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Abstract

This paper studies the problem of linking string mentions
from web tables in one language to the corresponding named
entities in a knowledge base written in another language,
which we call the cross-lingual table linking task. We present
a joint statistical model to simultaneously link all mentions
that appear in one table. The framework is based on neu-
ral networks, aiming to bridge the language gap by vector
space transformation and a coherence feature that captures
the correlations between entities in one table. Experimen-
tal results report that our approach improves the accuracy of
cross-lingual table linking by a relative gain of 12.1%. De-
tailed analysis of our approach also shows a positive and im-
portant gain brought by the joint framework and coherence
feature. 1

Introduction

The World Wide Web is endowed with billions of HTML ta-
bles, i.e. web tables (Cafarella et al. 2008; Wang et al. 2012),
which carry valuable structured information. To enable ma-
chines to understand and process such tables (Wang et al.
2012), the first step is to link the surface mentions of the en-
tities in the tables to a standard lexicon or knowledge base,
such as Wikipedia, which uniquely identifies entities. This
task is known as entity linking in web tables (Bhagavatula,
Noraset, and Downey 2015; Wu et al. 2016). In this paper,
we also call it “table linking”.

Existing work has been focused on entity linking for web
tables in English (Bhagavatula, Noraset, and Downey 2015;
Limaye, Sarawagi, and Chakrabarti 2010), or mono-lingual
table linking. However, when it comes to linking web tables
in other languages, the corresponding non-English knowl-
edge bases are often not comprehensive enough to cover
all the entity mentions in the tables at hand. The Chinese
Wikipedia, for instance, is just about 1/6 the size of its En-
glish counterpart, in terms of the number of entities (arti-
cles). This motivates us to link non-English web tables to
English knowledge base, in a novel process that we call
cross-lingual table linking. For example, the movie “
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” (Postman) in a Chinese table in Figure 1 is not included in
the Chinese Wikipedia but available in the English version.
Thus, we can link “ ” to “Il Postino: The Postman” in
the English Wikipedia.

Another important motivation for cross-lingual table link-
ing is to help enrich the facts in the target knowledge
base. Knowledge bases in English, albeit larger and bet-
ter structured than those in other languages, may contain
long-tail entities. These are entities associated with very
few attributes or relations in the KB, such as Chinese
movies or celebrities, since such information is often ig-
nored by the English-speaking Wiki contributors. On the
other hand, non-English web tables may be a rich source
of semantic relationships among these rare entities. For ex-
ample, the table in Figure 1 contains the relationship be-
tween movies and their countries of origin. “ ”(infor-
mant) is a Chinese movie that exists in English Wikipedia
(“The Stool Piegon (2010 film)”) and hence Freebase, but
it misses a property film country. Now if we can link the
mentions in the table to the correct entities in English
Wikipedia, then it is easy to infer that the film country prop-
erty of “The Stool Piegon (2010 film)” is China, thus dis-
covering a new fact.
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Figure 1: Example of cross-lingual table linking from Chi-
nese to English.

In this paper, we attempt to solve the cross-lingual table
linking problem without using any non-English knowledge
bases. To the best of our knowledge, this is the first attempt
that attacks the cross-lingual table linking problem.

There are two naive approaches to accomplish this cross-
lingual table linking task. In the first approach, one can use
any of the mono-lingual table linking techniques developed
thus far to first link the entities to a knowledge base of
that language, and then link to the English knowledge base
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via inter-language links (Tsai and Roth 2016). For exam-
ple, Wikipedia provides such inter-language links. This ap-
proach may not work because i) the non-English knowledge
base may not have all the entities in tables; and ii) many non-
English knowledge sources provide no inter-language links.

In the second approach, one can directly translate all the
entity names in the non-English web table into English, and
then use the mono-lingual table linking techniques to link
to an English knowledge base (McNamee et al. 2011). This
two-step approach is also not effective because it is analo-
gous to a distant supervised learning, where the association
between non-English names and English entities are not di-
rectly available for training. If the translation is wrong, the
error will propagate in the following linking steps.

In any approach to entity linking (mono- or cross-lingual),
a necessary step is to generate a set of candidate entities
(Tsai and Roth 2016; McNamee et al. 2011; Bhagavatula,
Noraset, and Downey 2015; Wu et al. 2016), and then the
problem is transformed to a ranking problem, which aims
to pick the entity that is most similar to the mention in the
table. The major technical challenge of our task is since the
source mention and the target entity come from two differ-
ent languages, their feature representations are naturally in-
compatible. To make matters worse, tables offer very limited
context for disambiguating a mention in the first place.

We thus propose a neural network based joint model for
cross-lingual table linking. We embed mention, context and
entity in a continuous vector space to capture their seman-
tics. Further, we employ a linear transformation between
vector spaces of two languages. For each table, we link all
the mentions simultaneously, so as to fully utilize the rela-
tionships among entities in the same row or column. We en-
code these correlations as a coherence feature in the model.
Furthermore, we design a pairwise ranking loss function for
parameter learning and propose an iterative prediction algo-
rithm to link new tables.

The contribution of this paper is summarized below.
• We are the first to define the problem of cross-lingual en-

tity linking for web tables (Section Problem);
• We present a novel neural network based joint model

which effectively captures the rich semantics of mention
table and referent entity table simultaneously. Based on
that, we bridge the gap between different languages in this
task (Section Approach);

• We propose a coherence feature in the joint linking model
which captures the correlation of entities appearing in the
same table and improves the linking accuracy (Subsection
Coherence Feature in Approach);

• The framework significantly outperforms several baseline
methods, with an accuracy of 62.9%. (Section Experi-
ments).

Problem Definition

The input mention table, denoted by X , is a matrix of sur-
face forms with R rows and C columns. Each mention xij is
represented by a sequence of words written in language L1

(e.g., Chinese). Given a knowledge base K containing a set
of entities e written in language L2 (e.g., English), our task

is to find the corresponding entity table E, such that each en-
tity eij ∈ K correctly disambiguates the surface form xij .

In practice, many mention tables contain unlinkable cells,
such as numbers, dates, times or emerging entities non-
existent in the knowledge base. There are some existing
works that deal with the identification of such numerical
or temporal entities in web tables (Ibrahim, Riedewald, and
Weikum 2016). In this paper, we will not focus on judging
whether a cell is linkable or not. Let P denote a set of in-
dices (i, j) indicating the position of all linkable cells in a
table, and we assume that all linkable positions P are pro-
vided along with the mention table X in both training and
testing datasets.

Traditional entity linking approaches usually formulate
the task by defining a scoring function S(x, e), which mea-
sures the relevance between a mention x and the target entity
e. Such techniques perform entity linking of each cell inde-
pendently, but the interaction between neighbourhood cells
ignored in the scenario of table inputs. To incorporate the
coherence information between target entities in the table,
we define another scoring function for the table linking task,
defined as follows:

Ê = argmax
E∈GEN(X)

S(X,E), (1)

where GEN(X) denotes the set of all candidate entity ta-
bles, and the function measures the overall relevance score
between the whole input table and a candidate entity table.

Approach

In this section, we describe our joint model for cross-lingual
table linking. Figure 2 gives a general view of the model.
The reason we call it a “joint model” is that the input of
neural network is a mention table X containing all the cells
to be linked, together with one candidate entity table E, and
the output stands for the relevance score S(X,E).

Specifically, we first generate candidate entities of each
single mention, then we learn two different features: the
mention feature and context feature derived from the
mention-entity embedding pairs of the table. To make dif-
ferent representations from two language spaces compatible,
we utilize a bilingual translation matrix to transform the vec-
tor representation from Chinese to English. Meanwhile, we
learn a third feature called coherence feature only from the
candidate entity table. Finally, we discuss the prediction and
parameter learning step of this task.

Candidate Entity Generation

We generate candidate English entities for each mention rep-
resented in Chinese. Without a reliable Chinese knowledge
base as the bridge, we use translation tools to produce a set
of possible translations of the given mention. Afterwards, we
use several heuristic rules to obtain candidate English enti-
ties. Possible candidate entities consist of: 1) exact match of
any mention translation; 2) anchor entities of any mention
translation in knowledge base; 3) fuzzy match (e.g., edit dis-
tance) of any mention translation. Take the Chinese mention
“ ” as an example, it can be translated to “person
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Figure 2: Overview of proposed neural network based joint model.

of interest” or “suspect tracking”, depending on what trans-
lation tool to use. The corresponding candidate entity set
would contain entities such as “person of interest”, “person
of interest (tv series)” or “suspect (1987 film)”.

Embedding and Translation Module

Let x(m) denote the mention embedding of the surface form
x, and e denote the entity embedding of a candidate e. Typi-
cally, a mention contains up to three words, thus we simply
represent x(m) as the average embedding of the contained
words it contains. We train word embeddings and entity em-
beddings on two corpus of different languages separately.

The vector spaces of embeddings in different languages
are naturally incompatible, and it’s hard for us to directly
compare or calculate them. To tackle this problem, we em-
ploy a bilingual translation layer to map embeddings from
one language space to another. Taking the mention embed-
ding x(m) in Chinese, the layers translates it into an En-
glish mention embedding v(m) through linear transforma-
tion: v(m) = Wtx(m) + bt, where Wt is the translation ma-
trix and bt is the bias, both of which are model parameters
and will be updated during training step.

In addition, we pre-train the translation parameters
by leveraging a small number of bilingual word pairs
(w(ch), w(en)), or call them translation seeds. The loss func-
tion of pre-train step is defined as follows:

L(Wt, bt) =
∑

i

‖Wtw
(ch)
i + bt − w(en)

i ‖2. (2)

Refer to Section Implementation Details and Experiments
for detailed information of the embedding initialization and
translation pre-train.

Mention and Context Feature

As shown in Figure 2, the mention and context feature rep-
resents the relevance or compatiblity between the mention
table X and the entity table E. Both features aggregate the
individual features of each cell, and thus share a similar neu-
ral network structure.

We first introduce the mention feature. For the surface
form xij , we concatenate the translated embedding v(m)

ij
with the entity embedding eij (Socher et al. 2013; 2015),
then feed into a fully connected layer, obtaining the hidden
feature between xij and eij at mention level. We apply vec-
tor averaging over all cells to be linked and finally produce
the hidden mention feature h(m) between the whole mention
and entity table. We formulate the steps as follows:

f (m)
ij =ReLU(W (m)[v(m)

ij ; eij ] + b(m))

h(m) =
1

|P |
∑

(i,j)∈P

f (m)
ij ,

(3)

where W (m) and b(m) are model parameters.
The context feature follows the similar idea. Instead of

using the surface form xij itself, mentions in the same row
or column (excluding itself) contain strong relatedness and
hence be regarded as the surrounding context. In this way,
we define the context embedding x(c)

ij as the average mention
embedding of those surrounding cells:

x(c)
ij =

1

|R+ C − 1| (
∑

(i,k),k �=j

x(m)
ik +

∑

(k,j),k �=i

x(m)
kj ). (4)

After applying the translation module, the context embed-
ding v(c)ij of each cell is used to generate the hidden context
feature of the mention-entity table pair, denoted by h(c). The
calculation is almost the same as Eq. (3), but just replacing
all the mention embeddings by the context ones. By learn-
ing the mention and context features, we can capture a gen-
eral sense of semantic relatedness of all mention-entity pairs
from two tables.

Coherence Feature

The previous two features aim at encoding the relevance or
compatibility of the mention-entity table pair. On the other
hand, the inner relationship of entities in the correct linked
table is also valuable. The intuition is that entities in the
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same column (row) tend to own the same type, in which
case, lead to similar vector representations. In the example in
Figure 1, target entities of the three columns represent “uni-
versity”, “street” and “city”, respectively. Therefore, we pro-
pose a third feature, which captures such correlations among
entities of same column.

There have been several works (Eberius et al. 2015;
Nishida et al. 2017) on table type classification, which iden-
tifies the display form of web tables. In this paper, we
mainly focus on tables with type “Vertical Relational” (VR)
(Nishida et al. 2017), which just look like Figure 1, where
entities in the same column have the same type. Most of web
tables can be transformed into this type after classification,
which is outside the scope of this paper.

We calculate the element-wise variance for all entity vec-
tors in the same column to get a coherence vector for
that column. The average among all columns is the hidden
coherence feature h(coh) of whole entity table:

h(coh) =
1

C

∑

j

var({eij |(i, j) ∈ P}), (5)

where var(·) calculates element-wise variance for a bunch
of input vectors. The coherence feature captures how self-
organized the candidate entities are, which complements the
previous mention and context features.

Training and Prediction

As mentioned before, we handle the table linking task by
defining a scoring function of the mention-entity table pair.
To fulfill this, the previous mention, context and coherence
features are fed into a two-layer fully connected network,
and the final output indicates the final relevance score:

hout = ReLU(Wout[h(m); h(c); h(coh)] + bout)
S(X,E) = u · hout,

(6)

where Wout, bout and u are model parameters.
For each mention table in the training set, there will be one

positive gold entity table, and several negative (corrupted)
entity tables. The negative table is generated automatically
from the gold table as follows: we first randomly select some
cells to be corrupted, and then replace the entities in those
cells by a random entity from the corresponding cell of a
candidate table.

There are two possible optimization strategies during
training: hinge loss and a pairwise ranking model. For hinge
loss, we try to maximize the difference between positive
and negative entity tables. For pairwise ranking model, ev-
ery pair of candidate tables are compared: the table with
more correctly linked entities is ranked higher than the other
one in the pair. Here we adopt RankNet (Burges 2010) with
Adam stochastic optimizier (Kingma and Ba 2014) as our
implementation.

At the time of prediction, ideally we must enumerate all
the candidate entity tables to get the global optimal. How-
ever, the number of candidate entity tables grow exponen-
tially with respect to the number of cells to be linked, ren-
dering such approach intractable. To this end, we use a local-

Algorithm 1 Local-Search Descent Prediction
Input: Mention table X , linking position P , initial entity table E0,
candidate generator Cand(·), scoring function S(·, ·)
Output: Entity table E

1: procedure PREDICT(X,E0, Cand, S)
2: E ← E0

3: smax ← S(X,E0)
4: repeat
5: Shuffle P
6: for (i, j) in P do
7: E′ ← E
8: for ent in Cand(xij) do
9: e′ij ← ent

10: s′ ← S(X,E′)
11: if s′ > smax then
12: eij ← ent
13: smax ← s′

14: until smax converges
15: return TE

search descent algorithm to approximate the optimal solu-
tion. As shown in Algorithm 1, E0 is the initial candidate
entity table, where each cell is filled with the most possible
candidate entity produced by the generator Cand(·), and S
is the learned scoring function. The predicting step works it-
eratively. For each round, all cells are visited one-by-one in
random order (line 6), and for each cell, the algorithm try to
replace the current entity by the one at the local optima, and
updates the output table (line 12). The iteration continues
until no replacement can improve the relevance score.

Implementation Details

We show the detailed implementations of our model, which
include candidate generation, translation model pre-train,
and parameter tuning.
Candidate Generation: we first use several translation
tools provided by Google2, Baidu3 and Tencent4. After re-
trieving English translations, we use several heuristics to
find candidate English entities in Wikipedia for each Chi-
nese mention. We add all anchor entities whose anchor text
exactly match the each translation with confidence 1.0. Then
we remove all the stop words from the translations and from
the anchor texts of Wikipedia, and compute the Jaccard simi-
larity between the two modified forms in order to fetch more
candidate entities. We use the Jaccard similarity score as the
confidence score here.
Translation Model Pre-Train: we collect a bilingual lexi-
con of common words using Bing Translate API 5, contain-
ing 91,346 translation pairs at word level. Each pair has a
confidence score ranging from 0 to 1. We remove the pairs
with score less than 0.5, and further select those pairs in
which both the Chinese and English word perfectly match
the name of an article in Wikipedia. In total 3,655 transla-
tion pairs are picked as our pre-train dataset.

2http://translate.google.cn
3http://fanyi.baidu.com
4http://fanyi.qq.com
5http://www.bing.com/translator
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Parameter Tuning:

• The size of candidates per mention (denoted by Ncand) is
in the range of {1, 3, 5, 10, 20, 30, 40, 50},

• The number of negative entity tables per mention table
(denoted by Ntab) is in {9, 19, 49, 99},

• The dimension of cell, context and overall features (dcell,
dcont and dout) are in {20, 50, 100, 200},

• The learning rate η is in {0.0002, 0.0005, 0.001},

• We apply dropout layers (Srivastava et al. 2014) on each
hidden feature vector to avoid overfitting. The keep prob-
ability p of dropout layers is in {0.5, 0.6, 0.7, 0.8, 0.9}.

Experiments

In this section, we introduce the datasets and previous state-
of-the-art systems for comparison in our experiments, and
explain how to adapt a mono-lingual entity linker into our
scenario. We show the end-to-end results of all the systems
on cross-lingual and mono-lingual dataset, and perform ab-
lation experiments to investigate the importance of different
components used in the whole task.

Experimental Setup

Wikipedia and Word Embeddings: we use the Feb. 2017
dump of English6 and Chinese7 Wikipedia as the text cor-
pora for training word and entity embeddings. The dumps
contain 5,346,897 English and 919,696 Chinese articles (en-
tities). For the purpose of entity embedding, all the entities
occurred in anchor texts are regarded as special words. E.g.,
the anchor text “Rockets” in the sentence “the Rockets All-
Star player James Harden ... ” is replace by the special word
“[[Houston Rockets]]” as the entry of the English entity. We
adopt Word2Vec (Mikolov et al. 2013) to learn the initial
embeddings from both corpus respectively, the embedding
dimension is set to 100.
Table Linking Dataset: our cross-lingual table linking
dataset consists of 150 web tables with Chinese mentions
and linked English Wiki articles. The original Chinese ta-
bles are created by Wu et al. (2016), which contains 123 ta-
bles extracted from Chinese Wikipedia, and each mention is
labeled by its corresponding Chinese Wiki article. We col-
lect another 30 Chinese tables with similar size from Web
and transform all the Chinese entities into English via inter-
language links of Wikipedia, producing the labeled English
entities for 81% of the entire mentions. In addition, we dis-
card long-tail tables, in which the dimension of the table or
the number of labeled English entities is too small. In to-
tal, we collected 3818 mentions from 150 tables, with 2883
linkable positions (19.22 per table). We randomly split the
dataset8 into training / validation / testing sets (80 : 20 : 50
tables).

6https://dumps.wikimedia.org/enwiki/
7https://dumps.wikimedia.org/zhwiki/
8The dataset is available at https://adapt.seiee.sjtu.edu.cn/tabel

State-of-the-art Comparisons

Since there are no previous work that directly handle the
cross-lingual table linking, we select comparison systems
from two perspectives. The first perspective is mono-lingual
table linking, we compare with Bhagavatula et al. (2015)
and Wu et al. (2016). We call their systems TabELB and
TabELW in short. In order to make a fair comparison in our
bilingual scenario, we convert each mention into the most
likely English translation, then run the mono-lingual models
on these translated English tables.

The second branch is cross-lingual text linking, we com-
pare with Zhang et al. 2013 (2013), a bilingual-LDA based
method, called TextEL. In this case, we traverse each men-
tion in row order and flatten the whole table into a word
sequence, and mark the word intervals for mentions to be
linked. By turning the table into an unstructured piece of
text, TextEL is able to learn more flexible context informa-
tion. Howevewr, it may be hard to capture the correlation of
entities in the same column.

Evaluation of Candidate Generation

In this part, we investigate the translated English mentions
from Chinese table inputs. As described in Section Imple-
mentation Details, English mentions are derived from mul-
tiple resources. Compare with different combination of re-
source, we evaluate the quality by measuring the proportion
of cells that the correct entity appears in the top-n candidates
(Hits@n).

From the results in Table 1, we observe that ensembling
multiple translation resources is able to discover more cor-
rect entities without bringing too many noisy candidates.

Table 1: Hits@n results on candidate entity generation
Resources n=1 n=5 n=10

Google 0.463 0.585 0.596
Baidu 0.542 0.669 0.684

Tencent 0.394 0.510 0.522
All Trans 0.558 0.708 0.726

End-to-End Results

Now we perform the cross-lingual table linking experiment
and compare with previous table linking and text linking
systems. To be consistent with state-of-the-art systems, we
report Micro Accuracy and Macro Accuracy as the evalu-
ation metrics. Micro Accuracy is the percentage of correct
linked cells over the whole dataset, whiles Macro Accuracy,
defined as average correct ratio over different tables, thus
avoiding the bias towards the table with more cells.

Due to both TabELB and TabELW taking only one En-
glish mention per cell as the input, we select Baidu as the
best translation tool and apply this setting to all approaches.
In addition, we evaluate our approach under the full trans-
lating strategy, using either pre-train or without pre-train.
For all the variations of our approach, we set Ncand = 30,
Ntab = 49, dcell = dcont = 100, dout = 200, η = 0.0002
and p = 0.9 under RankNet optimizer, as reaching the
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highest Micro Accuracy in the validation set. For other ap-
proaches, we use different Ncand, tuning separately.

We report the experimental results in Table 2. For the 4
experiments using Baidu translation only, Our model out-
performs the other baseline models, improving the result
by up to 12.1%. Our full model even improves the Micro
Accuracy by an absolute gain of 0.053, showing the im-
portance of combining multiple translating tools. Besides,
the pre-train step also raises the Micro Accuracy by 0.023.
Both TabELB and TabELW suffer from the error propaga-
tion problem,because only the top translation is considered,
whereas our approach generates candidate entities from mul-
tiple translated mentions, which alleviates the error brought
by translation.

Table 2: Accuracies on cross-lingual table linking task. All
baselines take Baidu as the only translating tool.

Approach Micro Acc. Macro Acc.
TabELB 0.512 0.507
TabELW 0.514 0.519
TextEL 0.472 0.458

Ours (Baidu Only) 0.576 0.573
Ours (Full, - pre-train) 0.606 0.591
Ours (Full, + pre-train) 0.629 0.614

We further investigate how the candidate size of a men-
tion effects the table linking result. When Ncand goes larger,
the theoretical upper bound of the final result increases, but
it’s more difficult for the system to reach the upper bound.
For analyzing such tradeoff, Figure 3 shows the Micro Ac-
curacy trend of each approach, and we display upper bound
(Hits@n) in the figure. Our approach is more adaptive to dif-
ferent size of candidates, and can produce promising end-to-
end results. TabELB also keeps a stable performance with
a subtle decreasing, while TextEL drops dramatically, even
if the candidate size is smaller than 10. The main reason is
that BLDA model is unsupervised, which doesn’t observe
any explicit (mention, entity) pair for learning.

Figure 3: Results of Micro Accuracy by different size of can-
didates, using Baidu translation only.

To better justify the effectiveness of our model, we per-
form experiments on mono-lingual scenario. We use the

original table dataset, where target entities are articles in
Chinese Wikipedia. Accordingly, we remove the translation
layer in our model for handling the mono-lingual task, and
all the other settings stay the same. Again we compare with
previous table linking systems, where TabELW is reported
as the state-of-the-art in Chinese table linking task. Experi-
mental results in Table 3 show that our mono-lingual model
still outperforms the two baselines, which supports the ex-
pressiveness of our NN based joint model for handling gen-
eral table linking tasks.

Table 3: Accuracies on Chinese mono-lingual table linking.
Approach Micro Acc. Macro Acc.
TabELB 0.848 0.845
TabELW 0.852 0.848
Ours-mono 0.886 0.868

Ablation Study

In this section, we explore the contributions of the various
components of our system.
Feature Variations

We first evaluate table linking results using different fea-
ture combinations. As the results shown in Table 4, all fea-
tures in our model make a positive contribution to the final
accuracy. The mention feature is the most important one,
since it encodes the most direct information between the
mention and the target entity. We observe that when using
coherence feature only, a significant decrease in accuracy
takes place, largely due to the lack of dominant and direct
semantic association between mention-entity pairs. Never-
theless, the coherence feature is complementary to the oth-
ers, as it aims at discovering the latent correlation in a global
perspective, modeling whether different candidate entities in
one column are close to each other, for example, sharing the
same (or similar) type, even though no explicit type or cate-
gory information is attached to the entity.

Table 4: Ablation test on validation set.
Feature Combination Micro Acc. Decrease in Acc. (%)

Mention Only 0.604 12.7
Context Only 0.576 16.7

Coherence Only 0.279 59.6
Mention + Context 0.652 5.78

Full 0.692 0.00

In the example in Figure 1, the mention “ ”
can be linked to either “Iron Man” (the fictional super-
hero) or “Iron Man (2008 film)” in Wikipedia, while both
“ ” (“How to Train Your Dragon (film)”) and “

” (“The Stool Pigeon (2010 film)”) have less ambigu-
ity. Our model predicts the superhero when using mention
+ context features only. After applying the coherence fea-
ture, the strong correlation between the entities in the same
column makes the model bias toward the correct film entity.
Joint Model Versus Non-Joint Model

Now we investigate the effectiveness of the joint frame-
work. Inspired by Sun et al. (2015), we change our joint
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scoring function back to the non-joint style, where the the
coherence module is removed, and the average operation
over different cells is no longer needed. As a comparision,
we re-run our joint model but with the coherence module
removed, and use either hinge loss or RankNet as the opti-
mizer. Table 5 shows Micro Accuracy results on the testing
set. We find that when using hinge loss, the non-joint model
even outperforms the joint model. We believe that hinge loss
is less effective than RankNet in our joint model, because: i)
all the negative candidates of each mention are used in the
non-joint model; however, in the joint model, some negative
candidates are not sampled and hence cannot be observed
by the model; ii) hinge loss focuses on the margin between
the positive entity table and the nearby negative entity ta-
ble (with only a few corruptions), thus other negative tables
with more corruptions become less effective in the training.
It’s worth mentioning that while the non-joint model is more
light-weight at run time, the joint model takes only 6 rounds
on average for each prediction, which is acceptable in terms
of running time.

Table 5: Micro-accuracies on the testing set under different
model specifications.

Model Optimizer Coherence Micro Acc.
Non-Joint Hinge Loss N 0.586

Joint Hinge Loss N 0.574
Joint RankNet N 0.598
Joint RankNet Y 0.629

Related Work

Entity linking has been a popular topic in NLP for a long
time as it is the basic step for machines to understand natural
language and an important procedure of many complex NLP
applications such as information retrieval and question an-
swering. Entity linking requires a knowledge base to which
entity mentions can be linked, the most popular ones includ-
ing Freebase (Bollacker et al. 2008), YAGO (Suchanek, Kas-
neci, and Weikum 2007) and Wikipedia (Cai et al. 2013),
where each Wikipedia article is considered as an entity. Due
to its fundamental role in many applications, the task of en-
tity linking has attracted a lot of attention, and many shared
tasks have been proposed to promote this study (Ji et al.
2010; Cano et al. 2014; Carmel et al. 2014). Similar to our
work, Sun et al. (2015) used neural networks for entity link-
ing. They used a Siamese-like network structure, where the
mentions and candidates are separately embedded into vec-
tor space, and contexts are modeled by a convolution neu-
ral network. A cosine-similarity score is output as the score
of a <mention, context, candidate> triplet and trained with
hinge-loss. On the other hand, our model jointly assigns the
mentions simultaneously.

Different from general entity linking tasks, table entity
linking focuses only on entries in tables. The interest in
web tables was inspired by Cafarella et al. (2008). Muñoz
et al. (2014) proposed methods to mine rdf triples from
Wikipedia tables, and Sekhavat et al. (2014) proposed meth-
ods to enrich a knowledge base by leveraging tabular data

on the Web. These works and other applications involving
web tables could all benefit from our table entity linking
system. Bhagavatula et al. (2015) argued that models which
jointly address entity linking, column type identification and
relation extraction rely on the correctness and completeness
of KB, thus may adversely affect the performance of en-
tity linking. They also exploited a graphical model, where
cells in the same row or column are connected. Graphi-
cal models are also used elsewhere (Limaye, Sarawagi, and
Chakrabarti 2010; Ibrahim, Riedewald, and Weikum 2016)
Wu et al. (2016) constructed a graph of mentions and candi-
date entities for each query table, then use page rank (Page et
al. 1999) to determine the similarity score between mentions
and candidates. Besides, they combined multiple knowledge
bases in Chinese to enhance the system.

Starting from 2011 the annual TAC KBP Entity Linking
Track has been using the multi-language setting (Ji et al.
2010; Ji, Nothman, and Hachey 2014; Ji et al. 2015), where
the languages involved are English, Chinese and Spanish.
Most methods managed to bridge the language gap through
language-independent spaces. Fahrni et al. (2011) presented
HITS’ system for cross-lingual entity linking. Their ap-
proach consisted of three steps: 1) obtain a language-
independent concept-based representation for query docu-
ments; 2) disambiguate the entities using an SVM and a
graph-based approach; 3) cluster the remaining mentions
which were not assigned any KB entity in step 2. Zhang
et al. (2011) leveraged a modified version of Latent Dirich-
let Allocation, which they call BLDA (Bilingual LDA) and
bridged the gap between languages via topic space. Wang
et al. (2015) proposed an unsupervised graph-based method
which matches a knowledge graph with a graph constructed
from mentions and the corresponding candidates of the
query document. Tsai et al. (2016) trained a multilingual
word and title embeddings and ranked entity candidates us-
ing features based on these multilingual embeddings.

Conclusion

To the best of our knowledge, this is the first piece of work
that studies the cross-lingual entity linking problem for web
tables. We proposed a neural network based joint model that
takes advantage of features extracted from a cell, its context
and semantic coherence within a table column. Our experi-
ments show the substantial benefits of using the joint model
that predicts the links of all cells at once versus a non-joint
model that predicts the cells independently. Our best model
achieves an accuracy of 63%, for a task that is significantly
more challenging than mono-lingual table linking. Possible
future work includes the automatic determination of whether
a non-numerical string mention in a cell should or should
not be linked. We have ignored this problem in this paper
but such un-linkable cells are abundant in web tables, too.
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