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Abstract

Link prediction is a fundamental problem with a wide range
of applications in various domains, which predicts the links
that are not yet observed or the links that may appear in the
future. Most existing works in this field only focus on model-
ing a single network, while real-world networks are actually
aligned with each other. Network alignments contain valu-
able additional information for understanding the networks,
and provide a new direction for addressing data insufficiency
and alleviating cold start problem. However, there are rare
works leveraging network alignments for better link predic-
tion. Besides, neural network is widely employed in various
domains while its capability of capturing high-level patterns
and correlations for link prediction problem has not been ad-
equately researched yet. Hence, in this paper we target at link
prediction over aligned networks using neural networks. The
major challenge is the heterogeneousness of the considered
networks, as the networks may have different characteristics,
link purposes, etc. To overcome this, we propose a novel
multi-neural-network framework MNN, where we have one
individual neural network for each heterogeneous target or
feature while the vertex representations are shared. We further
discuss training methods for the multi-neural-network frame-
work. Extensive experiments demonstrate that MNN outper-
forms the state-of-the-art methods and achieves 3% to 5%
relative improvement of AUC score across different settings,
particularly over 8% for cold start scenarios.

Introduction

Link prediction is a fundamental problem in the area of com-
plex network and data mining (Lü and Zhou 2011). It helps
conduct network completion for partially observed networks
(Kim and Leskovec 2011) and understand how networks
evolve across time (Barabâsi et al. 2002). As network data
widely exists in various domains, link prediction contributes
to numerous important applications. For example, we can
employ link prediction to recommend friends in social net-
works (Aiello et al. 2012), explore gene expressions in bi-
ology networks (Almansoori et al. 2012), etc. Hence, link
prediction draws plenty of research attention.

Almost all existing link prediction methods suffer from
data insufficiency problems since they only focus on model-
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Figure 1: Link Prediction over Aligned Networks

ing the target network itself. One major limitation is the cold
start problem, i.e. the performance is usually poor when a
target vertex is rather new (Leroy, Cambazoglu, and Bonchi
2010). Interview process is proposed in order to alleviate
this problem (Rashid et al. 2002). However, it can only
be applied in certain scenarios thus has limited effect. An-
other limitation is the lack of comprehensiveness. Each net-
work only reveals the partial information of the vertices, e.g.
professional relations in LinkedIn, social ties in Facebook,
movie preferences in IMDb, etc. We cannot tell if Alice ac-
tually likes the movie “Fast & Furious 8” or just because her
boss likes it, using only the partial information revealed in
movie rating network without knowing their professional re-
lations. Therefore, researchers are still seeking out solutions
to alleviate the data insufficiency problem.

A novel direction for data enrichment is to take advan-
tage of aligned networks (illustrated in Figure 1). Networks
are actually alignable in most scenarios. For example, on-
line social networks can be naturally aligned through users,
i.e. two accounts in different networks are held by a same
user. Online platforms now encourage users to sign in with
cross-platform accounts to directly form the alignments. Be-
sides, there also arise literatures on automatically revealing
the underlying alignments between social networks (Liu et
al. 2014), biology networks (Neyshabur et al. 2013), device
networks (Anand and Renov 2015), etc., providing prereq-
uisite alignments for cross-network researches and analysis.

Network alignments provide valuable information for
subsequent researches in various domains. Using aligned so-
cial networks, researchers propose joint user modeling to
improve the quality of online personalized services (Cao and
Yu 2016b). In biology, aligned protein-protein interaction
networks contribute to the discovery of aging related com-
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plexes (Faisal, Zhao, and Milenković 2015). These works
indicate that modeling the aligned networks can benefit sub-
sequent tasks and applications greatly, hence may become
the future trend in network studies.

Therefore, in this paper we target at link prediction over
aligned networks. Specifically, given two aligned networks,
our goal is to jointly model the two networks to improve the
prediction quality for both networks (as shown in Figure 1).
The rationale behind is that the aligned networks are consis-
tent to some extent. For example, the social ties are consis-
tent across different social networks (Liu et al. 2014). And
for protein-protein interaction networks, there exist common
interaction patterns across species (Liao et al. 2009).

Joint modeling over aligned networks is challenging due
to heterogeneousness. The meanings of the links in different
networks may differ as the links may have various purposes.
Also, the link densities of the aligned networks may be un-
balanced. Therefore, to directly merge the links and apply
traditional link prediction methods may not make full use
of the alignments hence does not lead to a satisfying solu-
tion. Besides, the networks contain various heterogeneous
features including node degrees, distances, etc., which fur-
ther increase the task’s heterogeneousness.

Due to its recency, there are rare works in this direction.
The only few works mainly aim at feature engineering us-
ing the alignments (Zhang, Yu, and Zhou 2014), or transfer-
ring vertices’ attribute information across networks (Zhang
et al. 2017). These works do not address the heterogeneous-
ness well in aligned networks. Hence, there still exists plenty
room for further improvement.

In this paper, we propose a multi-neural-network frame-
work MNN for link prediction over aligned networks. We
leverage neural network technique to take advantage of its
great capacity of capturing high-level correlations. To deal
with network heterogeneousness, we extend traditional neu-
ral network to a multi-neural-network framework. Within
the framework, we consider each heterogeneous target or
feature as an individual objective channel. We construct
one neural network for each objective channel respectively,
while all the neural networks share a common set of ver-
tex embeddings. The rationale behind is that by only us-
ing the information enclosed in the vertex embeddings, we
should be able to derive the objectives (features, link be-
haviors, etc.) despite their heterogeneousness, if the vertex
embeddings are accurate and comprehensive enough. Each
neural network can be considered as an individual worker
that incorporates the information of its own target or feature
into the common vertex embeddings. They together form the
multi-neural-network framework to learn a comprehensive
and accurate vertex representation for the aligned networks.

We conduct extensive experiments on two real-world
datasets. Due to the limitation of available datasets, we only
discuss alignment over two networks to demonstrate the ef-
fectiveness of leveraging aligned networks for link predic-
tion task, while our model can be easily extended to model
multiple aligned networks as well. Experimental results in-
dicate that MNN achieves 3% to 5% relative improvement
compared to the state-of-the-art method across different set-
tings in terms of area under ROC curve (AUC). For cold start

scenarios, MNN further yields 8% relative improvement.

Related Works
Link Prediction Link prediction draws plenty of atten-
tion due to its importance and wide usage in various do-
mains. Most methods can be categorized into similarity-
based methods and model-based methods (Lü and Zhou
2011; Wang et al. 2015). Similarity-based methods assign
a similarity score for each pair of vertices and then con-
duct link prediction based purely on the scores. The widely
used similarity-based methods include common neighbors
(Lin and others 1998), Leicht-Holme-Newman index (Le-
icht, Holme, and Newman 2006), node rank based algo-
rithms (Jeh and Widom 2002), etc. Model-based methods
define a model based on assumptions of the network struc-
tures or linking mechanisms, and then fit the model with the
observed network. The representative models include hier-
archical graph based models (Clauset, Moore, and Newman
2008) and latent factor models (Menon and Elkan 2011).

Recently, researchers further extend the model-based
methods by applying neural networks technique. DeepWalk
considers vertices as words and random walk sequences as
sentences, then applies word embedding techniques to com-
pute vertex embedding (Perozzi, Al-Rfou, and Skiena 2014).
Grover et al. followed similar direction and proposed bi-
ased random walk to generate the sequences (Grover and
Leskovec 2016). Besides, SDNE further borrows the idea of
auto-encoder and simultaneously model both first-order and
second-order proximities (Wang, Cui, and Zhu 2016). These
works indicate that leveraging neural networks for vertex
embedding is promising.

Network Alignment Recently, aligning isolated networks
and conducting multi-network analysis are proposed as a
new research direction. Researchers successfully align the
networks using learning techniques in various domains, in-
cluding social networks (Zhang and Yu 2015), biological
networks (Neyshabur et al. 2013), etc. Aligned networks are
of great value for subsequent researches or tasks. E.g, find-
ing evolution-related proteins using aligned protein-protein
interaction networks in biology (Liao et al. 2009), conduct-
ing joint user modeling for better personalized services in
online social networks (Cao and Yu 2016b), etc.

However, there are very limited works on leveraging
aligned networks for improving the quality of link predic-
tion. Zhang et al. proposed social meta-paths across net-
works based on the alignments (Zhang, Yu, and Zhou 2014).
However, they only focused on feature engineering using
the alignments and did not address the heterogeneousness of
the aligned networks. Besides, there also exist work aiming
at transferring the vertices’ attribute information in aligned
networks, including user generated content, user prefer-
ences, etc. (Zhang et al. 2017). We will compare these meth-
ods during our experiments.

Multi-Task Learning The intuition of using aligned net-
work for further improvement is to some extent similar
with the idea of multi-task learning, i.e. trying to model the
common patterns or underlying consistencies using multi-
ple heterogeneous behaviors or observations. Evgeniou et
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al. conducted multi-task learning using a regularization ap-
proach (Evgeniou and Pontil 2004). Collective matrix fac-
torization is later proposed where models of different tasks
share common user/item representations (Singh and Gordon
2008). For neural networks, weight-sharing across networks
is also proposed for natural language processing (Collobert
and Weston 2008). However, there are no works employing
the idea of multi-task learning to model aligned networks.

Problem Definition

Definition 1. (Aligned Network) A pair of aligned networks
is defined by S = (G,H,A) where G = (VG, EG) and
H = (VH , EH) are the two networks with V,E being the
set of vertices and edges respectively, A ⊂ VG × VH is the
alignment between G,H where (u, v) ∈ A indicates ver-
tices u ∈ VG and v ∈ VH are aligned.

Definition 2. (Link Prediction over Aligned Networks)
Given a pair of aligned networks S = (G,H,A), construct
PG(u, v) and PH(p, q) to predict the probability of each un-
observed link for network G and H respectively.

For simplicity and generality, we target at undirected and
unweighted network in this paper. Note that our model
can also be applied to directed and weighted network by
straightforward extensions. For notation, we also define
NG(u), NH(v) to be the set of neighbors of vertex u, v in
network G,H respectively.

Essentially, the link prediction task is a binary classifi-
cation task for the unobserved links. Hence, area under the
ROC curve (AUC) is normally used as the evaluation metric
(Hanley and McNeil 1982).

Methodology

The Framework

The major challenge of link prediction over aligned net-
works is heterogeneousness. As stated previously, aligned
networks may differ in several aspects, including the pur-
poses of the links, link density, etc. Besides, a network itself
also contains various types of features, including node de-
gree, common neighbor, specific local structures, etc., which
further increase the heterogeneousness of this task. Most
traditional approaches directly incorporate these features to
train a classification model, based on the assumption that
these features have equal contributions towards all vertices
(Lü and Zhou 2011). As there is no theoretical or practical
support for such assumption, the heterogeneousness prob-
lem has not been well addressed by existing works.

Hence, we propose a multi-neural-network framework
MNN to mine the underlying consistencies beneath the
heterogeneous behaviors or features. The rationale behind
is that although we have heterogeneous features, they are
all explicit vertex behaviors based on vertex characteristics
(user preferences, protein properties, etc.). Thus, we should
be able to derive these information purely based on the cor-
responding vertex representations, providing that the ver-
tex representations are accurate and comprehensive enough.
Following this idea, we tackle the task by finding a set of
accurate and comprehensive vertex representations as well
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Figure 2: Multi-Neural-Network Framework

as the models to derive the aforementioned heterogeneous
information using such representations. Specifically, we use
vertex embeddings as the vertex representations and learn a
neural network for each objective channel (target or feature),
forming the multi-neural-network framework.

We illustrate our multi-neural-network framework in Fig-
ure 2. At the bottom we have two partially aligned networks
G and H . Above them, we have a shared vertex embedding
layer E : VG ∪ VH → R

k, where k is the embedding di-
mension. The embeddings are shared among all subsequent
neural networks. For aligned vertices, we assign them with a
same embedding because their characteristics are essentially
the same, i.e. E(u) = E(v) for all (u, v) ∈ A. At the top,
we have multiple neural networks targeting at various ob-
jective channels, including direct links, degrees, distances,
etc. Each neural network corresponds to one single objec-
tive channel, with the purpose of refining the vertex embed-
dings using the information provided by its corresponding
objective channel. Training these neural networks together
results in an accurate and comprehensive vertex embeddings
capturing all the heterogeneous information, along with the
models to estimate these objectives.

In the following sections, we first introduce the objective
channels we use, then present the detailed design of the neu-
ral networks. Finally, we discuss the training methods.

Objective Channels

Formally, each objective channel c is a fully or partially ob-
servable function fc(X,S), where X is a list of vertices and
S is the aligned networks. For each objective channel, a neu-
ral network is designed to estimate the function based on the
shared vertex embeddings E, i.e. f̂(X,E) ∼ f(X,S). The
purpose of each neural network is to incorporate the infor-
mation provided by the objective f into the vertex embed-
dings E, and to acquire the model f̂ for prediction.

To plug an objective channel c into MNN, we need to de-
sign the function fc(X,S) as well as generate the training
samples. For all classification-based objective channels, we
only discuss the generation of positive samples, and use ran-
dom sampling to generate negative ones.

There are overall 7 groups of objective channels in our
setting. As the channels are symmetric for both networks,
we only discuss the channels with respect to network G.
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Direct Links (DL). Direct links, as the target of link
prediction task, provide the most important information.
Specifically, we have objective channel DLG for network
G, where DLG(u, v) = 1 if (u, v) ∈ EG and 0 otherwise.
We use all observed links (u, v) ∈ EG as positive samples.

Multi-Step Links (ML). Besides direct links, we also in-
clude multi-step links to model the pairs of vertices that are
close together but may not be directly linked. Specifically,
we define MLd

G(u, v) to represent whether there exists a
path of length d between vertices u and v in network G. To
generate the positive samples, we conduct α random walks
with length of d starting from each vertex, where α is the
sampling rate. We use the starting and ending vertices of the
random walks as positive samples, resulting in α · |VG| pairs.
For experiments, we use ML with length 2 and 3.

Cross-Network Multi-Step Links (CL). To leverage the
information of aligned networks, we extend the multi-step
link channels to cross-network multi-step link channels.
With this, we further capture the closeness of vertices ac-
cording to the links from both networks. Similarly, we de-
fine CLd

G(u, v) to represent whether there exists a cross-
path of length d between vertex u in G and vertex v in
H , where cross-path is a path from a vertex in G to a ver-
tex in H using an aligned vertex as the bridge. Formally,
(u0, · · ·uk, v0, · · · vl) is a cross-path of length k + l if and
only if ui ∈ VG, vi ∈ VH , (ui, ui+1) ∈ EG, (vi, vi+1) ∈
EH and (uk, v0) ∈ A. Similar with ML, we also use ran-
dom walk to generate the training samples.

Vertex Distances (DT). Since multi-step link channels
only consider paths of limited length, they are still focus-
ing on local structures. To capture global structures between
vertices, we further include vertex distances as another ob-
jective channel, i.e. DTG(u, v) is the distance between ver-
tices u, v in network G. For training, we randomly sample
α · |VG| pairs of vertices.

Neighborhood Jaccard (NJ). Another important feature
to measure whether two vertices are close together is the por-
tion of their neighbors that are shared. We employ Jaccard
Similarity Coefficient to model it. Formally, we have:

NJG(u, v) =
|NG(u) ∩NG(v)|
|NG(u) ∪NG(v)| (1)

As we already have multi-step links with length 2 to repre-
sent whether the two vertices share a common neighbor, we
now focus on (u, v) pairs with NJG(u, v) > 0. We sample
the training pairs by sampling α pairs of u, v ∈ NG(w) for
all w ∈ VG, leading to α · |VG| samples.

Cross-Network Jaccard (CJ). We also extend Neighbor-
hood Jaccard to cross-network Jaccard by considering the
common neighbors according to the alignment. Specifically,
for vertices in different networks, we count how many of
their neighbors are aligned according to the alignment and
then calculate the Jaccard Coefficient. Formally, for u ∈ VG

and v ∈ VH , CJG(u, v) is defined by:

CNG(u, v) = {(p, q) ∈ A|p ∈ NG(u), q ∈ NH(v)}
CJG(u, v) =

|CNG(u, v)|
|NG(u)|+ |NH(v)| − |CNG(u, v)|

(2)

The sampling strategy is the same with NJ.

Graphlet Degree Signature (GP). Graphlet degree sig-
nature is a vector signature for each vertex representing
its neighborhood structures (Milenkoviæ and Pržulj 2008),
which is widely used in biological networks. The signature
contains the count of different local structures around the
target vertex, which is an extension of traditional vertex de-
grees. We include up to 4-node graphlets in our model (in
total 15 structures, numbered from 0 to 14 in Figure 3). We
use graphlet for all vertices to form the training set.

Figure 3: Graphlets up to 4-nodes used in GP.

To summarize, there are 7 groups of objective chan-
nels and 18 neural networks in total to form our frame-
work MNN. The details are given in Table 1. These groups
cover heterogeneous targets and features, indicating that
MNN can be used as a general framework to leverage het-
erogeneous information. For unlisted features or additional
dataset-dependent information, we can also easily include
them in the framework following similar approaches.

Network Design

Despite the objective channels have different training tar-
gets, they all mine the underlying information or relations
based on the vertex embeddings. From the viewpoint of
model, the objective channels only differ with each other
in the following aspects: (i) number of input vertices m,
(ii) number of output units n, (iii) target type (classification
or regression). Hence, we propose a unified neural network
structure for all the objective channels.

In Figure 4, we depict an example of the neural net-
work structure with 2 vertices as input (m = 2). For the
input layer, we use one-hot encoding for the m input ver-
tices {v1, · · · , vm} respectively. By multiplying each one-
hot input by the common embedding matrix E, we form the
embedding layer {E(v1), · · · , E(vm)}. To model the direct
interactions, we further insert a product layer proposed in
product neural network (Qu et al. 2016). Specifically, it is
the concatenation of {E(vi)} and {E(vi) ◦ E(vj), i 	= j},
where ◦ indicates the element-wise product of the two em-
beddings (a.k.a. Hadamard product). Upon the product layer,
we have multiple fully connected hidden layers with ReLU
as the activation function to mine the high-level relations.
Formally, for input vertices X = {vi}, we have:

h0(X) = concat({E(vi)}, {E(vi) ◦ E(vj �=i)})
hi+1(X) = relu(hi(X)Wi +Bi)

(3)

where the last layer (lth layer) serves as the raw output and
has exact n units corresponding to the objective channel’s
setting, i.e. o(X) = hl(X) ∈ R

n.
For binary classification tasks, the raw output serves as

the logits. Log likelihood is then used as the loss function.

Lc = −
∑

X,y

∑

i

yi ln(σ(o(X)i))+(1−yi) ln(1−σ(o(X)i)) (4)
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Table 1: Summary of Objective Channel Groups used in MNN, with respect to network G

Objective Channel #Nets Input Output Type Generation of (Positve) Training Samples

Direct Links (DL) 2 u, v ∈ VG [0, 1] Classification All (u, v) ∈ EG

Multi Links (ML) 4 u, v ∈ VG [0, 1] Classification Sample by random walk
Cross Links (CL) 4 u ∈ VG, v ∈ VH [0, 1] Classification Sample by random walk

Neighbor Jaccard (NJ) 2 u, v ∈ VG R Regression Sample u, v ∈ NG(w) for w ∈ VG

Cross Jaccard (CJ) 2 u ∈ VG, v ∈ VH R Regression Sample u ∈ NG(p), v ∈ NH(q) for (p, q) ∈ A
Distance (DT) 2 u, v ∈ VG R Regression Sample (u, v) ∈ VG × VG

Graphlet (GP) 2 u ∈ VG R
15 Regression All u ∈ VG

0, 0, 1, ... , 0 0, 0, 1, ... , 0

Embedding of u Embedding of v1

......

Figure 4: Neural Network Structure for Objective Channels

where σ(x) = 1/(1 + exp(−x)) is the sigmoid activation
function and y ∈ [0, 1]n is the ground truth label.

For regression tasks, we directly use the raw output as the
final estimation and employ square loss as the loss function.

Lr =
∑

X,y

∑

i

(o(X)i − yi)
2 (5)

Training Methods

Our goal is to minimize the overall loss of all neural
networks and the regularization term, formally Ltot =∑

q w
qLq + γ

∑
Θ ‖Θ‖2, where Lq and wq denotes the loss

function and the weight for qth objective channel, Θ denotes
the parameters. For the weighting, we set wq = β for the tar-
get objective channels (direct links) and wq = 1−β for other
channels, where β is the weighting parameter to balance the
targets and the features.

There are two ways to perform the training: jointly updat-
ing all the networks together or updating them individually
and stochastically. Specifically, for joint training we use the
training data of all objective channels together to optimize
the overall loss Ltot. For stochastic training, we update each
neural network separately by optimizing wqLq +γ‖Θq‖ us-
ing its own training data. Their difference is analogous to the
difference between full-batch gradient decent and stochastic
gradient decent, which is whether to conduct the partition
over training data. The benefit of joint updating is its theoret-
ical optimality. However, it consumes larger computational
resource. The advantage of stochastic training is that it nat-
urally supports distributed computing and online extension
by adding additional objective channels.
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Figure 5: Training Methods

Since we have different numbers of training samples for
each objective channel, how to divide the training batches
may also lead to different results. If we fix the batch size
for all channels, those channels with more training samples
will have more batches, hence draw more attention in the
resulting model. The other approach is to divide the training
data for each channel into fixed number of batches B.

By combining joint training and stochastic training with
the two batching strategies respectively, we have four differ-
ent training methods. We illustrate them in Figure 5. Within
each sub figure, each row corresponds to one objective chan-
nel while the colored blocks indicate partitioned training
samples. Samples with the same color form one training
batch. As the training methods have different characteristics,
we will conduct experiments to explore their performances.

Despite the training methods, the time complexity is lin-
ear to the number of training samples. For the target channel
(DL), we have |EG| + |EH | positive samples. For vertex-
based channels, we have one training sample for each ver-
tex, hence |VG| + |EH | samples. For link-based channels,
we have α · (|VG|+ |EH |) positive samples for each channel
according to our sampling strategies. The random sampling
for negative samples also generate the same scale of sam-
ples with the positive ones. Hence, the time complexity of
our framework is O(N + M) in total, where N,M denote
the numbers of vertices and links respectively.

Experiments

Datasets We conduct experiments using two sets of
aligned social networks, provided by (Cao and Yu 2016a).

• Facebook-Twitter Facebook and Twitter are the most
popular world-wide online social network and microblog
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Table 2: Performance Comparison in General Cases, AUC as Metric (* indicates p-value less than 1e−6 for significant test)

Dataset Method Training Ratio
80% 60% 40% 20%

Facebook
�

Twitter

CN 91.72% / 90.91% 89.99% / 88.38% 69.86% / 67.18% 69.86% / 67.18%
DeepWalk 92.77% / 90.60% 92.32% / 90.02% 90.74% / 88.34% 87.03% / 82.95%

LINE 92.19% / 90.29% 91.11% / 90.16% 90.61% / 89.30% 82.28% / 83.77%
SDNE 92.16% / 90.15% 90.92% / 89.59% 87.54% / 77.31% 73.78% / 72.06%

node2vec 93.29% / 91.68% 92.07% / 90.95% 90.52% / 89.70% 85.09% / 84.36%
MLI 94.16% / 92.04% 91.59% / 90.76% 87.71% / 87.48% 77.73% / 75.17%

SLAM 93.39% / 92.29% 91.39% / 91.11% 88.22% / 89.50% 82.09% / 86.55%

MNN 96.96% / 95.40% 96.32% / 94.88% 94.73% / 93.81% 92.62% / 91.15%
Improve +2.97%* / +3.37%* +4.33%* / +4.14%* +4.40%* / +4.58%* +6.42%* / +5.31%*

Weibo
�

Douban

CN 84.32% / 86.69% 82.11% / 83.98% 77.37% / 78.50% 66.61% / 66.27%
DeepWalk 86.06% / 85.81% 84.78% / 83.70% 83.05% / 81.58% 76.11% / 74.09%

LINE 86.94% / 86.30% 85.18% / 85.69% 83.74% / 85.36% 82.36% / 84.14%
SDNE 86.07% / 89.98% 85.41% / 87.80% 84.22% / 83.55% 81.52% / 78.62%

node2vec 91.59% / 92.87% 89.72% / 91.76% 87.86% / 88.99% 83.81% / 83.86%
MLI 90.04% / 91.55% 88.68% / 90.68% 86.65% / 88.51% 79.85% / 83.61%

SLAM 90.31% / 91.28% 89.01% / 90.23% 88.18% / 88.90% 86.37% / 86.34%

MNN 96.46% / 97.14% 94.59% / 96.70% 94.04% / 96.18% 92.39% / 94.37%
Improve +5.32%* / +4.60%* +5.23%* / +5.388%* +6.65%* / +8.08%* +6.97%* / +9.30%*

site. We have 4,137 active users with average degree of
13.91 and 35.71 in the networks in this set.

• Weibo-Douban Weibo and Douban are Chinese largest
microblog and movie rating site respectively. For this set,
we have 50,552 vertices with average degree of 45.47 and
52.52 respectively.

Comparing Methods

• Common Neighbor (CN): Similarity-based method us-
ing the number of common neighbors as similarity func-
tion (Liben-Nowell and Kleinberg 2007).

• DeepWalk: Skip-gram based vertex embedding method
which considers vertices as words and random walks as
sentences (Perozzi, Al-Rfou, and Skiena 2014).

• LINE: Network embedding method with objective func-
tion that preserves both the first-order and second-order
proximities (Tang et al. 2015).

• SDNE: Auto-encoder based vertex embedding method
(Wang, Cui, and Zhu 2016).

• node2vec: Word-to-vector approach with biased random
walk (Grover and Leskovec 2016).

• MLI: Link prediction method for aligned networks using
meta-path as features (Zhang, Yu, and Zhou 2014).

• SLAM: Link prediction for aligned networks using sparse
and low rank matrix estimation (Zhang et al. 2017).

For fair comparison, we also extend the single-net link
prediction methods to using the alignment information. We
apply them to both the original isolated networks and the
merged network (union of the links based on the alignment),
then report the best performances. The parameters of each
model are tuned separately for best performances.

Parameters For our multi-neural-network model (MNN),
we set the embedding dimension k = 80, sampling rate α =
100, weighting parameter β = 0.5 and the regularization
term γ = 0.1. We design each neural network to have 2
hidden layers between the product layer and output layer,
with width of 100 and 50 respectively. The source code as
well as the datasets are available online1.

Evaluation Metric As link prediction is essentially a bi-
nary classification task, we use Area Under the Curve (AUC)
as the evaluation metric. 80% links are used for training.

General Case We list the experimental results for all com-
paring methods in Table 2. In all settings, our framework
MNN achieves the best performance, with p-value < 1e−6

for significance test (Hanley and McNeil 1982). When train-
ing ratio is 80%, we achieve relative improvements of 2.97%
to 5.32% in different settings compared to the best exist-
ing method, indicating that MNN can leverage the heteroge-
neous objective channels for a comprehensive vertex embed-
dings over aligned networks. Comparing experiments with
different training ratios, the performances of all methods
decrease as the training ratio drops. Compared to existing
methods, the performance drop of our model MNN is rather
moderate, i.e. MNN is more robust to data insufficiency.

Cold Start Scenarios We also expect MNN to alleviate
cold start problem. We depict the performances for ver-
tices with different degrees in Figure 6. As expected, all ap-
proaches encounter a performance drop when dealing with
cold start scenarios where the target vertex’s degree is lim-
ited. The results indicate that our model is the most robust
one to data insufficiency. For vertices with degree equal to
2, we achieve a relative improvement of 8.53%.

1http://apex.sjtu.edu.cn/projects/34
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Figure 6: Performance on Cold Start Scenarios

Evaluating Objective Channels Now we evaluate the
contribution of each objective channel. In Table 3, we show
the performances gained by adding additional objective
channels. The results indicate that the channels we propose
do have positive effect on the performances. It also proves
that MNN can successfully leverage all these heterogeneous
features for comprehensive vertex embeddings.

Table 3: Contribution of Objective Channel Groups
Objective
Channels

Networks
Facebook Twitter Weibo Douban

DL (Basic) 94.82% 93.43% 93.69% 95.84%
DL+ML 95.95% 94.60% 95.17% 96.42%
DL+CL 95.55% 94.20% 94.35% 96.30%
DL+DT 95.40% 94.68% 94.15% 96.23%
DL+GP 95.20% 93.71% 94.12% 96.05%
DL+NJ 95.58% 94.28% 94.62% 96.29%
DL+CJ 95.76% 94.26% 94.46% 96.34%

ALL 96.96% 95.40% 96.46% 97.14%

Training Methods Recall that we have 4 different train-
ing methods for MNN (Figure 5). We show their perfor-
mances in Table 4. The results indicate that stochastic train-
ing achieves better performances compared to joint training,
while fixed batch count methods outperforms fixed batch
size methods. Since fixed batch count and stochastic training
give each objective channel an equal chance to tune the em-
beddings, it may better capture heterogeneous information
instead of focusing on only the strongest ones.

Table 4: Comparing Training Methodologies
Training
Method

Networks
Facebook Twitter Weibo Douban

JT-BS 94.59% 92.93% 94.17% 96.07%
JT-BC 95.11% 93.78% 94.19% 96.22%
ST-BS 95.92% 94.89% 95.19% 96.84%
ST-BC 96.24% 95.02% 96.46% 97.14%

We also plot the training curves in Figure 7, which in-
dicate that stochastic training also achieves faster conver-
gence. As stochastic training can be naturally conducted in
parallel or distributed computing, it also has a great advan-
tage in time-complexity aspect compared to joint training.
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Figure 7: Training Curves with Different Training Methods
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Figure 8: Hyperparameter Analysis

Hyperparameter Analysis Now we examine the influ-
ence of three key hyperparameters in our framework: the
sampling rate α, the weighting parameter β and the em-
bedding size. The results in Figure 8 indicate that setting
sampling rate α to 100 provides the best performance. For
weighting parameter β, the best setting is in [0.3, 0.5], which
matches our intuition that we need to balance between the
target objective channel group (direct links) and the other
objective channel groups. For embedding size, k = 80 pro-
vides the best performances.

Conclusion

In this paper, we target at link prediction over multiple
aligned networks. The aligned networks provide valuable
additional information for modeling the structures and un-
derstanding the networks. To address the heterogeneousness
of the aligned networks, we propose a multi-neural-network
framework MNN. Specifically, we consider each heteroge-
neous learning target as well as network-based features as an
individual objective channel, and then construct one neural
network for each objective channel respectively. All the neu-
ral networks jointly learn a shared set of vertex embeddings,
hence leverage the heterogeneous information to achieve
accurate and comprehensive vertex representations. Exper-
iments with two real-world datasets indicate that our frame-
work outperforms state-of-the-art link prediction methods
for both single-network and aligned-network, especially in
cold start scenarios.

We essentially propose a novel method of using multi-
ple neural networks to handle heterogeneous features. The
MNN framework may also contribute to other tasks besides
link prediction, which we leave as future works.
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Barabâsi, A.-L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert,
A.; and Vicsek, T. 2002. Evolution of the social network of
scientific collaborations. Physica A: Statistical mechanics
and its applications 311(3):590–614.
Cao, X., and Yu, Y. 2016a. Asnets: A benchmark dataset of
aligned social networks for cross-platform user modeling. In
CIKM, 1881–1884. ACM.
Cao, X., and Yu, Y. 2016b. Joint user modeling across
aligned heterogeneous sites. In RecSys, 83–90. ACM.
Clauset, A.; Moore, C.; and Newman, M. E. 2008. Hier-
archical structure and the prediction of missing links in net-
works. Nature 453(7191):98–101.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.
Evgeniou, T., and Pontil, M. 2004. Regularized multi–task
learning. In SIGKDD, 109–117. ACM.
Faisal, F. E.; Zhao, H.; and Milenković, T. 2015. Global
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