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Abstract

Social recommendation, which aims to exploit social infor-
mation to improve the quality of a recommender system, has
attracted an increasing amount of attention in recent years.
A large portion of existing social recommendation models
are based on the tractable assumption that users consider the
same factors to make decisions in both recommender sys-
tems and social networks. However, this assumption is not in
concert with real-world situations, since users usually show
different preferences in different scenarios. In this paper, we
investigate how to exploit the differences between user pref-
erence in recommender systems and that in social networks,
with the aim to further improve the social recommendation.
In particular, we assume that the user preferences in differ-
ent scenarios are results of different linear combinations from
a more underlying user preference space. Based on this as-
sumption, we propose a novel social recommendation frame-
work, called social recommendation with an essential pref-
erences space (SREPS), which simultaneously models the
structural information in the social network, the rating and
the consumption information in the recommender system un-
der the capture of essential preference space. Experimental
results on four real-world datasets demonstrate the superior-
ity of the proposed SREPS model compared with seven state-
of-the-art social recommendation methods.

Introduction

Social recommendation, which aims to incorporate social re-
lations into recommender systems, has attracted more and
more attention in recent years. Previous studies have demon-
strated the potential of social relations to improve recom-
mendation performance and alleviate sparsity and cold-start
problems in recommender systems (Guo, Zhang, and Thal-
mann 2012; Guo, Zhang, and Yorke-Smith 2015; Gao et al.
2017). These studies are mainly based on the assumption
that user preferences are similar to his/her neighbors.

A large proportion of previous studies (Ma et al. 2008;
Tang et al. 2013; Yang et al. 2013; Rafailidis and Crestani
2016) collectively factorize the rating matrix and the social
relationship matrix, sharing the same latent vectors to char-
acterize the user preferences in both item rating and social
relationship. However, this method is not always reasonable
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Figure 1: An explanatory example. The purple box is the
scenarios that the user rates items. The user mainly consid-
ers quality, price and brand to make decisions. The green
box is the scenarios in social networks, and the user regards
appearance, personality traits and social position to decide
whether to trust other people. Clearly, the user considers dif-
ferent latent factors in these two scenarios.

in real-world situations, since users may show different pref-
erences in different scenarios. A more intelligent way is to
involve bias vectors between the user latent vectors in his-
torical ratings and social relationships (Hsieh et al. 2016).
Although this method incurs different preferences, the two
kinds of latent vectors still belong to the same latent space.
Naturally, users in different real-world scenarios should con-
sider completely different latent factors, with an explanatory
example shown in Fig. 1. In summary, the user latent vectors
in recommender system and social network should belong to
different latent spaces rather than two different vectors in the
same latent space.

To address this issue, in this paper we introduce an essen-
tial preference space to describe the user multiple prefer-
ences. The user latent spaces in recommender system and
the social network are assumed as different projections from
the essential preference space. Based on this assumption, we
propose a novel framework called SREPS, where the rat-
ing information, the consumption information (i.e., whether
a user rated an item) in the recommender system and the
structure information in the social network are utilized to
build user differential latent vectors for different scenarios
from the essential preference space. Specifically, rating in-
formation is modeled by well-studied matrix factorization.
A state-of-the-art network embedding model called large-
scale information network embedding (LINE) (Tang et al.
2015) is adopted to exploit the sparse structural information
of the social network. Consumption information is viewed as
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a bipartite network. To model the three kinds of information
jointly, a number of space projection matrices are involved
to map the essential preference space into the different la-
tent spaces learned from the rating, consumption and social
network structure information. A stochastic gradient descent
algorithm is adopted for the SREPS model learning.

Our contributions are summarized below:
• A novel essential preference space is introduced to de-

scribe the user multiple preference differences in different
scenarios like recommender system and social network.

• A social recommendation framework SREPS is proposed
to jointly model the rating, consumption and social rela-
tion information based on the essential preference space.
An effective stochastic gradient descent algorithm is de-
signed for the model learning.

• Experimental results on four real-world datasets demon-
strate the effectiveness of the proposed SREPS model
compared with seven state-of-the-art baselines.

Preliminaries and Problem Definitions

Problem Definition

The recommendation problem in this paper is to predict the
rating that a user will provide to an item that he has not rated
based on his historical ratings and his social network.

Assume that a recommender system includes a user set
P with m users and an item set Q with n items. Let R =
[rui]m×n denote the user-item rating matrix, where entry
rui is the rating that user u rated item i. Note that in the
rating matrix R, only a small portion of the ratings are ob-
served and the indexes constitute the observed index set
Ω = {(u, i)|(u, i) is observed.}. The other entities are un-
known. We aim to predict the values of the unknown enti-
ties, i.e., the ratings that users will give to items they have
not yet rated.

Social recommendation can’t do without social network.
Suppose that a social network is represented by a graph
GS =

(VS
P , ES), where VS

P is the set of vertexes that rep-
resent users, and ES is the set of edges, which can be both
directed (e.g., trust) and undirected (e.g., friendship). We use
network embedding to preserve the network properties and
obtain a low-dimensional latent representation of each ver-
tex in the social network.

We also establish a recommendation network from the
historical rating information. A recommendation network
is a bipartite graph GR =

(VR
P ,VR

Q , ER)
, where VR

P is
a set of vertexes to represent users, VR

Q is another set of
vertexes to represent items, and ER is the set of directed
unweighted edges from users to items. The directed edge
e = (u, i) ∈ ER denotes that user u has rated item i.

As claimed in (Ohsawa, Obara, and Osogami 2016), the
rating actions (i.e., whether to rate the item) can implicitly
express user preferences in the sense that users with similar
rated items may probably have similar implicit preferences.
Along this idea, we explore the structure information of the
recommendation network to learn the user implicit prefer-
ences with the help of property-reserved network embedding
method.

In sum, our goal is to use the historical ratings in matrix
R, social network GS , and recommendation network GR to
predict the unknown entities in matrix R.

Matrix Factorization

A matrix factorization based recommender method is used
as our basic model. Matrix factorization based methods are
widely used in social recommendation models. Let Uu and
Vi be the d0-dimensional latent (column) vectors for user
u and item i respectively. Matrix factorization aims to find
the low-dimensional latent vectors with which to model the
user preferences. The unknown entities then be predicted by
calculating the inner products of these latent vectors, i.e.,
rui = UT

u Vi, where UT
u is the transpose of latent vector

Uu. Formally, the loss function for matrix factorization is as
follows,

min
Uu,Vi

1

2

∑
(u,i)∈Ω

(
rui − UT

u Vi

)2

+
λ

2

(∑
u

‖Uu‖2 +
∑
i

‖Vi‖2
)

(1)
where the second term controlled by λ is to avoid over-
fitting.

Large-scale Information Network Embedding

LINE (Tang et al. 2015) is a state-of-the-art network embed-
ding model and shows better performance than graph ma-
trix factorization when exploring network structural infor-
mation. LINE captures both the local structures and simi-
larity of neighborhood network structures between two ver-
texes. Noting that each edge in an undirected network can
be viewed as two directed edges with opposite directions,
we assume that the considered network G = (V, E) is a di-
rected network. In LINE, each vertex can be treated as a
context for the other vertexes, and vertexes with similar dis-
tributions over a context are assumed to be similar. For each
vertex s ∈ V , there exists an embedding vector Es ∈ R

d1

when s plays the role of a vertex itself, and a context vector
Cs ∈ R

d1 when s is a context of other vertexes. For each di-
rected edge (s, t) with weight wst, the probability of context
t generated from vertex s is defined as

p(t|s) = exp
(
CT

t Es

)∑
v∈V exp (CT

v Es)
(2)

The empirical probability is that p̂(t|s) = wst

dout
s

, where douts

is the out-degree of vertex s, i.e., douts =
∑

v∈V wsv . The
objective function of LINE is defined as

min
Es,Cs

∑
s∈V

douts KL (p̂(·|s), p(·|s))

where KL(p, q) is the KL-divergence of the probability dis-
tributions p and q, p̂(·|s) and p(·|s) are the empirical and
defined distributions of contexts generated from vertex s, re-
spectively. Omitting the constants, which does not affect the
optimization of the objective function, the final loss function
can be put as

min
Es,Cs

−
∑

(s,t)∈E
wst log p(t|s) (3)

By incorporating Eq. (2), we can minimize Eq. (3) to obtain
the optimal embedding and context vectors.
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Figure 2: The overview of our SREPS model. Each user has a latent vector in the essential preference space, and his semantic
latent vectors are projections from the essential preference space by multiplying space projection matrices (i.e. ME ,MC ,MR

and MI ). We model the historical rating information with matrix factorization, while the social and recommendation networks
are modeled by network embedding. By jointly modeling these elements, we can learn the user latent vectors in the essential
preference space and the space projection matrices. Finally, we can use user latent vectors in essential preference space, the
rating space projection matrix MR, and the item latent vectors in the rating space to predict the final rating.

Social Recommendation with an Essential

Preference Space (SREPS)

Essential Preference Space

The definitions for the semantic latent space and the essen-
tial preference space are first present below.

Definition 1 Semantic Latent Space. For a particular sce-
nario like item rating and friend trusting, the corresponding
semantic latent space is inferred from the user feedback and
can be used to explain the user preferences by character-
izing users in terms of latent factors. For example, the user
latent vectors learned from Eq. (1) belong to a rating seman-
tic latent space, and the embedding learned representation
vectors from Eq. (3) belong to a social semantic latent space.

Definition 2 Essential Preference Space. The essential
preference space is used to describe the fundamental factors
that influence user preferences. The factor in each semantic
latent space is a linear combination of factors in the essen-
tial preference space. The transformation from factors in es-
sential preference space to factors in semantic latent space
can be operated by multiplying space projection matrices.

Let Ûu ∈ R
l be the latent vector in essential preference

space for user u. Let Uu ∈ R
d0 be the latent vector in rating

semantic latent space for user u in Eq. (1), which can be
obtained from following transition

Uu = MRÛu, (4)

where MR ∈ R
d0×l is the space projection matrix that maps

the essential preference space into the rating semantic latent
space.

Similarly, the embedding vector Eu and context vector
Cu in Eq. (3) can be mapped from Ûu by space projection
matrices ME ∈ R

d1×l and MC ∈ R
d1×l as follow:

Eu = MEÛu, Cu = MCÛu. (5)

The traditional social recommendation models, which
shared the common user latent vector in both recommender
systems and social networks, are special cases of our essen-
tial preference space model, when the dimensions of essen-
tial preference space and semantic latent spaces are identical
and all space projection matrices are identity ones.

The SREPS Model

With the notations of above essential preference space and
space projection matrices, the SREPS model is formulated
as follows.

By incorporating Eq. (4) and Eq. (5), the rating loss func-
tion in Eq. (1) without regularizations can be represented as

O1 =
1

2

∑
(u,i)∈Ω

(
rui − ÛT

u MT
RVi

)2

(6)

The loss function O2 for the social network representation
is as follows

O2 = −
∑

(s,t)∈ES
wst log

exp
(
ÛT

t MT
CMEÛs

)
∑

v∈VS
P
exp

(
ÛT

v MT
CMEÛs

) (7)

where wst is the weight in edge (s, t). Similarly, the loss
function O3 for the recommendation network representation
is expressed as

O3 = −
∑

(u,i)∈Ω

log
exp

(
BT

i MI Ûu

)
∑

v∈VR
Q

exp
(
BT

v MI Ûu

) (8)

where MI ∈ R
d2×l is the space projection matrix corre-

sponding to recommendation network and Bi ∈ R
d2 is the

context vector of item i. Note that the recommendation net-
work is a bipartite graph. Hence, different from the social
network, the user vertexes have only the embedding vectors,
while the item vertexes have only context vectors.

In sum, the loss function of the SREPS model is

L = (1− α− β)O1 + αO2 + βO3 +Reg (9)
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where α � 0 and β � 0 are parameters that control the
balance of loss function meeting α+ β � 1, and Reg is the
regularization term:

Reg =
λ

2

(∑
i

(‖Vi‖2 + ‖Bi‖2
)
+

∑
u

(
‖MRÛu‖2

+‖MEÛu‖2 + ‖MCÛu‖2 + ‖MI Ûu‖2 + ‖Ûu‖2
)) (10)

where λ is the regularization parameter. To reduce the model
complexity, the same regularization parameter λ is used for
all the variables. One may find that the space projection ma-
trices MC and ME appear only in the product MT

CME ,
which can thus be substituted into a new matrix to reduce
the parameter number. However, we here adopt the intuitive
product form in Eq. (7) to better show our basic ideas of
essential preference space.

Prediction

In the SREPS model, the final rating rui that user u provides
to an unrated item i can be predicted from the preference
in the rating semantic latent space by Ûu, MR and Vi as
follows:

rui = ÛT
u MT

RVi (11)

Note that the predicted ratings may fall out of the rat-
ing range. To avoid this situation, we adopt the following
method to project the predicted ratings into the rating range:
if rui > rmax, rui = rmax, and if rui < rmin, rui = rmin,
where rmax and rmin are the upper and lower bounds of the
rating range.

Optimization Approach

The loss function in Eq. (9) is the combination of three loss
functions. Inspired by (Krohn-Grimberghe et al. 2012), we
simultaneously learn the parameters by sampling examples
from different parts of the SREPS loss function.

Rating Loss We randomly sample a pair (u, i) from the
observed entity set Ω. We only consider the regularizations
that directly affect the rating loss function in Eq. (6), i.e.,
‖Vi‖2, ‖MRÛu‖2, and ‖Ûu‖2. Thus, the gradients of the
rating loss function L1 := O1 + Reg1 for the sampled pair
(u, i) are as follow,

∂L1

∂Ûu

= (1− α− β)δRuiM
T
RVi + λ

(
Il +MT

RMR

)
Ûu (12)

∂L1

∂Vi
= (1− α− β)δRuiMRÛu + λVi (13)

∂L1

∂MR
= (1− α− β)δRuiViÛ

T
u + λMRÛuÛ

T
u (14)

where Il is an l×l identity matrix and δRui = ÛT
u MT

RVi−rui.

Social Network Embedding Now we optimize the loss
function L2 := O2 + Reg2 in the social network em-
bedding, where Reg2 is the regularization corresponding
to ‖MEÛu‖2, ‖MCÛu‖2, and ‖Ûu‖2. Since the p(t|s) in
Eq. (2) requires the summation of the entire set of ver-
texes, optimizing O2 is computationally expensive, even if
we sample an edge (t, s) from the edge set ES . To tackle this
problem, we adopt the negative sampling method (Mikolov

et al. 2013) which is used to distinguish the target vertex
from negative vertexes generated from the noise distribution,
i.e., we can change p(t|s) into the following form,

p(t|s) ∝ log σ
(
CT

t Es

)
+

K∑
i=1

Eni

[
log σ

(
−CT

ni
Es

)]
(15)

where σ(·) is the sigmoid function, K is the number of neg-
ative samples, and the negative vertexes vni

are drawn from
the distribution Pn(v). Here we set Pn(v) ∝ d

3/4
v , where dv

is the out-degree of vertex v. Empirically, we set K = 5.
Thus, for the randomly sampled edge (t, s), we can obtain
the gradients as follow,

Ûstn = δSstÛt +

K∑
i=1

δSsni
Ûni (16)

∂L2

∂Ûs

= αMT
EMCÛ

T
stn + λ

(
Il +MT

EME

)
Ûs (17)

∂L2

∂Ût

= αδSstM
T
CMEÛs + λ

(
Il +MT

CMC

)
Ût (18)

∂L2

∂Ûni

= αδSsni
MT

CMEÛs + λ
(
Il +MT

CMC

)
Ûni (19)

∂L2

∂ME
= αMCÛstnÛ

T
s + λMEÛsÛ

T
s (20)

∂L2

∂MC
= αMEÛsÛ

T
stn + λMC

(
ÛtÛ

T
t +

K∑
i=1

Ûni Û
T
ni

)
(21)

where δSst = σ
(
ÛT
t MT

CMEÛs

)
− 1 and δSsni

=

σ
(
ÛT
ni
MT

CMEÛs

)
.

Recommendation Network Embedding The remaining
expression in Eq. (9) is the recommendation network em-
bedding objective L3 := O3 + Reg3, where Reg3 con-
tains ‖Bi‖2, ‖MI Ûu‖2, and ‖Ûu‖2. The negative sampling
method is also adopted in the learning process by replacing
Ct, Cni and Es with Bi, Bnj and MI Ûu respectively. Since
the recommendation network is a bipartite network, and we
simply sample the negative item vertexes according to a uni-
form distribution. Similarly, we can obtain the gradients for
each edge (u, i) ∈ ER as follow

∂L3

∂Ûu

= βM
T
I

⎛
⎝δ

I
uiBi +

K∑
j=1

δ
I
unj

Bnj

⎞
⎠ + λ

(
Il + M

T
I MI

)
Ûu

(22)

∂L3

∂Bi

= βδ
I
uiMI Ûu + λBi (23)

∂L3

∂Bnj

= βδ
I
unj

MI Ûu + λBnj
, ∀i 1 � i � K, (24)

∂L3

∂MI

= β

⎛
⎝δ

I
uiBi +

K∑
j=1

δ
I
unj

Bnj

⎞
⎠ Û

T
u + λMI ÛuÛ

T
u (25)

where δIui = σ
(
BT

i MI Ûu

)
− 1 and δIunj

=

σ
(
BT

nj
MI Ûu

)
.

Experiments
We conduct experiments on four real-world data sets to eval-
uate the performance of the proposed SREPS model.
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Experimental Settings

Dataset Four datasets were used in our experiments:
FilmTrust (Guo, Zhang, and Yorke-Smith 2013), Flixster
(Jamali and Ester 2010), Epinions (Tang, Gao, and Liu 2012)
and Ciao (Tang et al. 2012). These datasets contain both
item ratings and social relationships. Flixster is undirected
and can be regarded as a directed graph by treating an undi-
rected edge as bidirectional. A subset of Flixster was ran-
domly sampled to be used as the dataset in this paper. The
dataset statistics are presented in Table 1.

Table 1: Statistics of the datasets
Feature FilmTrust Flixster Epinions Ciao

#User 1,508 53,004 22,164 7,375
#Item 2,071 18,144 296,277 105,114

#Rating 35,497 409,243 922,267 284,086
#Social Link 1,853 613,509 355,754 111,781

For each dataset, 80% of the rating data are selected ran-
domly as the training set and the rest are used as the testing
set. We repeated each experiment 10 times and report the
average performance and standard deviation.

Evaluation Metrics We adopted two representative met-
rics to evaluate the performance: mean absolute error (MAE)
and root mean square error (RMSE). A smaller MAE or
RMSE value means better performance. Even a small im-
provement in MAE and RMSE values can have a significant
impact on the quality of the top-few recommendations (Ko-
ren 2008).

Comparison Methods

We evaluated the effectiveness of the proposed SREPS
model by comparing it with the following seven state-of-
the-art social recommendation models:
• PMF (Salakhutdinov and Mnih 2007) only uses rating in-

formation to factorize the user-item rating matrix under
the probabilistic framework.

• SoRec (Ma et al. 2008) jointly factorizes the user-item
rating matrix and the user-user social relation matrix, and
shares the same user latent factors.

• STE (Ma, King, and Lyu 2009) models user ratings as a
combination of a user’s preferences and his social neigh-
bors within the matrix factorization framework.

• SocialMF (Jamali and Ester 2010) adds social regulariza-
tion that regularizes the user latent vector to be similar to
the average of those of his social neighbors.

• SoReg (Ma et al. 2011) minimizes the sum of the
weighted differences between user latent vectors as social
regularization.

• TrustMF (Yang et al. 2013) jointly factorizes the user-
item rating matrix and user-user social matrix from truster
and trustee perspectives.

• SoDimRec (Tang et al. 2016) considers the heterogeneity
and weak dependency connections in the social network,
and models the two aspects as social regularization terms.

Table 2: Parameter Settings of the Comparison Models
Models Parameters FilmTrust Flixster Epinions Ciao

SoRec λC 0.1 0.01 0.3 0.01
STE α 1 1 0.4 1

SocialMF λT 1 1 1 1
SoReg β 0.3 1 0.1 0.1

TrustMF λT 1 1 1 1

SoDimRec
c 50 500 500 100
λ1 5 10 10 5
λ2 50 100 100 100

SREPS
α 0.2 0.3 0.4 0.3
β 0.1 0.1 0.1 0.2

The optimal experimental settings for each method were
either determined by our experiments or were taken from the
suggestions by previous works. The setting that were taken
from previous works include: the learning rate η = 0.001;
and the dimension of the latent vectors d = 5 and 10. All the
regularization parameters for the latent vectors were set to
be the same at λU = λV = 0.001. The other parameters are
shown in Table 2.

We set l = d0 = d1 = d2 for the SREPS model, i.e., the
dimensions of the essential preference space and the three
semantic latent spaces were the same. The regularization pa-
rameter λ was set to be 0.001. The hyper parameters α and
β are also shown in Table 2 and were based on the results of
the parameter sensitivity analyses.

Results and Analysis

The comparison results are provided in Table 3 with the fol-
lowing observations:

• The models with social networks outperform rating-
based PMF, which demonstrates that exploiting social net-
work information can improve the performance of recom-
mender systems evaluated by both MAE and RMSE.

• The proposed SREPS outperforms SoRec and TrustMF.
These two models are mainly based on collective ma-
trix factorization by sharing the user latent factors. These
models can be specific situations in the essential prefer-
ence space model, i.e., our SREPS is able to model more
general situations than these two models. Moreover, the
network embedding methods are able to not only capture
the similarity of users with direct social links, but also
those with similar social structures, i.e., the network em-
bedding method can obtain more information than matrix
factorization approaches from social networks.

• Compared to STE, SocialMF, and SoReg, SREPS
achieved the best performance. STE models ratings as a
combination of a user’s preference and the weighted av-
erage of his social neighbors. SocialMF and SoReg add
social regularization terms into the matrix factorization
from different perspectives. The common consideration
of these three models is that user preferences in a recom-
mender system should be very similar to those of their
social neighbors. SREPS can model similar users while
preserving the differences between user actions in differ-
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Table 3: Experimental Results and Standard Deviation (the Best Scores are in Bold)
Datasets Metrics PMF SoRec STE SocialMF SoReg TrustMF SoDimRec SREPS

FilmTrust
d=5

MAE 0.688
(± 0.0087)

0.651
(± 0.0092)

0.648
(± 0.0080)

0.641
(± 0.0013)

0.675
(± 0.0038)

0.641
(± 0.0011)

0.639
(± 0.0052)

0.627
(± 0.0017)

RMSE 0.956
(± 0.0080)

0.913
(± 0.0090)

0.905
(± 0.0079)

0.884
(± 0.0027)

0.936
(± 0.0123)

0.885
(± 0.0014)

0.884
(± 0.0107)

0.866
(± 0.0031)

Flixster
d=5

MAE 0.816
(± 0.0118)

0.754
(± 0.0087)

0.753
(± 0.0088)

0.777
(± 0.0019)

0.825
(± 0.0049)

0.898
(± 0.0015)

0.798
(± 0.0060)

0.726
(± 0.0020)

RMSE 1.077
(± 0.0090)

0.981
(± 0.0085)

0.983
(± 0.0080)

0.999
(± 0.0028)

1.094
(± 0.0149)

1.151
(± 0.0022)

1.064
(± 0.0144)

0.944
(± 0.0033)

Epinions
d=5

MAE 0.984
(± 0.0168)

0.891
(± 0.0135)

0.958
(± 0.0113)

0.832
(± 0.0020)

0.949
(± 0.0053)

0.819
(± 0.0014)

0.811
(± 0.0063)

0.809
(± 0.0023)

RMSE 1.302
(± 0.0104)

1.123
(± 0.0112)

1.197
(± 0.0112)

1.077
(± 0.0027)

1.220
(± 0.0132)

1.075
(± 0.0019)

1.067
(± 0.0124)

1.041
(± 0.0002)

Ciao
d=5

MAE 0.926
(± 0.0105)

0.773
(± 0.0093)

0.771
(± 0.0100)

0.757
(± 0.0016)

0.907
(± 0.0051)

0.757
(± 0.0010)

0.745
(± 0.0056)

0.728
(± 0.0016)

RMSE 1.216
(± 0.0112)

1.021
(± 0.0114)

1.029
(± 0.0082)

0.990
(± 0.0029)

1.190
(± 0.0147)

0.990
(± 0.0020)

0.977
(± 0.0102)

0.960
(± 0.0033)

FilmTrust
d=10

MAE 0.677
(± 0.0101)

0.638
(± 0.0076)

0.643
(± 0.0071)

0.625
(± 0.0013)

0.668
(± 0.0041)

0.638
(± 0.0010)

0.625
(± 0.0044)

0.615
(± 0.0018)

RMSE 0.917
(± 0.0088)

0.886
(± 0.0090)

0.891
(± 0.0076)

0.869
(± 0.0021)

0.902
(± 0.0108)

0.879
(± 0.0018)

0.868
(± 0.0120)

0.845
(± 0.0025)

Flixster
d=10

MAE 0.771
(± 0.0109)

0.791
(± 0.0094)

0.788
(± 0.0094)

0.786
(± 0.0017)

0.789
(± 0.0055)

0.826
(± 0.0015)

0.782
(± 0.0058)

0.727
(± 0.0016)

RMSE 1.019
(± 0.0084)

1.025
(± 0.0088)

1.023
(± 0.0097)

1.017
(± 0.0027)

1.041
(± 0.0150)

0.959
(± 0.0030)

1.007
(± 0.0122)

0.951
(± 0.0031)

Epinions
d=10

MAE 0.914
(± 0.0144)

0.887
(± 0.0106)

0.967
(± 0.0116)

0.833
(± 0.0016)

0.940
(± 0.0063)

0.810
(± 0.0044)

0.823
(± 0.0055)

0.799
(± 0.0019)

RMSE 1.198
(± 0.0105)

1.143
(± 0.0116)

1.289
(± 0.0114)

1.087
(± 0.0032)

1.233
(± 0.0163)

1.103
(± 0.0023)

1.067
(± 0.0110)

1.038
(± 0.0001)

Ciao
d=10

MAE 0.823
(± 0.0130)

0.768
(± 0.0108)

0.769
(± 0.0087)

0.753
(± 0.0016)

0.821
(± 0.0038)

0.745
(± 0.0012)

0.738
(± 0.0053)

0.722
(± 0.0019)

RMSE 1.088
(± 0.0099)

1.017
(± 0.0110)

1.018
(± 0.0084)

0.976
(± 0.0026)

1.082
(± 0.0134)

1.022
(± 0.0018)

0.964
(± 0.0108)

0.955
(± 0.0029)

ent semantic latent spaces, i.e., different user behavior in
social networks compared to recommender systems.

• SREPS outperforms SoDimRec which models hetero-
geneity and weak dependence connections in social net-
works as social regularization. SoDimRec models more
fine-grained properties of social networks and describes
user actions in more detail.

Parameter Sensitivity

In this subsection, we present the experiments conducted to
further investigate the effects of hyper parameters on overall
performance and provide suggestions for how to reasonably
assign for their setting.

Hyper Parameters α And β The hyper parameters α and
β control the influence of social networks and recommen-
dation networks. From 0 to 1 in steps of 0.1, we experi-
mented with different combinations of the two hyper param-
eters. Note that the sums of α and β should not larger than
1 due to Eq. (9). Due to space limitations, we have only pre-
sented the MAE and RMSE distributions for the FilmTrust
and Ciao datasets with 5 dimensions in Fig. 3. Note that the
brown-colored squares (i.e., the top color in color bars) are
larger than the corresponding values. For example, the MAE
in FilmTrust is nearly 2.53.

From Fig.3 we can observer that: 1) The hyper parameter

combinations near the bottom left corner (i.e., α = 0, β = 0)
achieved better performance, which demonstrates the posi-
tive influence of social networks and recommendation net-
works. 2) The performance near the bottom right corner (i.e.,
α = 1, β = 0) and the top left corner (i.e., α = 0, β = 1)
was bad. Increasing α or β decreased the contribution of rat-
ing loss. Thus, the user latent vectors in the essential pref-
erence space are mainly influenced by social networks or
recommendation networks, some personalized information
from the historical ratings has been omitted. 3) A similar
situation occurred near the line α + β = 1. There was no
rating loss in the loss function and the model did not learn
any information about the rating space. The item latent vec-
tors were dominated by the regularization, which resulted
in that the item latent vectors are almost zero vectors. 4)
The SREPS model achieved the best performance at the cen-
ters of the distribution triangles. Moreover, the social net-
works usually contributed more than the recommendation
networks. In these areas, the contributions of the three com-
ponents in the loss function in Eq. (9) were balanced, and
the user preferences in the rating space can be guided by
the preferences in the two networks. The best α and β were
different for the different datasets. However, α was usually
larger than β and smaller than 1 − α − β, which may be
helpful in selecting the best hyper parameters.
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Figure 3: MAE and RMSE distributions with different com-
binations of α and β.
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Figure 4: MAE and RMSE distributions with different com-
binations of d0 and d1.

Dimensions l, d0, d1 and d2 Finer control and tuning can
be achieved by assigning separate dimensions to different
spaces. In this subsection, we fixed l = 5 and varied other
dimensions. d0 = d2 are set, because both of them come
from the recommender system. From 1 to 7 in steps of 1, we
experimented with different combinations of d0 and d1. Due
to space limitations, we have only presented the MAE and
RMSE results of the FilmTrust and Ciao datasets in Fig. 4.

Within an appropriate dimension range, when the dimen-
sion of social embedding space (e.g., d0) and that of rating
space (i.e. d1) is near that of essential preference space (e.g.,
l), the results of RMSE and MAE acceptable. When either
d0 or d1 is far from than l, the results reduces significantly.
According to the results in Fig. 4, a trivial but effective way
to select these dimensions (e.g., d0, d1, d2 and l) is to set all
of them with the same dimensions.

Related Work

Social recommendation has been widely studied based on
the latent factor models. Broadly, the following four types
of methods incorporate social networks into recommender
systems.

The first collective matrix factorization methods, which
collectively factorize the rating matrix and social matrix,
sharing the same user latent vectors. This type method cap-
tures the similarity of user preference in recommender sys-
tem and social network. Ma et al. (2008) proposed a SoRec
model, which shared common user latent vectors factorized
by ratings and by trust. Social networks from both local
and global perspectives were modeled by jointly factoriz-
ing the weighted rating matrix and social similarity matrix
(Tang et al. 2013). Jamali and Lakshmanan (2013) proposed
a HeteroMF model, which adapted the collective matrix fac-
torization method into the heterogeneous information net-
works. Based on the social reverse height perspective, a list-
wise model was proposed by Rafailidis and Crestani (2016),
which can be seen as a variation of the collective factoriza-
tion model.

Another type of method is to modify the rating represen-
tation, i.e., a user rating can be influenced by his/her prefer-
ence and neighbor preferences. The user latent vectors were
linearly combined with those of the user trusted neighbors,
i.e., the user ratings are balanced between his own pref-
erence and his neighbors’ preference (Ma, King, and Lyu
2009). Chaney, Blei and Eliassi-Rad (2015) modified the
rating as the combination of the product of latent vectors
and the ratings from social neighbors under the probabilistic
Poisson factorization framework.

On the other hand, the researchers consider a social
networks as a regularization, which constraints that social
neighbors have similar preferences. Jamali and Ester (2010)
proposed that a user’s latent vectors should be close to the
weighted average of his social neighbors and incorporated
the social network as regularization. Based on similar idea,
Ma et al. (2011) proposed a individual-based social regular-
ization, which indirectly models the propagation of tastes.
Further, the heterogeneity of social relations and weak de-
pendency connections were considered as regularizations
(Tang et al. 2016).

At last, we can also use the hybrid strategy to combine the
above methods. For example, Fang, Bao and Zhang (2014)
jointly factorized the rating matrix and the trust matrix, and
modify the trust values from the meaningful aspects of trust.
Guo, Zhang and Yorker-Smith (2015) also jointly factorized
the two matrices, and reformulated the ratings with the im-
plicit effects of trusted users and historical rated items un-
der the SVD++ framework. The strong and weak ties in so-
cial networks were modeled int PTPMF model (Wang et al.
2017). PTPMF incorporated the preferences of both strongly
and weakly connected users into the rating presentation,
and regularized the user latent vectors from both strong and
weak tie perspectives.

Our work SREPS belongs to the collective matrix fac-
torization method. Compared with previous works, SREPS
not only captures the similarity of user preference in recom-
mender system and social network, but also allows differ-
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ent preference factors in different scenarios. SREPS is more
flexible to learn knowledge from social network and apply
this knowledge to improve the performance of recommender
system, as it was demonstrated in the experimental part.

Conclusion
In this paper, we proposed a novel social recommendation
framework called SREPS, which takes the essential prefer-
ence space into account to model the differences between
user preferences in recommender systems and in social net-
works. SREPS maps the essential preference space into dif-
ferent semantic latent spaces using space projection matri-
ces. By jointly incorporating rating information, consump-
tion information and social structural information, SREPS is
able to learn latent vectors in the essential preference space
to produce personalized recommendations. Comprehensive
experimental results on four real-world datasets demonstrate
that our model provides the best performance in term of
mean absolute error and root mean square error compared
to seven state-of-the-art methods.
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