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Abstract

Personalized tag recommender systems suggest a list of tags
to a user when he or she wants to annotate an item. They
utilize users’ preferences and the features of items. Tensor
factorization techniques have been widely used in tag rec-
ommendation. Given the user-item pair, although the clas-
sic PITF (Pairwise Interaction Tensor Factorization) explic-
itly models the pairwise interactions among users, items and
tags, it overlooks users’ short-term interests and suffers from
data sparsity. On the other hand, given the user-item-time
triple, time-aware approaches like BLL (Base-Level Learn-
ing) utilize the time effect to capture the temporal dynamics
and the most popular tags on items to handle cold start situa-
tion of new users. However, it works only on individual level
and the target resource level, which can not find users’ po-
tential interests. In this paper, we propose an unified tag rec-
ommendation approach by considering both time awareness
and personalization aspects, which extends PITF by adding
weights to user-tag interaction and item-tag interaction re-
spectively. Compared to PITF, our proposed model can depict
temporal factor by temporal weights and relieve data spar-
sity problem by referencing the most popular tags on items.
Further, our model brings collaborative filtering (CF) to time-
aware models, which can mine information from global data
and help improving the ability of recommending new tags.
Different from the power-form functions used in the existing
time-aware recommendation models, we use the Hawkes pro-
cess with the exponential intensity function to improve the
model’s efficiency. The experimental results show that our
proposed model outperforms the state of the art tag recom-
mendation methods in accuracy and has better ability to rec-
ommend new tags.

Introduction

Nowadays, there is a great amount of information emerging
in the internet every day and it’s difficult for users to find
items that are really appealing to them. Recommender sys-
tem is an effective tool to overcome information overload.
It can model users’ interests by analyzing users’ behavior
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and offer users the information that meets their preferences.
Tag systems like Delicious, Last.fm and Movielens allow
users to annotate the web pages, songs and movies using
key words, which is called tagging. Tags can make manag-
ing and searching web items easier. A tag can be regarded as
a kind of implicit rating, which can identify not only features
of items, but also the users’ personalities. Tag recommenda-
tion is to provide the target user tags when he wants to anno-
tate an item. Personalized tag recommendation will analyze
users’ past tagging behaviors to predict the tags being used
in the future, which depends on both users and items. For
instance, if two users have used the same tags to mark the
same items, it’s likely for them to use the same tag for an-
other item. On the other hand, if a certain user recently uses
a tag very frequently, there is a high probability for him to
reuse the same tag. It has also been proved that the personal-
ized approaches outperform the theoretically best unperson-
alized method (Rendle et al. 2009a). Hence, in this paper,
we only focus on the personalized tag recommendation.

Some systems utilize tensor factorization techniques to
rank the candidate tags. Tensor factorization based models
decompose the user-item-tag tensor into feature matrices to
represent the latent features of users, items and tags respec-
tively. RTF (Rendle et al. 2009a) is based on Tucker Decom-
position, which is cubic in feature dimensionality and thus
unfeasible for mid-sized and large data sets with high fac-
torization dimension. To tackle this problem, Rendle et al.
proposed the Canonical Decomposition based PITF (Rendle
and Schmidt-Thieme 2010) model. As the example in fig-
ure 1(a) shows, given u1 and m1, PITF utilizes the global
user-item-tag tensor to recommend tags, which is linear in
both the data set size and feature dimensionality. PITF can
process high dimensional factorization well and recommend
new tags. It also won the ECML/PKDD Discovery Chal-
lenge 2009 (Rendle and Schmidt-Thieme 2009) for graph-
based tag recommendation.

Although the classic tensor factorization methods can find
the potential interests of users, they can not depict the tem-
poral dynamics in users’ tagging behaviour. Some studies
(Yin et al. 2011; Charlin et al. 2015; Koren 2010) have
demonstrated that users’ behaviors will change with time,
which indicates that users have their short-term interests
and their recent tagging behaviors will influence the next
tagging. Therefore, some time and frequency based BLL
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(a) User-Item-Tag Tensor (b) Records of u1 and m1

Figure 1: Data Examples

(Base-Level Learning)-like studies are proposed , like GIPR
(Zhang, Tang, and Zhang 2012), GIRPTM (Zhang, Tang,
and Zhang 2012), BLL (Anderson et al. 2004) and BLLac

(Kowald et al. 2015b). These methods utilize the recency,
which is the time elapsed since the past tagging behavior,
and the frequency tags are used to predict the probability
that users reuse a certain tag. Further, they also reference the
most popular tags on target resources to handle cold start of
new user. For example, in figure 1(b), every black spot on
the time line represents that user u1 used a tag t at time s.
Given user u1, item m1 and the current time, considering
records of user u1, BLL-like models may choose t4 because
it is used 3 times recently. In addition, referring to tag fre-
quencies on item m1, t1 is also suitable to be recommended
because the frequency it is used on item m1 is the biggest.
However, this kind of approaches can only recommend tags
used by the target user or tags assigned by other users to the
target item, which lack the ability to recommend new tags.

For item recommendation, the existing studies have inte-
grated the temporal factor into personalized methods. How-
ever, item recommendation is different from tag recommen-
dation. In item recommendation, only the interaction be-
tween users and items needs to be modeled. In tag recom-
mendation, there are three entities including users, items and
tags, and more interactions need to be considered. Hence,
item recommendation models cannot be directly used to do
tag recommendation and tag recommendation is more com-
plex. For tag recommendation models, there are two ways
to combine the temporal factor with personalized methods:
integrating time factor into personalized model or making
the time-aware tag recommendation personalized. Integrat-
ing temporal factor into personalized tag recommendation
methods can help depict temporal dynamics and relieve
data sparsity problem. On the other hand, introducing CF
to time-dependent tag recommendation models can improve
the models’s ability to capture users’ potential interests.

However, directly merging the results of both models may
be ineffective. In this paper, we propose an unified model
considering both personalization and temporal factor: Time-
Aware PITF (TAPITF) model. It extends the PITF model
by incorporating the user-tag-time weights and the item-tag
weights into PITF. Given user u1 and item m1, TAPITF
can not only mine the user-item-tag tensor to find prefer-
ence and potential interests of u1, but also adjust the pref-

erence weights according to the time interval between u1’s
past behavior and current time as well as the popularity of
tags on item m1. Therefore, the proposed model can depict
the phenomenon that users’ tagging behaviors change with
time and exploit the similar users, similar items and similar
tags effectively to improve the accuracy and novelty of tag
recommendation. Generally, the main contributions of this
work are summarized as follows:
• To the best of our knowledge, we are the first to propose

an unified tag recommendation approach by considering
both time awareness and personalization aspects. Specif-
ically, we extend the classic tag recommendation model
PITF by adding user-item-time weights as well as itemf-
tag weights.

• We explicitly model temporal information in users’ tag-
ging behaviors by the Hawkes process to improve the
model efficiency. Specifically, we substitute exponential
function for the power function widely used in existing
BLL-like work to calculate the user-item-time weight.
The preference value of a user on a certain tag at the cur-
rent time can be computed in a recursion form and the
computation time can be greatly reduced accordingly.

• We conduct comparative experiments on some real data
sets. The experimental results show that our proposed
method can outperform the state-of-art methods in terms
of accuracy and has better ability to recommend new tags.

Related Work

Personalized Tag Recommendation The simplest per-
sonalized tag recommendation methods are frequency-
based. For example, MPu (Jäschke et al. 2007) recommends
a user the tag he used the most times; MPu,m (Jäschke et
al. 2007) combines MPu and MPm linearly to consider
both user himself’s tagging behavior and popular tags on
items. Marinho et al. handle tag recommendation in the
collaborative filtering way (Marinho and Schmidt-Thieme
2008). They calculate the similarity between users to rec-
ommend tags. Similar to PageRank algorithm used in search
engine, Hotho et al. propose Adaptive Page Rank (APR) al-
gorithm. The main idea is that if an item has been annotated
by an important user using an important tag, this item can
also be regarded as an important item (Hotho et al. 2006).
Jäschke et al. extend APR to FolkRank (FR) model (Jäschke
et al. 2007), which exploits both the PageRank method and
similarities between users. This model outperforms the fre-
quency and collaborative filtering based methods. In addi-
tion, tensor factorization technique is also widely applied to
recommend tags. Symeonidis et al. (Symeonidis, Nanopou-
los, and Manolopoulos 2008) utilize the High Order Singular
Vector Decomposition (HOSVD) (De Lathauwer, De Moor,
and Vandewalle 2000) technique. They transform the user-
item-tag tensor into three matrices and SVD is used to train
latent features of users, items and tags. Because there are
three matrices to be factorized, this model costs more train-
ing time. To reduce the number of matrices to be factorized,
Tucker Decomposition (Tucker 1966) based RTF (Rendle et
al. 2009a) model directly factorizes the user-item-tag ten-
sor in three dimension by maximizing AUC. However, the
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time complexity of tag prediction in RTF is cubic in feature
dimensionality. To improve the computing efficiency, Ren-
dle et al. propose PITF model (Rendle and Schmidt-Thieme
2010). It explicitly models the pairwise interactions among
users, items and tags and the time complexity of tag predic-
tion is linear in the feature dimension.

The above models, except the frequency-based methods,
suffer from the big computation cost. Moreover, they all ig-
nore that users’ tagging behaviors will change with time.
Recently, there are some studies incorporating time factor
into tag recommendation. Yin et al. verify the existence of
short-term user interests in social tagging systems through
experiments (Yin et al. 2011). Zhang et al. propose the fre-
quency and time information based GIPR model (Zhang,
Tang, and Zhang 2012). It applies exponential distribution
to model the first used time and last used time of a certain
tag. GIRPTM (Zhang, Tang, and Zhang 2012) extends GIPR
by considering the most popular tags on the target items,
which helps dealing with cold start situation for new users.
Besides, there are some time-dependent models based on
cognitive science, including BLLac (Kowald et al. 2015b),
BLL + MPm (Kowald et al. 2014) and BLLac + MPm

(Kowald et al. 2015a). The core idea is that tags most fre-
quently and recently used by users are favored for recom-
mendation. Specifically, BLLac extends BLL by adding as-
sociation component to capture the features of items. How-
ever, It can only suggest tags used by the user himself. Fur-
ther, BLL + MPm and BLLac + MPm extend BLL and
BLLac respectively, which both consider the most popular
tags on the target item.

For the time information modeling, the main difference
between this paper and the BLL-like models is that, BLL-
like models employ the power function to calculate the in-
fluence value of users’ past tagging behaviors. If the current
time changes, the impact value needs to be recalculated for
each history record. While in this paper, we explicitly use
the Hawkes process in exponential function to model time
impact. In our model, the accumulation operation can be re-
placed by the recursion form. It results in that a user’s pref-
erence value to tags at current time is only related to the last
tagging time and computation time is saved greatly.

Content-based Tag Recommendation In recent years, as
the fast development of deep learning, some researches try
to recommend tags for items with content information, like
images or texts. The convolutional neural network is em-
ployed to mine the latent information of images and tags are
recommended to images by solving the multi-classification
problem (Nguyen et al. 2017; Rawat and Kankanhalli 2016).
Wang et al. utilize the SDAE model to capture items’ con-
tent features and model context information to recommend
tags (Wang, Shi, and Yeung 2015). Further, several studies
(Li et al. 2016; Gong and Zhang 2016) use LSTM and CNN
respectively to recommend hash tags for micro blogs. In this
paper, we only consider the interactive information among
users, items and tags, and do not incorporate the content in-
formation of items. Therefore, we only focus on the person-
alized collaborative filtering methods.

Notations and Preliminaries
Problem Statement The task of tag recommendation is
offering a tag list for users when they want to annotate
an item. Personalized tag recommendation will recommend
tags according to users’ tagging behaviors. For example,
system may use tags that the target user has used to mark
other items or utilize tags other users have used to mark
the target items. Formally, personalized tag recommenda-
tion is to generate the personalized tag list T (u,m) ⊆ T
that user u ∈ U can use to annotate items m ∈ M , given
all users’ past tagging records R. In this paper, we use U to
present the user set. M is for item set, T is for tag set and
R ⊆ U×M×T represents users’ tagging records. (u,m) is
the user-items pair and PR{(u,m)|∃t ∈ T : (u,m, t) ∈ R}
is the observed user-item pair.

PITF(Pairwise Interaction Tensor Factorization)
Given the user-item pair (u,m), PITF defines tag rec-
ommendation as a rank task to generate the total rank
>u,m⊂ T × T on tag set T . Specifically, PITF designs the
rating function Ŷ : U × M × T → R , where Ŷ is a three
dimensional tensor. Prediction rating of the < u,m, t >
triple is ŷumt, which indicates the probability user u uses
tag t to mark item m. After ranking tags according to their
ratings, we employ the top n tags as the recommendation
list as follows.

Top(u,m, n) = argmaxn
t∈T ŷu,m,t (1)

To get ŷu,m,t, PITF uses Canonical Decompositon to ex-
plicitly model the pairwise interactions among users, items
and tags. Given user-item pair < u,m >, interaction be-
tween then has no impact on the final tag recommendation
list. The model equation can be simplified as

ŷu,m,t =

K∑

k=1

ûu,k · t̂Ut,k +

K∑

k=1

m̂m,k · t̂Mt,k (2)

where ûu is the latent vector of user u, t̂Ut is the latent vector
of tag t in the user-tag relation. t̂mt is the latent vector of
tag t in the item-tag relation and m̂m is the latent vector
of item m. The Bayesian Personalized Ranking (Rendle et
al. 2009b) is used to estimate parameters. Training data DR

with the pairwise constraint is

DR := {(u,m, tA, tB) : (u,m, tA) ∈ R∧ (u,m, tB) /∈ R} (3)

According to the Maximum A Posteriori (MAP), the opti-
mization function of PITF is written as

BPR − Opt : = ln
∏

u,m.tA,tB

σ(ŷu,m,tA,tB
)p(Θ)

=
∑

(u,m,tA,tB)∈DR

lnσ(ŷu,m,tA,tB
) − λΘ||Θ||2F (4)

where ŷu,m,tA,tB = ŷu,m,tA − ŷu,m,tB . σ(x) is the sig-
moid function 1

1+e−x , p(Θ) represents the priori distribution
of parameters, and λΘ is the regularization parameter. PITF
is essentially a pairwise ranking model, which can be opti-
mized by stochastic gradient descent algorithm with nega-
tive sampling.
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BLL + MPm(Base-Level Learning with MPm) BLL +
MPm (Kowald et al. 2014) exploits the frequency and the
recency for tag recommendation. Meanwhile, it also takes
the impact of the most popular tags on the target items into
consideration.

Firstly, according to the record Ru,t of user u using tag t,
If i = 1...n index all tag assignments in Ru,t, the recency of
a particular tag assignment is given by sref − si, where si
is the time when user u used tag t for the ith time and sref
is the current time. Finally, the BLA of tag t for a user u is
given by the BLL equation:

BLA(t, u) = ln(
n∑

i=1

(sref − si)
−d) (5)

In order to map the values into [0− 1], the normalization is
applied as follows

||BLA(t, u)|| = exp(BLA(t, u))∑m
t′=1 exp(BLA(t′, u))

(6)

where m is the total number of tags user u has used.
Furthermore, this model takes into account the most pop-

ular tags on target item m, which is MPm. Given user-item
pair (u,m), prediction score of tag t is defined as

ŷu,m,t = β||BLA(t, u)||+ (1− β)|||Yt,m||| (7)

where β is the weight parameter. Particularly, when β = 0,
the model is the same as MPm. When β = 1, the model is
the basic BLL model. |Yt,m| is the frequency tag t is used to
annotate item m by all users.

The Proposed Model - TAPITF

Time Information Modelling Temporal point process
(Schoenberg 2010) is a kind of random process that depicts
the discrete events in time series. Recently, temporal point
process is widely used in sequence related scenarios, such
as citation counts prediction (Xiao et al. 2016), contagious
merger and acquisition (Yan et al. 2016), social system evo-
lution (EmBree and Handcock 2016), conversion prediction
of online advertising (Xu, Duan, and Whinston 2014) and so
on. In users’ past tagging history, each point represents that
the user uses a tag at a certain time stamp. In this paper, we
use the Hawkes process (Hawkes 1971) to model the time in-
formation in users’ tagging behavior. It is a non-Markov ex-
tension of the Poisson process to describe the self-motivated
process, in which the occurrence of each event will con-
tribute to the next occurrence of it. It is defined as

τ(s) = τ0 +
∑

si<s

E(s, si) (8)

where E(s, si) ≥ 0 is the incentive function to describe
the time interval and τ0 is the initial intensity. Users tend to
visit some kind of items in a short period and annotate items
with same tags. When some tags with similar meaning can
be used, users tend to use tags they are familiar with. Hence,
users will use tags they have used most frequently and most
recently again, which has the self-motivate feature. In this
paper, we employ the intensity function in Hawkes process
to fit users’ tagging pattern.

Figure 2: The example of intensity function

Note that if τ0 = 0 and E(s, si) = (s − si)
−d, where

d is the intensity parameter, this function is the same as
the time function in BLL-like models (Kowald et al. 2014;
2015a; 2015b). Different from it, we use exponential func-
tion E(s, si) = exp−d(s−si). It is because that exponen-
tial function can reduce time complexity greatly by chang-
ing accumulation form of power function to recursion form.
Meanwhile, it can also ensure almost the same performance
as power function. Figure 2 is an example of Hawkes pro-
cess’s conditional intensity function. s1, s2, ..., s6 are the
time stamps of events. The colorful solid line indicates the
impact value of each event’s influence on the future event,
and the colorful dotted line represents the influence of all the
past events on the future event. Our task is to calculate the
intensity values at time s

′

1 and s
′

2. The incentive functions’
sum τ∗(s′1) at time s

′

1 in recursion form is written as

τ
∗
(s

′
1) =

6∑

i=1

E(s
′
1, si) =

6∑

i=1

exp
−d(s′1−si)

= exp
−d(s′1−s6) (

1 +
5∑

i=1

exp
−d(s6−si)

)

= exp
−d(s′1−s6) (

1 + τ
∗
(s6)
)

(9)

We can find that the intensity value of the event at time s
′

1
is only related to the intensity value of the event at time s6.
Finally, the intensity that user u uses tag t at time s is

τ(u, t, s) =
∑

si<s

exp−d(s−si) = exp−d(s−slast)
(
1 + τ(slast)

)

(10)
where τ0 = 0 and slast is the last event occurrence time

before time s.

Time-aware PITF In this paper, considering both time
awareness and personalization aspects, we propose the Time
Aware PITF (TAPITF) model. Given user-item pair <
u,m >, the prediction value of candidate tag t is as

ŷs
umt = ws

utP
�
uT

P
t + wmtQ

�
mTQ

t (11)

where ws
u,t is the weight of user-tag-time triple < u, t, s >,

wm,t is the weight of item-tag pair < m, t >. Specifically,
if ws

u,t and wm,t are set to constant 1, it is equal to PITF.
When removing the interactions P�

uT
P
t and Q�

mTQ
t and

adding tuning parameters to ws
u,t and wm,t, our model is
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in the same form as BLL+MPm. In the tagging record of
user u , the higher the frequency of the past occurrences of
tag t is, the larger ws

u,t is. Smaller recency between the user’s
past tagging time stamp s and the current time will rise ws

u,t
too. Similarly, the higher frequency of all users use tag t to
annotate item m is, the higher wm,t is. Meanwhile, if u has
never used t before s, or nobody has assigned t to item m,
ws

ut and wmt also need to be bigger than 0 to guarantee that
tags never occurring in the record can also be recommended.
Specifically, ws

ut is represented as

ws
ut = 1 + log10(1 + 10a

P · ||τ(u, t, s)||) (12)

where constant αP controls the growth rate of weight.
||τ(u, t, s)|| = τ(u,t,s)∑

t∈Tu
τ(u,t,s) is the normalized value. Tu

is the tag set used by user u. The larger ||τ(u, t, s)|| is, the
larger ws

ut is. Specifically, ||τ(u, t, s)|| = 0, ws
ut = 1 means

that user u had not used tag t before time stamp s. For weight
wmt, similar to BLL + MPm (Kowald et al. 2014), it is
modeled as

wmt = 1 + log10(1 + 10a
Q · ‖|Ŷmt|‖) (13)

where constant αQ controls the growth rate, |Ŷmt| is the
frequency that items m is annotated by tag t. Furthermore, in
Eq.11, P�

uT
P
t (or Q�

mTQ
t ) inherits from PITF, which mod-

els the latent features of users, items and tags well and im-
proves the recommendation novelty.

Parameter Learning of TAPITF To learn the model’s pa-
rameters, TAPITF utilizes the BPR framework to maximize
the pair-wise ranking objective function. The whole algo-
rithm is demonstrated in algorithm 1. Before iteration, ac-
cording to the time stamps and frequencies in training set,
weight ws

ut of the < u, t, s > triple and weight wmt of the
< m, t > pair in each record y =< u,m, t, s > are calcu-
lated. In each iteration, we need to sample positive tag and
the corresponding negative tag. Because the weight ws

ut of
positive sample < u, t, s > and weight wmt of < m, t >
pair have been precalculated, we only need to compute
weight wsA

u,tB of the negative sample < u, tB , sA >. Finally,
the latent factors are optimized by stochastic gradient de-
scent iteratively from line 3 to line 13.

Time Complexity Analysis In algorithm 1, for every
record y =< u,m, t, s >, the weight ws

ut and weight wmt

can be precalculated before iteration. Therefore, in each it-
eration, compared to PITF, only the negative weight wsA

utB
needs to be computed additionally. It is only related to user
u, the time stamp sA, tag set of user u and the negative tag
tB . There are two situations when calculating wsA

utB : (1) neg-
ative tag sample tB does not exist in user u’s tag set Tu, then
wsA

utB = 1; (2) if negative tag sample tB exists in user u’s
tag set Tu, we only need to find the last time u used tB be-
fore time sA by binary search to compute wsA

utB , which has
the time complexity of O(log(nutB )). nutB is the frequency
that user u used tag tB . Here we assume that each record
is iterated one time, then expectation of the time complex-
ity to compute wsA

utB is related to the average frequency that
tag tB is used. In the worst case, where each negative tag

Algorithm 1: An Optimization Algorithm for
TAPITF.

1 For each record y =< u,m, t, s >, calculate the user-tag-time weight
ws

ut and the items-tag weight wmt;

2 Initialize P,Q,TP ,TQ by gaussian distribution N(0, 0.01); repeat

3 Uniformly sample y =< u,m, tA, sA > and the corresponding
negative tag sample tB from train data, and calculate negative
weight wsA

utB
;

4 ŷumtAtB
← ŷumtA

− ŷumtB
;

5 δ ← (1 − σ(ŷumtAtB
));

6 for k from 1 to K do

7 Puk ←
Puk + ι · (δ · (ŵsA

utA
·TP

tAk − ŵ
sA
utB

·TQ
tBk)−λ ·Puk)

8 Qmk ←
Qmk + ι · (δ · (ŵsA

utA
·TP

tAk − ŵ
sA
utB

·TQ
tBk)−λ ·Qmk)

TP
tAk ← TP

tAk + ι · (δ · Puk · wsA
utA

− λ · TP
tAk)

9 TP
tBk ← TP

tBk + ι · (δ · (−Puk) · wsA
utB

− λ · TP
tBk)

10 TQ
tAk ← TQ

tAk + ι · (δ · Qmk · wmtA
− λ · TQ

tAk)

11 TQ
tBk ← TQ

tBk + ι · (δ · (−Qmk) · wmtB
− λ · TQ

tBk)

12 end

13 until Convergence;

Table 1: Data statistics

core N M T U U/M

Movielens
- 2,113 5,908 9,079 27,712 4.69
3 656 2,376 2,061 18,427 7.76

LastFM
- 1,892 12,523 9,749 71,064 5.68
3 1,277 5,940 2,761 59,692 10.05

Delicious
- 1,867 69,223 40,897 104,799 1.51
3 1,458 5,074 4,233 20,543 4.05

sample has been used by the target user, the time complexity
of each iteration is O(K + log(nutB )). It can be found that
even when the data set is relatively dense, TAPITF will only
cost a little more time in each iteration than PITF. Consid-
ering that the real world data is very sparse, the additional
time cost is limited and can be accepted.

Experiments

We evaluate the models on the three public data sets Movie-
lens, LastFM and Delicious described in table 1. N is the
number of users, M is the number of items and T is the
number of tags. U is the number of user-item pairs and U/M
indicates the sparsity of the data set. We use leave-one-out
to split data set into train set and test set, which is that for
each user, his tagging records on a certain item are randomly
removed from the training set Strain and put into the test
set St. When the user only annotated one item, his tagging
records are all put into train set. All data sets are p-cores. The
pcore of data set S is the largest subset of S with the prop-
erty that every user, every item and every tag has to occur
for at least p times in all user-item pairs. In our experiments,
we have the no core (unfiltered data set) and core 3 data set.
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Experimental Settings

Metrics We evaluate the performance of algorithms in two
aspects:

• Accuracy: Accuracy is the most important measurement
in the off line evaluation of recommender system. The
common measurements include precision, recall and F1
value. For all user-item pairs (u,m) in the test data set St,
they are defined by:

Prec(St, n) =
|Top(u,m, n)

⋂{t|(u,m, n) ∈ St}|
n

(14)

Rec(St, n) =
|Top(u,m, n)

⋂{t|(u,m, t) ∈ St}|
|{t|(u,m, t) ∈ St}|

(15)

F1(St, n) =
2 · Prec(St, n) · Rec(St, n)

Prec(St, n) + Rec(St, n)
(16)

We use F1@5 to measure the accuracy.

• Novelty: Novelty is used to measure the model’s ability to
recommend new tags to users. The novelty of the recom-
mended tag list is calculated using the Average Inverse
Popularity (AIP@10) metric in (Belém et al. 2013). A
recommended tag is novel if it was not previously used to
annotate the target item. Thus, the lower the popularity of
a tag for an item is, the higher its novelty.

Comparison Methods We compare our proposed method
TAPITF with the following methods.

• MPm: recommends the most popular tags on the target
resource to the target user.

• PITF (Rendle and Schmidt-Thieme 2010): a modified
tensor factorization approach explicitly modeling the pair-
wise interaction among users, items and tags.

• BLL+MPm (Kowald et al. 2014): combines BLL and
MPm. The BLL part exploits recency and frequency in
users’ tagging behavior to predict the probability that
users reuse a certain tag.

• BLLAC+MPm (Kowald et al. 2015a): similar to
BLL+MPm. This method adds association component to
BLL to model the target item’s impact on users. Accord-
ing to the experimental result in (Kowald and Lex 2015),
it can achieve the highest accuracy among existing ap-
proaches.

Settings For BLL+MPm and BLLAC +MPm, we fol-
low the parameter setting in (Kowald and Lex 2015). La-
tent factor dimension K = 64, regularization factor λ =
0.00005 and learning rate is 0.05. In TAPITF, d = 0.5, time
unit is day. Latent factor dimension and regularization fac-
tor is the same as PITF. The iteration number of PITF and
TAPITF are both 100.

Experimental Results

Impact of weight parameter α Parameter α is used in
equation 12 and 13. In Eq.12, it is used to distinguish ob-
served user-tag pairs from unobserved ones. In Eq.13, it
is to distinguish observed item-tag pairs from unobserved
ones. α controls the influence of time factor and popular

α

(a) Movielens (no core)

α

(b) Movielens (core 3)

α

(c) LastFM (no core)

α

(d) LastFM (core 3)

α

(e) Delicious (no core)

α

(f) Delicious (core 3)

Figure 3: Performance with different α

tags. In this section, we adjust α to see its influence on our
model. As figure 3 shows, for all data sets, performances of
TAPITF improve with the increase of α to the optimum. Af-
ter that, the performances will drop as α increases. When
α is set to a proper value, TAPITF outperforms PITF and
BLL+MPm almost on all the experimental data sets. The
experimental results show that it is helpful to incorporate the
temporal factor and consider the popular tags on the target
item. As for data sparsity problem, on the unfiltered data sets
Movielens (no core) and Delicious (no core), BLL+MPm

and BLLAC + MPm outperform PITF, which shows that
BLL +MPm and BLLAC +MPm are better at handling
sparse data. After incorporating temporal factor and the im-
pact of the most popular tags on target items, TAPITF can
achieve better performance than BLLAC +MPm on all un-
filtered data sets. Therefore, it is helpful for relieving data
sparsity to reference the most popular tags on the target
items. On the other hand, on the filtered data set (core 3),
PITF has better performance than BLL-like models. The rea-
son may be that PITF model is suitable for dense data sets.
Further, TAPITF also considers time information, and thus
it can outperform other comparative methods greatly. In the
next experiments, α is set to its proper value for TAPITF
model.

Performance Comparison and Analysis In this section,
we compare our model TAPITF with the existing state-of-art
tag recommendation approaches. Figure 4 demonstrates the
recall/precision curves from top 1 to top 10 on Delicious data
set. As we can see, TAPITF performs almost the best on De-
licious, which presents that incorporating time information
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(b) Delicious (core 3)

Figure 4: Recall/Precision curves for Delicious dataset

Table 2: Comparison of AIP@10

Dataset
Core MPm BLL BLLAC PITF TAPITF

+MPm +MPm

Movielens
- 0.806 0.788 0.786 0.854 0.795
3 0.761 0.762 0.757 0.803 0.77

LastFM
- 0.732 0.724 0.709 0.779 0.739
3 0.668 0.660 0.639 0.697 0.696

Delicious
- 0.881 0.873 0.878 0.949 0.894
3 0.787 0.767 0.767 0.827 0.798

into PITF is very effective. On the unfiltered Delicious data,
the performance of TAPITF is worse than BLL+MPm and
BLLAC + MPm when the top n list size is large. In most
real applications, the candidate tag size is often small and
sometimes users only care the top one recommended tag.
Hence, it is reasonable that TAPITF model is effective for
real applications.

In terms of recommendation novelty, table 2 shows that
PITF can achieve the best recommendation novelty for all
experimental data sets. TAPITF is slightly worse than PITF
and better than MPm, BLL+MPm and BLLAC +MPm.
Here we discuss that why PITF can achieve the best nov-
elty among these methods. Popular tags on the target item
are very likely to be recommended by MPm and BLL-like
models. However, PITF is a collaborative filtering method.
It can exploit the collaborative influence between users and
items. In this way, tags not been used on the target item also
have the chance to be recommended. Hence, PITF has the
best novelty.

Next we compare TAPITF with PITF in detail. Figure 5
compares the accuracies of TAPITF and PITF with different
iteration number. To ensure the convergence of algorithm,
the iteration count is set to 100. TAPITF model outperforms
PITF in terms of accuracy and convergence speed for data
sets Movielens, LastFM, Delicious no core and Delicious
core 3. TAPITF can get convergence after 40 iterations on all
experimental data sets, while PITF can gradually get conver-
gence after 60 iterations. In addition, the convergence speed
of TAPITF in the first 20 iterations is faster than PITF. The
main reason is that TAPITF has the user-tag-time weight and
the items-tag weight, then it can achieve similar recommen-
dation performance like BLL models even without parame-
ter learning.

As for running time, compared to PITF, TAPITF has the
additional cost to calculate the user-tag-time weight in each
iteration. Table 3 compares the running time of TAPITF and
PITF on different data sets. In our experiments, we choose
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(a) Movielens (no core)
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(b) Movielens (core 3)
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(c) LastFM (no core)
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(d) LastFM (core 3)
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(e) Delicious (no core)

� �� �� �� �� ���
����

����

����

����

����

����

	��


	���
��


	�����
��


	����
	������

��
�
�

�����	�			��������

(f) Delicious (core 3)

Figure 5: Accuracy and convergence speed

Table 3: Parameter learning time

Dataset Core PITF TAPITF

Movielens
- 10.3 15.2
3 5.8 8.2

LastFM
- 41.4 63.3
3 32.6 47.4

Delicious
- 110.7 150.0
3 16.8 25.6

the average time of 100 iterations to be the final running
time (in each iteration, the loop size is 100 times of training
set size). It also can be observed that running time on all
data sets is slightly longer than PITF, even on the relative
dense data set Movielens. It is because that we employ the
exponential function in Hawkes Process to reduce the time
complexity of computing the temporal weight. Therefore,
our proposed model TAPITF is effective and efficient.

Conclusion

In this paper, we propose an unified tag recommendation
model TAPITF by considering both time awareness and per-
sonalization. We utilize temporal point process to explicitly
model time information. In addition, we use the exponential-
form intensity function to save computation cost. We also
consider the popular tags on the target item. In this way, our
proposed model can depict the temporal dynamics in users’
tagging behavior and capture potential interests of users ef-
fectively. The experimental results on real data sets show
that TAPITF outperforms the state-of-art personalized tag
recommendation methods in accuracy, and can achieve bet-
ter recommendation novelty.
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