with its balance?
A: This kitten
Q: Did it fall off?
A: Yes
Q: Does cute kitten jump into man’s hands?
A: No

Q: Who suddenly finds herself in a fight for her 
scarf?
A: The woman
Q: Who starts tug of war with tourists scarf?
A: Baby elephant

Q: Does the guy do his backflip successfully?
A: No
Q: Where does the guy attempts back flips?
A: Beach
Q: Did the man attempt a backflip off the diving board?
A: No

Automatically-generated QA pairs Human-generatedQA pairs

Figure 2: Sample videos and question-answer pairs in our Video-QA dataset. This dataset contains 18100 open-domain videos,
including 151263 and 21352 automatically generated question-answer pairs in the training and validation sets (Left-panel) and
2461 human-generated question-answer pairs in the testing set (Right-panel).

Video Question Answering Dataset

We describe the harvested data for our new Video Question
Answering (Video-QA) dataset. We start by crawling an on-
line curated video repository (http://jukinmedia.com/videos) to
collect videos with high-quality descriptions.

Harvested Data1

Internet videos. We collected 18100 open-domain videos
with average duration of 1.5 minutes (45 seconds median).
Our videos are typically captured from handheld cameras, so
the video quality and amount of camera motion vary widely.
Descriptions. Originally, each video is associated with a few
description sentences submitted by the video owner. Then,
staff editors of the video repository curate these sentences by
removing abnormal ones. As a result, there are typically 3-5
description sentences for each video, as shown in Fig. 1. The
description contains details of the scene (e.g., backyard),
actor (e.g., the girl), action (e.g., score), and possibly non-
visual information (e.g., practice for her World Cup debut).

Questions Generation (QG)

Candidate QA pairs. We apply an state-of-the-art question
generation method (Heilman and Smith 2010) to automat-
ically generate candidate QA pairs (auto-QG) for each de-
scription sentence. We expect that some candidate QA pairs
are not perfect. In our method section, we will describe our
strategy to handle these non-perfect QA pairs.
Generating questions with the answer No. The state-of-
the-art question generation method (Heilman and Smith
2010) can only generate Yes/No questions with the answer
Yes. In order to obtain a similar number of questions with
answer No, we use the existing Yes/No questions of each
video to retrieve similar Yes/No questions associated to other
videos. Since the retrieved questions are most likely irrele-
vant/inconsistent with respect to the video content, we as-
sign No as their answer. In total, we have 174, 775 candi-
date QA pairs. Examples are shown in Fig. 2. Among them,
151062 QA pairs from 14100 videos are used for training,
and 21252 QA pairs from 2000 videos are used for valida-
tion. The remaining 2000 videos are used for testing.

1Available at http://aliensunmin.github.io/project/video-
language/

Figure 3: Question and answer distribution. (a) Question dis-
tribution based on the words that start the question. (b) An-
swer (Yes/No answers excluded) distribution on eight man-
ually defined categories. Two typical answers in each cate-
gory are also shown.

Verified QA pairs. To improve the quality of QA pairs gen-
erated by auto-QG, we ask users on Amazon Mechanical
Turk to manually clean the subset of candidate QA pairs
in two steps. First, each turker is given five QA pairs cor-
responding to one video. The turker decides whether each
QA pair is correct, irrelevant, or can-be-corrected. We move
QA pairs selected as can-be-corrected into the second step,
where we ask turkers to correct each QA pair. Only a small
portion (about 10%) of QA pairs require the second step.
Human-generated QA pairs. To evaluate Video-QA per-
formance, we collect 2461 human generated QA pairs as-
sociated with the testing videos. First, in-house annotators
remove descriptions which are irrelevant to the video con-
tent. Then, we ask Amazon Mechanical Turk (AMT) work-
ers to generate QA pairs according to the titles and descrip-
tions. This process is time-consuming, similar to the proce-
dure used in MovieQA (Tapaswi et al. 2016). To encourage
diversity in the QA pairs, each video is assigned to two dif-
ferent workers. Finally, we keep the QA pairs which have
answers within the union set of the answers in training.

Questions and Answers Analysis

Questions. We categorize questions based on the words that
start the question and show their distribution in Fig.3(a).
Our Video-QA dataset contains diverse questions, includ-
ing 5W1H questions. Moreover, because our QA task is
based on video content, several questions refer to actions
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or motions. Specifically, the large proportion of auxiliary
verbs such as Does, Did, and Do indicate that many of our
questions are about the main verbs in the event description.
This shows our questions are quite different compared to the
image-based QA datasets (Antol et al. 2015; Ren, Kiros, and
Zemel 2015; Malinowski and Fritz 2014), which are mainly
about objects, colors, and numbers. The maximum, mini-
mum, mean, standard deviation, and median lengths of our
questions are 36, 2, 10.8, 5.3, 9, respectively. See (Zeng et al.
2016a) for more analysis on Human-generated QA pairs and
a comparison between Automatically-generated QA pairs
and Human-generated QA pairs.
Answers. We show the answer (Yes/No answers excluded)
distribution on eight manually defined categories in Fig.3(b).
Two typical answers in each category are shown. Instead of
objects, colors, and numbers, as in most Image-QA datasets,
our answers contains a large portion of human roles and ac-
tions. Note that Yes and No account for 32.5% and 32.5% of
the whole set, respectively.

Our Method

Video-QA consists of predicting an answer a given a ques-
tion q and video observation v. We define a video as a se-
quence of image observations v =

[
v1, v2, . . .

]
, and both

answer and question as a natural language sentence (i.e., a
sequence of words) a =

[
a1, a2, . . .

]
and q =

[
q1, q2, . . .

]
,

respectively. To achieve Video-QA, we propose to learn a
function a = f(v, q), where v, q are the inputs and a is the
desired output. Given a loss L(a, f(v, q)) measuring the dif-
ference between a truth answer a and a predicted answer
f(v, q), we can train function f(·) using a set of (vi, qi, ai)i
triplets (indexed by i) automatically generated from videos
and their description sentences. As mentioned earlier, the
automatically generated QA pairs inevitably include some
non-perfect pairs which are irrelevant or inconsistent with
respect to the video content. We propose a novel test ratio
and a self-pace learning procedure to mitigate the effect of
non-perfect QA pairs during training.

Mitigating the Effect of Non-perfect QA Pairs

The key to mitigating the effect of non-perfect pairs is to
automatically identify them. We follow our intuition below
to design a test to identify non-perfect pairs. Intuitively, if
a training question answer pair is relevant/consistent with
respect to a video content, the loss L(a, f(v, q)) should
be small. If we keep the same QA pair, but change the
video content to a dummy video vD with all zero observa-
tion, the loss L(a, f(vD, q)) should increase significantly.
In contrast, if another training question answer pair is ir-
relevant/inconsistent with respect to a video content, the
loss L(a, f(v, q)) should be large. Moreover, if we keep the
same QA pair, but change the video content to a dummy
video vD, the loss L(a, f(vD, q)) should not change much.
Our intuition suggests that the loss of a non-perfect triplet
(vi, qi, ai)i is less sensitive to the change of video content,
compared to the loss of an ideal triplet.
Ratio test. Following the intuition, we calculate the ratio r
as the dummy loss L(a, f(vD, q)) divided by the original

loss L(a, f(v, q)). If the ratio r is small, it implies the train-
ing triplet is non-perfect.
Self-paced learning. Firstly, we use all the training triplets
to learn a reasonable function f(·). Once we have the ini-
tial function f(·), we can calculate ratio for every training
triplet. For a video with a ratio smaller than a threshold γ
(i.e., satisfied the ratio test), we change its training video
into the dummy video vD. Then, we re-train the function
f(·). Given a new function, the same steps can be repeti-
tively applied. The whole self-paced procedure stops after
no addition videos satisfied the ratio test.

Extened Methods

We extend the following methods for our Video-QA task.
Extended End-to-End Memory Network
(MN) (Sukhbaatar et al. 2015). The QA task in MN
consists of a set of statements, followed by a question
whose answer is typically a single word. We change the
set of statements into a video – a sequence of frames. In
order to capture the temporal relation among actions in
consecutive frames, we first use a bi-directional LSTM
to encode the sequence of frame representations. The
bi-directional LSTM and the MN are jointly trained in an
end-to-end fashion. Fig. 4(a) shows the model visualization
similar to the one in (Sukhbaatar et al. 2015).
Extended VQA (Antol et al. 2015). The VQA model is de-
signed for question answering given a single image obser-
vation. We extend the model to handle video observation
using a one-layer LSTM to encode a sequence of frames.
The extended E-VQA (Fig. 4(b)) encodes both video and
question using two LSTMs separately into a joint represen-
tation space, where an AND-like operation (i.e., element-
wise multiplication) is used to fuse two representations.
Extended Soft Attention (SA) (Yao et al. 2015). The SA
model learns to dynamically apply soft-attention on differ-
ent frames in order to generate a caption. We modified E-
SA to encode questions while paying attention on different
frames to generate an answer. This model (Fig. 4(c)) mimics
how humans understand a question while paying attention to
different frames; finally, answer the question.
Extended Sequence-to-sequence (SS) (Venugopalan et al.
2015). The SS model learns to encode a video; then, decode
a sentence. We modified E-SS to first, encode a video; then,
encode a question; finally, decode an answer. This model
(Fig. 4(d)) mimics how humans first watch a video; then,
listen to a question; finally, answer the question.

All extended QA methods consist of various combina-
tions of sequence-encodings, embeddings, and soft-attention
mechanisms. They are all trained in an end-to-end fashion
with our self-paced learning procedure outlined in the pre-
vious section. We report their Video-QA performance in the
experiments section.

Experiments and Results

We evaluate all methods on our Video-QA dataset. We use
14100 videos and 151263 candidate QA pairs for training,
2000 videos and 21352 candidate QA pairs for validation,
and 2000 videos and 2461 ground truth QA pairs for testing.
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Figure 4: Four extended methods for the video QA task. (a) The Extended End-to-End Memory Network (E-MN) uses addi-
tional bidirectional LSTM (green box) to encode the temporal information of videos. (b) The Extended VQA (E-VQA) model
encodes temporal information using a single layer LSTM (red box). ⊗ denotes element-wise multiplication. (c) The Extended
Soft-Attention (E-SA) model derives the question semantic meaning by LSTM encoding. ⊕ denotes element-wise addition.
(d) The Extended Sequence-to-sequence (E-SS) model follows the video captioning system. Instead of decoding a caption, our
model encodes a question and decodes an answer.

Implementation Details

QA pairs data preprocessing. For simplicity, we do not
explicitly stem, spellcheck or normalize any of the ques-
tions. We use a one-hot vector to represent words in the
questions except for MN, where we use bag-of-words as in
(Sukhbaatar et al. 2015). We remove punctuations and re-
place digits for <NUMBER>. For answers, we only remove
stop words. We choose the top K = 1000 most frequent an-
swers as possible candidates as in (Antol et al. 2015). This
set covers 81% of the training and validation answers.
Video data preprocessing. Similar to existing video un-
derstanding approaches, we utilize both appearance and lo-
cal motion features. For appearance, we extract VGG (Si-
monyan and Zisserman 2015) features for each frame. For
local motion, we extract C3D (Tran et al. 2015) features for
16 consecutive frames. We divide a video into maximum
45-50 clips by considering GPU memory limit. Then, we
average-pool all the VGG and C3D features in each clip to
obtain a video observation v.
Self-paced learning implementation. According to the re-
sults of data cleaning by Amazon Mechanical Turk, we
found that about 10% of the question-answer pairs are re-
moved by human annotators. Thus, at the first iteration of
self-paced learning, we set γ to remove 10% QA pairs with
small loss ratio in the training data. Then, the same γ is used
in all following iterations. Our iterative self-paced method
typically ends in 2 iterations.

Training details

We implement and train all the extended methods using Ten-
sorFlow (et al. 2015) with the batch size of 100 and selected
the final model according to the best validation accuracy.
Other model-specific training details are described below.
E-MN. We use stochastic gradient descent with an initial
learning rate of 0.001, the same learning rate decay and gra-
dient clipping scheme in (Sukhbaatar et al. 2015). Inspired
by several memory based models, we set 500 as the number
of memories and the LSTM hidden dimension.
E-VQA. We use the same settings as in (Antol et al. 2015).

E-SA. We use the training settings as in (Yao et al. 2015),
except for Adam optimization (Kingma and Ba 2015) with
initial learning rate of 0.0001.
E-SS. Except for the optimization algorithm and the total
number of epochs, the training settings are all the same as
(Venugopalan et al. 2015). We use Adam optimizer (Kingma
and Ba 2015) with an initial learning rate of 0.0001.

Evaluation Metrics

Inspired by Image-QA (Malinowski and Fritz 2014; Antol
et al. 2015), we evaluate Video-QA using both classification
accuracy and the relaxed version of WUPS based on word
similarity. Notice that our answer space is 1K and classifi-
cation accuracy is so strict that it will consider cat a mistake
when the ground truth is kitten. Hence, we also report WUPS
and use thresholds of 0.0 and 0.9 as in (Malinowski and Fritz
2014). Moreover, we separately report performance on ques-
tions of the type Yes/No and Others, as the former are con-
sidered to be less challenging. Finally, we report the average
accuracy over Yes/No and Others (see Table. 1).

Results

Baseline method. We use Skip-Thought (ST) (Kiros et al.
2015) to directly learn the sentence semantic and syntac-
tic properties in a Recurrent Neural Network framework.
Using the above methods as the representation for ques-
tions, we can capture the similarity between question sen-
tences. Given a test question, we retrieve the top 10 near-
est (using cosine similarity) training questions and their an-
swers. The final answer is chosen by the majority votes of
the top ten answer list. We compare the extended methods
with the question retrieval baseline in the Baseline section
of Table. 1. We found that baseline performs significantly
worse than our extended methods on Others questions, but
performs on a par with extended methods on Yes/No ques-
tions. Hence, we suspect the baseline makes many false
positive Yes/No predictions. For Yes/No, we further report

true-positive
true-positive+false-positive+false-negative as Acc†, which
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Table 1: Video-QA results. We report the performance for Yes/No, Others questions, and their average (Avg.) separately in
different columns. We evaluate the baseline method in the first row (Baseline), the four extended methods trained with all data
in the second set of rows (Train-all), the four extended methods trained with no video observations in the third set of rows
(Non-visual), and the four extended methods trained with self-paced learning in the last set of rows (Self-paced). WUPS 0.0
and WUPS 0.9 are WUPS score thresholded by 0.0 and 0.9 respectively. Acc† denotes classification accuracy penalizing false
positive. Acc denotes classification accuracy. Avg. denotes the average classification accuracy of Others and Yes/No.

Video-QA Baseline Train-all Non-visual Self-paced
Others (%) ST E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS
WUPS 0.0 32.9 47.9 49.3 51.4 48.7 43.4 52.6 49.7 47.3 48.5 50.8 51.9 50.7
WUPS 0.9 5.51 10.1 13.2 15.5 14.2 8.2 10.0 12.4 11.2 10.3 13.0 16.1 16.0

Acc 2.1 2.9 5.0 8.4 7.3 1.8 2.1 4.7 4.8 3.0 5.1 9.4 9.3
Yes/No (%) ST E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS
Yes Acc† 11.9 40.0 38.8 36.4 34.5 35.4 39.0 38.9 39.5 30.4 39.1 39.0 39.7
No Acc† 26.7 13.0 22.3 28.8 25.8 12.9 26.1 25.5 19.7 27.6 24.4 24.9 26.3

Acc 49.3 49.5 46.7 52.4 49.5 50.0 48.3 51.6 49.6 52.0 47.8 51.6 52.7

Avg. (%) ST E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS E-MN E-VQA E-SA E-SS
Acc 25.7 26.2 25.9 30.4 28.4 25.9 25.2 28.2 27.2 27.5 26.4 30.5 31.0

Anspred: PigQuestion: What did the bulldog meet?

Description: Despite their natural inclination to be enemies, this bulldog showed nothing but adorable
fondness over a baby kitten as he checked her out for the first time.

Question: Did the skier grind on the rail successfully?
Description: This guy on skis attempts to grind on a rail, but quickly falls and lands on it balls-first.

Description: This curious group of young reindeer huddled together and approached a beautiful blue lake.
They scoured along the coast looking for the best place to take a sip of water.
Question: What animal went to the water? Anspred: Reindeer

time

Ansgt: Reindeer

time

time

Anspred: NoAnsgt: No

Ansgt: Kitten

Figure 5: Qualitative Video QA results. In each row, we show a typical examples of descriptions, questions, predicted answers
and ground truth answers. The first and second one with corrected prediction are our good examples. The last one is a failure
case, where the model is disctracted by the bulldog and mistakenly predicts it as a pig. See (Zeng et al. 2016a) for more
examples.

penalizes false positive predictions. As measured by Acc†,
the baseline is inferior to most extended methods.
Extended methods. Self-paced E-SS (31.0% average Acc)
outperforms other extended methods since it jointly encodes
both videos and questions sequentially. On the other hand,
self-paced E-VQA performs the worst among all extended
methods, since it only uses an element-wise multiplication
operation to combine visual observation and questions.
Importance of video observation. We also train all ex-
tended methods with dummy video observations such that
they are forced to answer the only given question. In the
Non-visual section of Table. 1, we show that all extended
methods suffer when not observing videos.
Effectiveness of self-paced learning. In the Self-paced sec-

tion of Table. 1, we show that all extended methods achieve
performance gain after self-paced learning. E-SA achieves
the smallest gain since soft-attention (SA) can select differ-
ent visual observations to handle noisy QA training pairs.
Among them, E-SS achieves a 2.6% improvement in aver-
age accuracy over its Train-all version. Finally, we show
typical Video-QA results of our best method (E-SS) in Fig. 5
and more examples in technical report (Zeng et al. 2016a).

Conclusions
Our scalable approach has generated a large-scale video-
based question answering dataset (e.g., 18100 videos and
175076 QA pairs) with minimal human effort. Moreover,
our extended models and self-paced learning procedure are
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shown to be effective. In the future, we will further increase
the scale of the Video-QA dataset and improve the procedure
to handle a larger amount of non-perfect training examples.
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