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Abstract

Since many languages originated from a common ancestral
language and influence each other, there would inevitably
exist similarities between these languages such as lexical sim-
ilarity and named entity similarity. In this paper, we lever-
age these similarities to improve the translation performance
in neural machine translation. Specifically, we introduce an
attention-via-attention mechanism that allows the information
of source-side characters flowing to the target side directly.
With this mechanism, the target-side characters will be gen-
erated based on the representation of source-side characters
when the words are similar. For instance, our proposed neural
machine translation system learns to transfer the character-
level information of the English word ‘system’ through the
attention-via-attention mechanism to generate the Czech word
‘systém’. Consequently, our approach is able to not only
achieve a competitive translation performance, but also reduce
the model size significantly.

1 Introduction

A language family is a group of related languages that de-
veloped from a common ancestral language, such as the
Indo-European family, the Niger-Congo family and the Aus-
tronesian family. The languages in the same family are more
or less similar to each other. One of the measurements is
lexical similarity (Simons and Fennig 2017), which approxi-
mately measures the similarity between the lexicons of two
languages. Simons and Fennig (2017) calculated it by com-
paring a standardized set of wordlists and counting those
forms that show similarity in both form and meaning. Based
on such a method, English is evaluated to have a lexical simi-
larity of 60% with German and 27% with French. Moreover,
language itself is an evolving system and the evolution of
lexicons in different languages never stops. Guestwords, for-
eignisms and loanwords from a language may be added to
the lexicon of another language. Although the languages are
different, many of the words (e.g., named entities) are usually
represented by similar characters.

Currently, many state-of-the-art neural machine transla-
tion (NMT) systems (Bahdanau, Cho, and Bengio 2015;
Sutskever, Vinyals, and Le 2014; Jean et al. 2015; Luong
and Manning 2016) are built on words. There are various
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considerations behind the wide adoption of word-level mod-
eling (Chung, Cho, and Bengio 2016). The vanishing gradient
problem of character-level models and lower calculation cost
of word-level models may be the major causes. However,
the word-level NMT systems are unable to utilize the lexi-
cal similarity and named entity similarity between language
pairs. Some explorations have been performed to incorpo-
rate the similarity of vocabularies. For instance, Gulcehre et
al. (2016) introduced a pointer network to copy words from
the source. However, they assumed that the target out-of-
vocabulary (OOV) words are the same as the corresponding
source words. Obviously, this assumption is not always satis-
fied.

The character-level information is critical in neural ma-
chine translation. Suppose there are two languages that differ
only in the alphabets, e.g., Russian written in Cyrillic and
Russian written in Latin script. It would not be easy for a
purely word-level NMT to translate between such a language
pair, because the word-level model needs to establish the map-
ping between words. In contrast, the character-level model
only needs to establish the mapping between characters. Al-
though there are no such language pairs in reality, we can still
make use of the similarity of languages from the character
level. In particular, we provide the following two sentences
to clarify what we are focusing on:

1) Aby legenda byla věrohodná , psalo se o filmovém
projektu ve specializovaných magazínech , pořádaly se
tiskové konference , fiktivní produkční společnost měla
reálnou kancelář . (Czech)
2) For the story to be believed , the film project was
reported on in specialist magazines , press conferences
were organised , and the fictitious production company
had a real office . (English)

There are many similar words between two sentences. One
may speculate the meaning of some Czech words based
on the English words such as ‘projektu - project’,
‘magazínech - magazines’ and ‘konference -
conferences’. In this paper, we leverage these similari-
ties from character level in NMT to improve the translation
performance, and reduce the model size simultaneously. In
accordance with expectation, our model is able to detect and
handle named entities, as shown in Section 6.

To sum up the above statements, the character-level lexicon
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and the word-level grammar are both important for neural
machine translation. Luong and Manning (2016) proposed a
hybrid model on the English-to-Czech translation task which
encodes the OOV words using a character-level RNN. How-
ever, this hybrid model is restricted to achieving open vo-
cabularies, and the character-level information has not been
exploited. Instead, we propose a model that takes advan-
tage of word-level modeling and bridges lexicons with an
attention-via-attention mechanism, without even involving
any vocabularies. Specifically, we encode the source sen-
tence from character level using an unidirectional recurrent
neural network (RNN), then extract the word information to
learn word-level grammar by a bidirectional RNN (BiRNN)
(Schuster and Paliwal 1997). To predict at character level,
the attention is paid to the word level first. Subsequently, the
attention is turned to the character level with the help of the
word-level attention. Finally, the word-level representation
and character-level representation are combined together to
predict the target character.

We illustrate the architecture of our model in Figure 1,
from which we could find that the information of source-side
characters flows to the target-side characters directly. There
are many models employing multiple attention components,
such as attention-over-attention neural networks (Cui et al.
2016), hierarchical attention networks (Yang et al. 2016) and
multi-step attention (Gehring et al. 2017). The key difference
is that our attention-via-attention mechanism is a top-down
approach (from words to characters), while the others use a
down-top approach, that is, to build the attention from a lower-
level representation to a higher-level one. The hierarchical
attention could not connect the source side and the target side
directly, thus it is not applicable to this scenario.

With a hierarchical encoder and an attention-via-attention
mechanism, our method is capable of addressing several
essential issues in neural machine translation community.
That is,

• We avoid the use of large vocabularies. Instead, we em-
ploy a character-level RNN to encode the entire source
sentence which also handles the rare words. The character-
level RNN makes use of distributed representation, which
generally yields better generalization. It is one of the key
ingredients for the attention-via-attention mechanism.

• We alleviate the vanishing gradient problem of purely
character-level models by introducing a hierarchical en-
coder.

• We detect named entities and similar lexemes automati-
cally, then transfer them to the target language through the
attention-via-attention mechanism.

These issues impact not only on translation tasks but also
on many other natural language processing tasks, such as
text summarization (Gulcehre et al. 2016) and conversational
models (Vinyals and Le 2015). Thus these tasks may benefit
from our approach in principle.

2 Neural Machine Translation

Neural machine translation systems are typically imple-
mented as an encoder-decoder architecture (Bahdanau, Cho,

and Bengio 2015; Sutskever, Vinyals, and Le 2014). The en-
coder could be a recurrent neural network or a bidirectional
recurrent neural network that encodes a source language sen-
tence x = {x1, . . . , xTc

} into a sequence of hidden states
h = {h1, . . . ,hTc

}:

ht = fenc(e(xt),ht−1),

in which ht is the hidden state at time step t, e(xt) is the
continuous embedding of xt, Tc is the number of symbols in
the source sequence, and the function fenc is the recurrent unit
such as the gated recurrent unit (GRU) (Chung et al. 2014)
or the long short-term memory (LSTM) unit (Hochreiter and
Schmidhuber 1997). The decoder, another RNN, is trained to
predict the conditional probability of each target symbol yt
given its preceding symbols y<t and the context vector ct:

P (yt|y<t) = g(e(yt−1), rt−1, ct),

rt = fdec(e(yt), rt−1, ct),

where rt is the hidden state of the decoder RNN at time step
t and updated by fdec, e(yt) is the continuous embedding of
target symbol yt, and g is a nonlinear function that computes
the probability of yt. The context vector ct at each decoding
time step is computed as a weighted sum of source hidden
states (Bahdanau, Cho, and Bengio 2015), e.g.,

ct =

Tc∑

i=1

αihi,

αi =
exp(fenergy(rt−1,hi))∑Tc

j=1 exp(fenergy(rt−1,hj))
,

where fenergy is a feed-forward network, computing how well
the representation hi of source symbol matches the hidden
state rt−1 of the decoder RNN. Specifically, we use the fol-
lowing function,

fenergy(rt−1,hi) = vT
e tanh(Wrrt−1 +Whhj), (1)

where ve, Wr and Wh are trainable parameters. Luong,
Pham, and Manning (2015) have used several alternatives to
compute the energy.

The end-to-end model is then jointly trained to maximize
the conditional log-likelihood:

Θ∗ = argmax
Θ

∑

(x,y)∈D

Ty∑

t=1

log P (yt|y<t, x;Θ), (2)

where Θ is the parameters of the model and (x, y) corre-
sponds to a sentence pair in the dataset D.

3 Attention-via-Attention Neural Machine

Translation

We could either use the character symbols or the word sym-
bols as the inputs of NMT systems. Both character-level mod-
els and word-level models have their own merits and demerits
(Chung, Cho, and Bengio 2016). We devise two novel compo-
nents which utilize the advantages of both modeling methods:
the hierarchical encoder and the attention-via-attention mech-
anism. Accordingly, we propose an attention-via-attention
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neural machine translation (AvA NMT) model. Figure 1 il-
lustrates the general architecture of our NMT system. The
proposed model will be described formally in the following
sections.

Hierarchical Encoder

As described by Chung, Cho, and Bengio (2016), many issues
of word-level translation could be elegantly addressed by us-
ing a parametric approach based on neural networks instead
of a non-parametric count-based approach. For instance, Lee,
Cho, and Hofmann (2016) proposed a fully character-level
model which is comparable to the subword-based models
(Sennrich, Haddow, and Birch 2016). However, the convo-
lutional neural network (CNN) encoder (Kim et al. 2016)
used in their model is not suitable for utilizing the similar-
ity of lexicons as the character-level information is filtered.
Chung, Ahn, and Bengio (2016) proposed a hierarchical
multiscale RNN which outperforms the standard RNN in
character-level language modeling. Unfortunately, it suffers
from inefficiency and is much slower than the word-level en-
coder. To utilize the similarity between languages and encode
efficiently, we devise a hierarchical RNN encoder which con-
sists of a small character-level RNN and a large word-level
BiRNN.

Character-Level RNN. We encode the source sentence
x = {x1, . . . , xTc

} with a character-level RNN as

hc
t = fchar_rnn(e(xt),h

c
t−1),

where e(xt) is the continuous embedding of character xt

and the function fchar_rnn is the recurrent unit. The hidden
state hc

t should be able to summarize the preceding character
sequence. Since the primary function of this character-level
RNN is to generate a continuous representation of words,
we employ a recurrent neural network containing fewer hid-
den units for efficiency. In contrast to the CNN, it is much
easier for a character-level RNN to generate a reasonable
representation of the substrings such as ‘Exp’, ‘Expe’ and
‘Exper’. As explained in Section 3, this feature is essential
for bridging lexicons between the source language and the
target language. We utilize all these hidden states to form
the context set Cc = {hc

1, . . . ,h
c
Tc
} of the character-level

sequence.

Word-Level BiRNN. After encoding the entire sentence
with the character-level RNN, we are able to obtain the repre-
sentation of each word. We extract the hidden states accord-
ing to the spaces in the sentences. For instance, hc

7, hc
14 and

hc
16 are extracted, representing ‘Expert’, ‘system’ and ‘</s>’

respectively. Obviously, the word-level sequence is much
shorter than the character-level sequence. Therefore we could
employ a large BiRNN to capture the semantic information,
whose overhead is similar to that of purely word-level models.
It consists of two RNNs: the forward network fword_forw and
the backward network fword_back. The hidden states from both
networks are concatenated at each time step. Formally, the

hidden state hc
t is encoded by the following steps:

hfw
t = fword_forw(h

c
t ,h

fw
t−1),

hbw
t = fword_back(h

c
t ,h

bw
t+1),

hw
t = [hfw

t ;hbw
t ].

All these hidden states form the context set Cw =
{hw

1 , . . . ,h
w
Tw

} of the word-level sequence containing Tw

words. Since the word-level sequence is much shorter, it is
possible to utilize the deep multi-layer architecture such as
in (Luong and Manning 2016).

Attention via Attention

There are many models employing a hierarchical attention,
such as attention-over-attention neural networks (Cui et al.
2016), hierarchical attention networks (Yang et al. 2016)
and multi-step attention (Gehring et al. 2017). It is worth
mentioning that the hierarchical attention mechanism in the
previous work is built from a lower-level representation to a
higher-level one. However, in our work, we build it reversely.
We would first attend to the higher level and then attend
to the lower level guided by the higher-level attention, so-
called attention-via-attention mechanism. In our model, the
higher-level representation is the word-level representation
while the lower-level representation is the character-level
representation. First, we obtain the context vector of the word
level which is similar to RNNsearch (Bahdanau, Cho, and
Bengio 2015), that is,

cwt =

Tw∑

i=1

αw
i h

w
i ,

αw
i =

exp(fw
energy(rt−1,h

w
i ))∑Tw

j=1 exp(f
w
energy(rt−1,hw

j ))
,

where fw
energy is a feed-forward network described by Eqn. (1)

and rt is the hidden state of a character-level decoder RNN,
which will be described in Section 3.

Next we pay attention to the character-level context. As
the sequence of characters is much longer than the sequence
of words, it would be much harder to obtain the correspond-
ing representation. We would utilize the context vector cwt
from the word level. Suppose we are translating the word
‘Expert’ as illustrated in Figure 1. The context cwt would
roughly point out the source word ‘Expert’ as it shares
more similarities with the substrings in ‘Expert’ than
‘system’. We also utilize the hidden states r5 of the decoder
recurrent network. In this case, we could find that r5 summa-
rizes ‘Expe’ in the target side and hc

4 summarizes ‘Expe’ in
the source side. r5 and hc

4 are similar in some sense, thus it
would be helpful for the content-based addressing. Formally,
the context vector of character level is computed by

cct =

Tc∑

i=1

αc
ih

c
i ,

αc
i =

exp(f c
energy(rt−1, c

w
t ,h

c
i ))∑Tc

j=1 exp(f
c
energy(rt−1, cwt ,h

c
j))

.
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Figure 1: Attention-via-attention neural machine translation. As ‘Expe’ has already been generated, next target character ‘r’
will be generated based mainly on the representation of ‘r’ in the source side. For brevity, we omit certain connections in the
graphical illustration.

In this character-level attention step, f c
energy(rt−1, c

w
t ,h

c
i ) is

calculated by,

fenergy(rt−1, c
w
t ,h

c
i ) = v

T
cetanh(Wcrrt−1 + Wccc

w
t + Wchh

c
j),

where vce, Wcr, Wcc and Wch are trainable parameters.
Finally, the character-level context vector cct and the word-

level context vector cwt are concatenated into ct = [cwt ; c
c
t ],

which is incorporated to predict the next target character.
The idea of the attention-via-attention mechanism should

be applicable to the purely word-level model in which dif-
ferent levels of abstraction correspond to different layers of
RNNs in the multi-layer BiRNN encoder. It can be regarded
as adding attentive shortcuts between layers.

Character-Level Decoder

A character-level decoder is essential for bridging lexi-
cons of the source language and the target language. The
trivial character-level RNNs are able to achieve compet-
itive translation performance (Luong and Manning 2016;
Chung, Cho, and Bengio 2016). We predict the conditional
probability of the target character yt based on its preceding
characters y<t, the context vector ct, and the hidden state
rt−1 of decoder RNN; that is

P (yt|y<t) = g(e(yt−1), rt−1, ct),

rt = fdec(e(yt), rt−1, ct).

where the function fdec is the recurrent unit such as GRU or
LSTM, and g is a nonlinear function evaluating the proba-

bility of yt. Finally, the whole NMT system could be jointly
trained in terms of the problem in (2).

Complexity Analysis

Our model is a fully character-based model that depends only
on the character vocabulary. Thus both source sequences and
target sequences become much longer than the word-based
models, and the model becomes more complex. We would
analyze the complexity of our attention-via-attention neural
machine translation model briefly.

Suppose the character-level RNN encoder contains
Nchar_rnn hidden units, then the complexity to en-
code a character-level sequence is O(TcN

2
char_rnn).

Similarly, the complexity of word-level encoder is
O(TwN

2
word_forw + TwN

2
word_back). The complexity

of word-level attention and character-level attention
are O(TwTyNword_context(Nword_forw + Nword_back)) and
O(TcTyNchar_contextNchar_rnn), respectively. Finally, the
complexity of the character-level decoder mainly consists
of complexity of the RNN and complexity of evaluating
probability via the nonlinear function g, i.e., the softmax
function. Therefore, the total complexity of decoder is
O(TyN

2
dec_char) + O(TyNdec_charNchar_vocab_size). We sum-

marize the complexity of various models in Table 1 for
comparison, we assume that Nword_forw = Nword_back.

Based on the statistics that sentences are on average
6 longer (i.e., Tc = 6Tw) when represented in charac-
ters (for English, French and Czech) and our experiments
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Model Complexity

Word-based O(2TwN
2
word_forw) +

O(2TwTyNword_contextNword_forw) +
O(TyN

2
dec_word) +

O(TyNdec_wordNword_vocab_size)

bpe2char O(2TwN
2
word_forw) +

O(2TwTyNword_contextNword_forw) +
O(TyN

2
dec_char) +

O(TyNdec_charNchar_vocab_size)

AvA NMT O(TcN
2
char_rnn) + O(2TwN

2
word_forw) +

O(TcTyNchar_contextNchar_rnn) +
O(2TwTyNword_contextNword_forw) +
O(TyN

2
dec_char) +

O(TyNdec_charNchar_vocab_size)

Table 1: Complexity of various models.

setting that Nword_forw = 2Nchar_rnn and Nword_context =
4Nchar_context, the extra overhead of AvA NMT model
comparing to bpe2char model is O(1.5TwN

2
word_forw) +

O(0.75TwTyNword_contextNword_forw). This overhead is in-
significant compared with the whole complexity.

4 Experiments

We evaluate the effectiveness and the efficiency of the pro-
posed attention-via-attention model on the WMT’15 En-Fr
and En-Cs translation tasks. 1 We conduct comparison with
various strong baselines including RNNsearch (Bahdanau,
Cho, and Bengio 2015), GNMT (Wu et al. 2016), bpe2char
models (Chung, Cho, and Bengio 2016), char2char mod-
els (Lee, Cho, and Hofmann 2016) and hybrid models (Lu-
ong and Manning 2016). For fair comparison, two metrics
are used: BLEU (Papineni et al. 2002) and chrF3 (Popovic
2015)2.

Datasets

We use the parallel corpora from WMT. When comparing
with RNNsearch on En-Fr task, we reduce the size of the
combined corpus to have 12.1M sentence pairs for fairness.
When comparing with GNMT, we use the whole dataset
which contains 36M parallel sentences. For En-Cs, we use all
parallel corpora available for WMT’15. In terms of prepro-
cessing, we only apply the usual tokenization in comparison
with the other NMT systems. We choose a list of 300 most
frequent characters for each language which covers nearly
all of the training data. A great advantage over the hybrid
model (Luong and Manning 2016) is that we do not use any
word vocabularies in our model. We use newstest2013 as the
development set and evaluate the models on newstest2014

1http://www.statmt.org/wmt15/translation -task.html
2We use the scripts from Moses to compute the BLEU

score. For chrF3, we use the implementation from github:
https://github.com/rsennrich/subword-nmt .

and newstest2015 for En-Fr and En-Cs task, respectively. We
do not use any monolingual corpus.

Training and Decoding Details

Models. First we want to verify the effectiveness of the hi-
erarchical encoder and the attention-via-attention mechanism,
by comparing with RNNsearch (Bahdanau, Cho, and Bengio
2015) on En-Fr translation task. Concretely, we follow Bah-
danau, Cho, and Bengio to use similar architectures. Both the
BiRNN encoder and the RNN decoder consist of one-layer
GRUs, each having 1024 hidden units. We only use those
pairs in which the sentence is not longer than 300 characters.
Because the capacity of an embedding matrix is much higher
than the character-level RNN, we use one-layer 512 LSTMs
in this RNN. In order to comparing with GNMT, we employ
a much deeper model which consists of a four-layer encoder
and two-layer decoder.

Czech is a Slavic language with not only rich and complex
inflection but also fusional morphology, which is more chal-
lenging. To demonstrate the efficiency of the proposed model
on such a challenging language, we have constrained our
shallow AvA model to have similar capacity with the other
character-level models. Besides, we also trained a deep AvA
model in order to comparing with the deep hybrid model .
We provide the detailed setting in Table 3.

Training Details. We use the ADAM optimizer (Kingma
and Ba 2015) with minibatch of 100 sentences to train each
model. The learning rate is first set to 5e−4 and then halved
every epoch. The norm of the gradient is clipped with a
threshold of 1. We train each shallow model for approxi-
mately 2 weeks on a single Titan X GPU. However, the deep
AvA NMT model takes longer time to train. We list the rough
training days on GPUs in Table 2 and Table 3, which are
estimated by the number of GPUs multiply by training days.
Note that, the GPU days may be inaccurate because of differ-
ent hardwares and different implementation.

Decoding Details. In case of decoding, we use beam
search with length-normalization to find a translation. The
beam width is set to 12 for all models.

5 Quantitative Results

In this section, we conduct comparison of quantitative results
on the En-Fr and En-Cs translation tasks, which is evaluated
using BLEU and chrF3. As our model is purely character-
based, we focus on comparison of En-Cs translation tasks
which is more appropriate by character-level modeling. More-
over, we approximately estimate the similarity between these
languages based on the alignments on the character level.

Translation Performance

En-Fr task. We list the BLEU scores on the En-Fr task
in Table 2. From the table, we easily reach the conclusion
that the proposed AvA NMT model outperforms RNNsearch
despite of much smaller model and fewer training epochs,
confirming the effectiveness of our model. Further more, our
deep AvA NMT model is comparable to the GNMT model
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Vocabulary Parameters Layers Epochs BLEU GPU Days

RNNsearch (Bahdanau, Cho, and Bengio 2015) 30K words 85 M (1, 1) 5 28.5 10
AvA NMT (shallow model) 300 chars 30 M (1, 1) 2.2 33.2 10

GNMT (Wu et al. 2016) 32K WPM > 100 M (8, 8) - 39.0 576
ConvS2S (Gehring et al. 2017) 40K BPE > 100 M - - 40.5 296
AvA NMT (deep model) 300 chars 120 M (4, 2) 4.5 40.2 120

Table 2: Comparison with RNNsearch and GNMT on the En-Fr translation task.

Vocabulary Parameters Layers Epochs BLEU chrF3 GPU Days

bpe2char (Chung, Cho, and Bengio 2016) word, char 76 M (1, 2) - 17.0 - -
hybrid (Luong and Manning 2016) 250 M (4, 4) 6 19.6 46.5 25

character (Luong and Manning 2016)

char

100 M (4, 4) 6 17.5 46.6 90
char2char (Lee, Cho, and Hofmann 2016) 69 M (1, 2) 4.8 17.6 46.8 14
AvA NMT (shallow model) 66 M (2, 1) 3.6 19.8 48.3 14
AvA NMT (deep model) 120 M (4, 2) 5.6 20.9 49.2 30

Table 3: Comparison with various models on the En-Cs translation task.

though our deep AvA model is much shallower than the
GNMT model. Although the complexity of our character-
level model is higher than the word-level model (see, Table
1) , the convergence of training is much faster.

En-Cs task. There are many works for dealing with the
morphologically rich languages, such as bpe2char models
(Chung, Cho, and Bengio 2016), char2char models (Lee, Cho,
and Hofmann 2016) and hybrid models (Luong and Manning
2016). We compare the performance of these systems3 in
Table 3. We could find that our shallow AvA NMT model
outperforms all these models in terms of the BLEU score and
chrF3. Moreover, our shallow AvA NMT model achieves a
competitive BLEU score and a substantial improvement on
chrF3 score comparing to the state-of-the-art hybrid model.
However, the size of our shallow model is about a quarter of
the hybrid model and the training time is halved. It is prob-
ably because our model builds a shortcut mapping between
characters through the attention-via-attention mechanism in-
stead of building a mapping between words directly. We will
analyze this property in the following sections. Besides, it
might be unfair to compare our shallow model to the deep
hybrid model, thus we trained a deep AvA NMT model. As
shown in Table 3, the deep AvA NMT model further results
a substantial improvement both on BLEU and chrF3.

Language Similarity

We would like to verify whether our model could detect the
named entities and similar words quantitatively. Specifically,
we hypothesize that the characters in these words would
be aligned by our attention-via-attention mechanism (see
Section 6 for a graphical illustration). Thus, we may estimate

3The results are taken from the corresponding paper, except the
result of char2char model which is evaluated by us based on their
codes.

the similarity between the languages. We simply regard the
words to be similar when more than three characters in the
source words are attended. To eliminate the noise, we only
the focus characters that account for more than half of the
weight. In this way, we find 22% of the words in French
are similar to the corresponding words in English based on
newstest2013. However, the similarity between English and
Czech is decreased to 13%. It shows a good accordance with
the reality, which also matches the statistics in (Simons and
Fennig 2017).

6 Qualitative Analysis

Apart from measuring translation quality, we analyze effects
of the attention-via-attention mechanism in more details.

Alignments

In this section, we investigate whether our model could
utilize the attention-via-attention mechanism graphically. We
select a representative English sentence “Spijkenisse
has written literary history.” from new-
stest2013, which would be translated into a Czech
sentence “Spijkenisse napsala literární
historii.”.

We could find in Figure 2 that the alignment of
‘Spijkenisse’ is well captured both on the word
level and the character level. Besides, the source words
‘literary history’ and the similar target words
‘literární historii’ are also aligned respectively as
shown in the thumbnail in Figure 2(b). However, the source
word ‘written’, significantly different from the target
word ‘napsala’, is attended only on the word level. Thus,
we claim that our model bridges the lexicons of languages
through attention-via-attention mechanism. We provide the
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En src The analogy with the electromagnetic field is again useful for explaining the relationship between the Higgs and
mass.

Fr ref L’analogie avec le champ électromagnétique est de nouveau utile pour expliquer le rapport entre le Higgs et la
masse.

Fr gen L’analogie avec le champ électromagnétique est une fois encore utile pour expliquer la relation entre les Higgs et
la masse.

Cs ref Analogie s elektromagnetickým polem se nám znovu hodí k objasnění vztahu mezi Higgsem a hmotou.
Cs gen Analogie s elektromagnetickým polem je znovu užitečná pro vysvětlení vztahu mezi Higgs a hmotností.

En src You can download the document (in English for the time being, a [French] translation will be available shortly) at
this address: http://ca.movember.com/fr/mens-health/prostate-cancer-screening

Fr ref On peut télécharger ce document (en anglais pour l’instant, une traduction sera offerte sous peu) à cette adresse:
http://ca.movember.com/fr/mens-health/prostate-cancer-screening

Fr gen Vous pouvez télécharger le document (en anglais pour le moment, une traduction française sera disponible
prochainement) à l’adresse: http://ca.movember.com/fr/mens-health/prostate-cancer-screening

Cs ref Tento dokument si můžete stáhnout (momentálně v angličtině, překlad bude k dispozici později) na této adrese:
http://ca.movember.com/fr/mens-health/prostate-cancer-screening

Cs gen Dokument můžete stáhnout (v angličtině pro čas , překlad [Francie] bude k dispozici krátce na této adrese:
http://ca.movember.com/fr/mens-health/prostate-cancer-screening

Table 4: Sample translations of newstest2013.

(a) Word-level attention (b) Character-level attention

Figure 2: Sample alignments found by the attention-via-
attention mechanism. The translated Czech characters are
listed below the figure. The character-level attention is
zoomed in for clarity, and the thumbnail in the top right
corner contains the full alignments of the character level.

more detailed figures in the supplemental material.

Sample Translations

To further demonstrate the characteristic of the attention-via-
attention mechanism, we provide several sample translations
generated by our models. The cognates and the named enti-
ties are marked as bold and bold italic type respectively in
Table 4. For instance, the cognates ‘electromagnetic’,
‘électromagnétique’ and ‘elektromagnetickým’
are well handled by our model. The named entity ‘Higgs’
are copied to target languages. Although our models have

never seen the url during training, the long URL is copied to
target languages without any mistakes.

From above examples, we could see that the attention-via-
attention mechanism not only copy words (Gulcehre et al.
2016; He et al. 2017), but also adaptively modify the words
based on the target language. Thus, we have alleviated the
burden of building the mapping between words by bridging
the characters in NMT.

7 Conclusion

We have developed a hierarchical encoder and an attention-
via-attention mechanism to bridge the lexicons of the lan-
guages in neural machine translation. Consequently, our AvA
NMT model is able to deal with the cognates and named
entities more elegantly. We have achieved the competitive
performance with the proposed models whose size is much
smaller. The promising empirical results strongly suggest that
it is indeed beneficial for neural machine translation to ex-
ploit character-level information. More interestingly, English
is roughly evaluated to have a similarity of 22% with French
and 13% with Czech based on the alignments found by our
attention-via-attention mechanism.

Furthermore, the attention-via-attention mechanism could
be regarded as adding attentive shortcuts between layers, thus
we would like to incorporate this mechanism into very deep
word-level RNN models (Britz et al. 2017) to replace the skip
connections in future work.
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