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Abstract

Community detection is essential to analyzing and explor-
ing natural networks such as social networks, biological net-
works, and citation networks. However, few methods could
be used as off-the-shelf tools to detect communities in real
world networks for two reasons. On the one hand, most exist-
ing methods for community detection cannot handle massive
networks that contain millions or even hundreds of millions
of nodes. On the other hand, communities in real world net-
works are generally highly overlapped, requiring that com-
munity detection method could capture the mixed community
membership. In this paper, we aim to offer an off-the-shelf
method to detect overlapping communities in massive real
world networks. For this purpose, we take the widely-used
Poisson model for overlapping community detection as start-
ing point and design two speedup strategies to achieve high
efficiency. Extensive tests on synthetic and large scale real
networks demonstrate that the proposed strategies speedup
the community detection method based on Poisson model by
1 to 2 orders of magnitudes, while achieving comparable ac-
curacy at community detection.

Introduction

Many real world networks, such as biological networks, so-
cial networks, and citation networks, are found to divide nat-
urally into communities, i.e., groups of nodes with relatively
denser connections within groups but sparser connections
between them (Girvan and Newman 2002). One fundamen-
tal problem in network analysis is how to detect such com-
munities observed in networks.

Community detection has attracted much interest among
scientists from various fields in the last decade (Fortunato
2010; Palla et al. 2005; Shen et al. 2009; Karrer and New-
man 2011; Ren et al. 2009; Newman and Leicht 2007;
Newman 2013; Sun et al. 2017; Sun, Shen, and Cheng 2014;
Rosvall and Bergstrom 2008; Newman and Peixoto 2015).
However, few methods could be used as off-the-shelf tools
to detect communities in real world networks, which is at-
tributed to two challenges underlying the problem of com-
munity detection. On the one hand, many real world net-
works have millions and even hundreds of millions of
nodes. Most existing methods cannot handle networks at
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this scale (Newman and Girvan 2004; Cheng et al. 2010;
Newman 2013; 2006). On the other hand, communities
in real-world networks are highly overlapped, requiring
that community detection method could capture the het-
erogeneity of community membership (Airoldi et al. 2008;
Palla et al. 2005; Kim and Leskovec 2012; Newman and Le-
icht 2007; Karrer and Newman 2011). Therefore, we lack
a method that could efficiently detect overlapping commu-
nities in massive networks, especially when the number of
communities is large.

In the last few years, researchers attempt to combat the
aforementioned problem by improving the computational
efficiency of several well-performed and principled methods
for overlapping community detection. For example, Gopalan
and Blei proposed an efficient method to uncover overlap-
ping communities in massive networks (Gopalan and Blei
2013). Their method is actually a variant of mixed mem-
bership stochastic blockmodel (Airoldi et al. 2008), achiev-
ing high efficiency by stochastic variational inference (La-
touche, Birmele, and Ambroise 2012), i.e., approximately
estimating the posterior community membership of nodes
by analyzing a sub-sampling of network rather than the
whole network. Yang et al. proposed BIGCLAM method
which optimizes a variant of non-negative matrix factor-
ization objective function to discover communities through
maximizing the likelihood of network (Yang and Leskovec
2013). The speedup lies in transforming the loop over all
nodes into the loop of neighbor nodes when calculating the
gradient of a node. Sun et al. proposed to use fast non-
overlapping community detection method to initialize over-
lapping community detection method, achieving high effi-
ciency by avoiding local optimum of non-convex optimiza-
tion (Sun, Shen, and Cheng 2014). However, these methods
are still inappropriate to detect overlapping communities in
massive networks when the number of communities is large.
The key defect of these methods lies in that the basic models
for these methods consider all nodes pairs with or without
links, with an implicit squared computation complexity.

In this paper, we aim to achieve an efficient method to de-
tect overlapping communities in massive networks. For this
purpose, we take a well-performed and principled model,
i.e., Poisson model, for overlapping community detection
as starting point, and design speedup strategies to achieve
high efficiency. The obtained method distinguishes itself
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from previous speedup methods in two aspects: (1) Different
from mixed membership stochastic blockmodel (Airoldi et
al. 2008) and non-negative matrix factorization method (Lee
and Seung 1999; Choi 2008; Ding et al. 2006), the complex-
ity of Poisson model is linear with respect to the number of
edges rather than the square of the number of nodes. This
offers a good starting point for designing efficient methods
for community detection; (2) Existing methods mostly fo-
cus on the speedup of posterior inference without a fine-
grained scrutinization of the process of algorithm. Conse-
quently, these methods fail to handle the scenario that the
number of communities are large.

In this paper, we design two speedup strategies by scru-
tinizing the factors that affects the complexity of Poisson
model, i.e., O(mKt), where m is the number of edges in
network, K is the number of communities to be discovered,
and t is the number of iteration steps. Firstly, we reduce the
complexity of the Poisson model using an early-stopping
criterion, i.e., we stop the update of the posterior of each
edge if the community membership of its two end nodes
both keep unchanged. Secondly, we leverage the sparsity of
community membership of nodes, i.e., each node only be-
longs to a handful of communities, and adaptively reduce
the number of communities for each node during the process
of learning the community membership of nodes. The com-
bination of the two strategies further reduce the number of
iterations before convergence. Taken together, we achieve an
efficient method to detect overlapping communities in mas-
sive networks.

Extensive tests on synthetic benchmark networks demon-
strate that our method improves the efficiency of community
detection in 1 to 2 orders of magnitude. Finally, to demon-
strate the efficiency of our method, we apply it to several real
world massive networks with as many as millions of nodes
and hundreds of millions of edges, verifying its efficiency in
detecting overlapping community structure.

Preliminary

Traditional generative models for community detection dis-
cover the communities by maximizing the likelihood of gen-
erating the network. In these models, the community mem-
bership of a node is represented by a distributed vector. The
probability of generating an edge between two nodes is gen-
erally modeled as P (Aij |θi, θj) = f(g(θi, θj)), reflecting
whether there exists an edge between node i and node j. θi
is a vector which represents the community membership of
node i. g(·) is a link function which transforms θi and θj
into the required parameters for the probability distribution
f(·) to generate edge (i, j). Different choices of g(·) and
f(·) result in different models.

Mixed membership stochastic blockmodel, MMSB for
abbreviation, considers the generation of node pairs from
the block perspective, and adopts Bernoulli distribution to
model the linking state between two nodes, with the param-
eter characterized by the block interaction and the commu-
nity memberships of those node pairs (Airoldi et al. 2008),

i.e.,

P (Aij = 1|θi, θj) =
K∑
r=1

θirθjrβr, (1)

where βr is the probability that two nodes are connected
given that they both belong to community r, and K is the
number of expected communities. In MMSB, the representa-
tion of each node is constrained by

∑
r θir = 1, which guar-

antees the link function g(θi, θj) =
∑K

r=1 θirθjrβr offers
a proper probability for the Bernoulli distribution. However,
MMSB has to model the linking states between all n2 node
pairs, resulting in a O(n2) complexity, limiting its applica-
bility to large-scale networks. Gopalan and Blei proposed
to adopt the stochastic optimization algorithm to improve
the efficiency. In each iteration, they subsampled a subset of
node pairs, and updated the community memberships of the
nodes based on those sampled pairs.

Another line of works aims to model the edge generation
based on interactions between nodes. Yang et al. (Yang and
Leskovec 2013) proposed to model the linking probability
of two nodes using their community memberships directly,
i.e.,

P (Aij = 1|θi, θj) = 1− exp(−θiθ
T
j ). (2)

Bernoulli distribution was also adopted for edge generation.
However, in each iteration updating the gradient of each
node takes O(n) time,

�l(θi) =
∑

j∈N(i)

θj
exp(−θiθ

T
j )

1− exp(−θiθTj )
−

∑
j /∈N(i)

θj , (3)

making it impractical for large-scale networks. N(i) denotes
the neighbor nodes of node i. Yang et al. proposed BIG-
CLAM algorithm which replaced the time consuming part,
i.e.

∑
j /∈N(i) θj , based on the observation that

∑
j /∈N(i)

θj =
∑
j

θj − θi −
∑

j∈N(i)

θj . (4)

Thus the complexity for updating the gradient of a single
node decreases from O(n) to O(|N(i)|).

Poisson model is another popular generative model for
community detection (Karrer and Newman 2011; Ball, Kar-
rer, and Newman 2011). Unlike previous models which as-
sume a Bernoulli distribution for edge generation, it assumes
that the number of edges between each node pair follows a
Poisson distribution with mean g(θi, θj) = θiθ

T
j , i.e.,

P (Aij |θi, θj) = (
∑

r θirθjr)
Aij

Aij !
exp(−

∑
r

θirθjr). (5)

Ball et al. fit the model to an observed network and adopt
the expectation-maximization (EM) algorithm for optimiza-
tion. Taking the log of Eq. (5), they maximize the log-
likelihood using EM algorithm. The E-step is optimizing
qij(r) given the values of θir and θjr

qij(r) =
θirθjr∑
r θirθjr

, (6)
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where qij(r) is the probability that the edge between node i
and j locates in community r, which satisfies

∑
r qij(r) =

1. The M-step optimizes θir given qij(r)

θir =

∑
j Aijqij(r)√∑
ij Aijqij(r)

. (7)

Ball et al. pointed out that the space requirement is dom-
inated by the parameter qij(r). They proposed to use an in-
termediate variable, kir, which denotes the average number
of edges connected to node i in community r. The definition
for kir is

kir =
∑
j

Aijqij(r). (8)

Original θir can be retrieved by

θir =
kir√
κr

, (9)

and qij(r) can be calculated as

qij(r) =
kirkjr

Dij × κr
, (10)

where κr =
∑

i kir and Dij =
∑

r
kirkjr

κr
.

The above Poisson model performs well in finding over-
lapping communities in moderate network. However, it still
cannot be applied to large-scale networks. In this paper we
analyze the optimization process and propose a two-level ac-
celeration algorithm, which improves the speed of Poisson
model by 1 to 2 orders of magnitudes, while demonstrating
a comparable performance in community detection task.

Acceleration of Poisson Model

As shown in the previous section, the key part for Poisson
model is the updating of kir for each node, which loops over
all the edges. Thus the number of edges to be dealt with
in each iteration is crucial to the algorithm’s efficiency. In
Ball’s implementation, they proposed to discard the edges
whose both end nodes’ representations converge to be one-
hot. However, most nodes in real-world networks are over-
lapping, resulting in more than one non-zero entry in repre-
sentations. Observing that the representations of most nodes
are converged after a few iterations, we propose edge level
acceleration which discards the edges when its end nodes’
representations both converged, without restricting them to
converge into one-hot vector. Edge level acceleration can re-
markably reduces the number of edges to be handled during
each iteration.

Moreover, the representations of most nodes are very
sparse, since most nodes belong to only a few communities.
We propose dimension level acceleration to take advantage
of the sparsity of representations. For each dimension kir
in node i’s representation, once it is updated to be 0, it will
stay 0 for the rest of optimization. Thus we only need to keep
track of non-zero dimensions in each node’s representation.

Algorithm 1: PARAMUPDATE: Updating the
membership of connected nodes

Input: Edge number m, Parameter κ, EL[m][2]
stores the edge list, Converge[i] converge
state of node i, NZ[i] stores the non-zero
dimensions of node i

Output: All the membership of nodes knewi .
1 for Each edge e = 〈i, j〉 in the edgelist do
2 if Edge e = 〈i, j〉 has not been removed then
3 if Converge[i]==True and

Converge[j]==True then
4 Remove this node pair from optimization

process.
5 else
6 if Converge[j]==False then
7 knewj =DIMENOPT(j,i,NZ,κ);

8 if Converge[i]==False then
9 knewi =DIMENOPT(i,j,NZ,κ);

10 return knewi for all nodes;

Edge Level Acceleration

According to Eq. (10), we can tell that once kir becomes
0, qij(r) will stay 0 for any node j that connected to node
i, resulting in kir staying 0 according to Eq.(8). Thus if the
representation of a node becomes one-hot, it will stay being
one-hot ever after. In Ball’s implementation, if the represen-
tations of two end nodes of an edge become one-hot, they
proposed to discard this edge in the rest of optimization as
it will not change the community memberships of two end
nodes. However, most nodes are actually overlapping, indi-
cating their representations are unlikely to be one-hot dur-
ing optimization. Nonetheless, the representations of most
nodes tend to be settled after only a few iterations. There-
fore we propose to discard edges whose both end nodes’
representations are converged, as shown in line 3− 4 in Al-
gorithm 1. Once both nodes’ representations are converged,
this edge is not considered for the rest of optimization. Oth-
erwise, we continue to update ki for unconverged node i, as
done in line 6 − 9. In experiment part this strategy proves
to remarkably reduce the number of edges during the opti-
mization process, resulting in a large decrease in the number
of iterations needed for the convergence of the algorithm..

Dimension Level Acceleration

When updating ki· for unconverged node i, we have to deal
with a K-dimension vector. As pointed out before, kir will
stay 0 after it is updated to 0. Since most nodes belong to
only a few communities, their representations tend to be very
sparse. We propose to keep track of only non-zero dimen-
sions in each node’s representation to further reduce compu-
tation cost, as done in Algorithm 2. The calculation of Dij

and updating of ki only take places on the non-zero entries of
node i’s representation, which are recorded by NZ[i] vector.
Dimension level acceleration enables our algorithm to detect
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Algorithm 2: DIMENOPT: Dimension level accel-
eration

Input: Node i and node j, Parameter κ, NZ[i] stores
the non-zero dimensions of node i

Output: Updated membership of node knewi and
knewj

1 for Each non-zero dimension r in NZ[i] do

2 Calculate the Dij using Dij =
∑

r

kold
ir kold

jr

κr
.

3 for Each non-zero dimension r in NZ[i] do
4 Update the knewir using

knewir = knewir +Aij
kold
ir kold

jr

Dij×κr
.

5 return knewi ;

Algorithm 3: LCNODE: Marking the dimension la-
bels of converged Nodes

Input: Node number n, number of communities K,
Parameter κ, koldi and knewi , Converge[i]
stores converge state of node i, NZ[i] stores
the non-zero dimensions of node i

Output: Updating the converge state of node
Converge[i], the non-zero dimensions of
each node NZ[i] and κ

1 error = 0;
2 for Each node i do
3 if Converge[i]==False then
4 for Each r in NZ[i] do

5 error+ = |koldir − knewir |;
6 if knewir < δ then
7 knewir = 0;
8 Remove r from NZ[i];

9 κr = κr + knewir − koldir ;
10 koldir =knewir ;
11 knewir = 0;
12 if error < δ′ then
13 Converge[i]=Ture;

14 return Converge[i] and NZ[i] for all nodes;

a larger number of communities for a given network, and
experiment results demonstrate that the performance boost
of dimension level acceleration increases with the growing
number of expected communities K.

The LCNODE algorithm collects the convergence state
of each node for edge level acceleration, and updates the po-
sitions of non-zero entries in each node’s representation for
dimension level acceleration. After each iteration, LCNODE
algorithm checks the change in each dimension of the rep-
resentation of each node. If the value is lower than a prede-
fined threshold δ, it will be updated to 0 for the convenience
of dimension level acceleration, and the non-zero positions
will be updated as done in line 6−8. The over change in the
representation of each node is accumulated in line 5. If the

overall change is lower than a predefined threshold δ′, this
node will be marked as converged as in line 12− 13, which
serves as conditions for edge deletion in edge level accel-
eration. The overall optimization algorithm is presented in
Algorithm 4. The overall framework is an iterative frame-
work. PARAMUPDATE() calculates knew based on kold

from last iteration, and LCNODE() denotes the changes in
the states of all the nodes for next iteration.

Algorithm 4: MAIN: Fast Poisson model algorithm
Input: Edge number m, EL[m][2] stores observed edge

list, number of communities K
Output: The community assignment θ

1 Random initialize kold for all nodes;
2 Initial κ using kold;
3 Initial knew to be 0;
4 Initial Converge[i] for all node i to be −1;
5 Initial NZ with all dimensions non-zero;
6 while |kold − knew| not converged do
7 knew=PARAMUPDATE(m,κ,EL,Converge,NZ);
8 LCNODE(n,K,κ,kold,knew,Converge,NZ);

9 return θ for all nodes using Eq. (9);

Experiments
We adopt both synthetic networks generated by LFR
“benchmark” tool (Lancichinetti and Fortunato 2009) and a
range of real-world networks (Yang and Leskovec 2015) to
evaluate the performance of our proposed method. Synthetic
networks with ground truth community structures allow us
to validate the effectiveness of the proposed method, while
real-world networks at different scales enable us to compare
the efficiency of proposed method with baseline methods.
Moreover, we provide empirical studies on the acceleration
performance of proposed two-level acceleration strategies.

Baseline methods

As summarized in the preliminary section, we adopt three
fast generative community detection models as our baseline
methods. The main idea for acceleration is to reduce the pa-
rameters to be calculated during the optimization process.
• Ball’s method: Ball et al. speeded up its optimization

through removing those edges whose end nodes’ commu-
nity membership are one-hot (Ball, Karrer, and Newman
2011);

• Gopalan’s method: Gopalan’s method reduces the time
cost of the optimization process though subsampling a
subset of nodes and updating parameters based on the
sampled subset (Gopalan and Blei 2013);

• BIGCLAM: BIGCLAM accelerates its optimization pro-
cess by replacing the loop over all nodes with the loop
over its neighbor nodes when calculating the gradient for
each node (Yang and Leskovec 2013).

Experiments on Synthetic networks

Our synthetic networks are generated by LFR “benchmark”
tool. Three key parameters have to be set when generating
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Figure 1: The NMI performance of our method compared
with the baseline methods in synthetic networks. To alleviate
the effect of randomness caused by stochastic optimization,
we run each algorithm 10 times and select the best result as
final result.
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Figure 2: The time consumption of our method compared
with the baseline methods in synthetic networks. Each his-
togram illustrates the average consumed time of 10 repeated
runs of the algorithms.

benchmark networks, i.e., the power exponent of the degree
distribution α, the power exponent of the community size
distribution β, and the mixing parameter μ. The mixing pa-
rameter controls the fraction of a node’s links that connect
to nodes in other communities. We vary the value of mixing
parameter μ from 0.1 to 0.5 (the networks tend to be random
graph when μ > 0.5) and α and β are set to be 2 and 1 re-
spectively. We set the maximum degree as kmax = n

100 and
the average degree k = 0.4 × kmax, where n is the num-
ber of nodes. For community size, we set the minimum and
maximum community size to be [ n50 ,

n
250 ]. The number of

nodes is set to be 5, 000 for our experiments.
For evaluation, as ground truth community labels of

nodes are known, we adopt normalized mutual information
(NMI) (Lancichinetti, Fortunato, and Radicchi 2008), which
measures the extent to which the true and discovered com-
munity labels are consistent with each other, to measure the
performance of our method and baseline methods.

The result is shown in Fig. 1. Our method consistently
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Figure 3: The overlapping community detection perfor-
mance of our method compared with the baseline methods
in synthetic networks. Each point is the best result of 10 re-
peated runs of the algorithms.

outperforms other baselines with μ varying from 0.1 to
0.5, which demonstrates the effectiveness of our proposed
method. We also presented the time consumption of differ-
ent methods in Fig. 2. The time consumption of our method
is remarkably less than that of baseline methods when the
structure of the networks are relative clear, i.e., μ is small.
Along with the increase of mixing parameter μ, commu-
nity structures become more confused and the community
assignment of an edge is hard to decide. Consequently, the
edges being removed during the optimization process is re-
duced, resulting in an increase of time cost for our method.

The nodes in above generated networks belong to only
one community, while in real scenarios most nodes are over-
lapping. To further evaluate the performance of our method
in detecting overlapping communities, we generate bench-
mark networks with overlapping nodes. In addition to above
parameter settings, we require 10% of the nodes to belong
to 2 communities. We also generate networks with μ vary-
ing from 0.1 to 0.5. Overlapping NMI (Lancichinetti and
Fortunato 2009) is adopted to measure the performance of
different methods.

The results are shown in Fig. 3. Our method still achieves
best performance in overlapping settings. The time cost is
presented in Fig. 4, which shows a similar tendency with
that under deterministic settings.

Experiments on real networks

To evaluate the performance of our method in massive real
world networks, we adopt Amazon dataset, DBLP dataset,
Youtube dataset, LiveJournal dataset and Orkut dataset pro-
vided in the SNAP project for our experiments (Yang and
Leskovec 2015). The statistics of these datasets are shown in
Tab. 1. The network of the Amazon dataset characterizes the
co-purchased products on the Amazon website, with each
node representing a product, and each link indicating that
those two products are frequently co-purchased. The DBLP
network is a collaboration network. The nodes are authors,
and two authors are connected if they have published at least
one paper together. The networks in Youtube dataset, Live-
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Figure 4: The time consumption of our method compared
with the baseline methods in overlapping synthetic net-
works. Each plot is the average consumed time of the rel-
ative methods over 10 repeated runs.

Table 1: Statistics of real world networks. N: number of
nodes, E: number of edges, L: number of labels, S: average
nodes under the labels. M denotes a million and k denotes
one thousand.

Dataset N E L S

Amazon 334,863 925,872 49k 99.86
DBLP 317,080 1,049,866 2.5k 429.79

YouTube 1,134,890 2,987,624 30k 9.75
LiveJournal 3,997,962 34,681,189 310k 40.06

Orkut 3,072,441 117,185,083 8.5M 34.86

Journal dataset and Orkut dataset are all social networks,
with nodes representing users and edges representing friend
relationships among users.

For those real-world networks, the ground truth commu-
nity structures are unknown (Peel, Larremore, and Clauset
2016). Instead, each node is provided with a label. We adopt
purity to evaluate the performances of different methods. Pu-
rity, as a measure to evaluate the results of community de-
tection methods, is defined as

P =
1

K

K∑
i=1

max
1≤j≤L

|Cij |
|Ci| , (11)

where K is the number of detected communities, L is the
number of distinct labels and |Cij | is the number of label j
in community i. Higher purity score indicates better perfor-
mance.

As the number of expected communities, i.e. K, remark-
ably influences the time consumption, we set K = 100 for
three small networks, i.e. Amazon network, DBLP network
and Youtube network, and for the rest two large networks, K
is set to be 10. The time consumption of different methods
is represented in Tab. 2. Our proposed method improves the
speed of Ball’s method by 1 to 2 orders of magnitude, and
runs consistently faster than Gopalan’s method and BIG-
CLAM. The purity scores are presented in Tab. 3. It’s easily
seen that our method achieves comparable performances in

Table 2: Time consumption of different methods on real-
world large scale networks.

Dataset Ball Gopalan BIGCLAM Our

Amazon 396.94 819 365 33.42
DBLP 532.44 374 548 45.93

YouTube 4858.79 1246 5640 527.23
LiveJournal 16283.3 4170 * 1023.04

Orkut 61901.5 19873 * 7538.14

* BIGCLAM fails to find reasonable communities in these
two networks.

Table 3: Purity performances on two real networks.

Dataset Ball Gopalan BIGCLAM Our

Amazon 0.166 0.165 0.51 0.167
DBLP 0.035 0.029 0.088 0.035

YouTube 0.006 0.005 0.0098 0.006
LiveJournal 0.043 0.042 * 0.042

Orkut 0.020 0.022 * 0.024
* BIGCLAM fails to find reasonable communities in these

two networks.

community detection while consuming much less time com-
pared with baseline methods.

Analysis on two acceleration strategies

In this section, we empirically explore the acceleration per-
formance of two level acceleration strategies. Amazon net-
work and DBLP network are utilized for experiments. We
apply proposed two level acceleration strategies, i.e., edge
level acceleration and dimension level acceleration, to Ball’s
method respectively, and evaluate the time consumption
compared with original Ball’s method. The result is shown
in Fig. 5. We can see that the major reduction in time cost
is achieved by edge level acceleration, while the contribu-
tion of dimension level acceleration becomes more signifi-
cant with the increase of K.
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 Ball+Dimension
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Figure 5: The performance of the two level acceleration
strategies. We compare Ball’s method and the two level ac-
celeration strategies applied to Ball’s method respectively
with our method. The community number K varies from
100 to 700. Each histogram represents the average time con-
sumption over 5 repeating rounds of the network under the
community number K.
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We further validate proposed acceleration strategies by
recording the number of iterations and the number of edges
to be dealt in each iteration. This experiment is conducted
on Amazon network and DBLP network, with the number
of expected communities being set to be 30 and 100 re-
spectively. The results are shown in Fig. 6. Compared to the
Ball’s method, the number of edges to be dealt in each itera-
tion drops exponentially, demonstrating the effectiveness of
edge level acceleration strategy. Moreover, the exponential
decrease in edges results in a much less number of iterations
needed for convergence, which further improves the speed
of the algorithm.

Related work

In this section, we briefly review related works, including
community detection methods based on network partition
and latent factor models for overlapping community detec-
tion.

Community detection based on network partition

Traditional methods for community detection are mostly
based on network partition, taking each component of a par-
tition as a community. Girvan and Newman proposed to find
network partition by iteratively deleting the edges with the
highest edge betweenness (Girvan and Newman 2002). Ros-
vall and Bergstrom detected communities by looking for a
partition that minimizes the expected description length of
a random walk (Rosvall and Bergstrom 2008). For com-
munity detection methods based on network partition, the
key is how to evaluate the quality of a network parti-
tion. The most widely-used criterion is modularity (New-
man and Girvan 2004), which is defined as the difference
between the fraction of edges within communities and the
expected fraction of edges within communities when all
edges are randomly placed. Many methods are proposed to
find communities through modularity optimization, such as
simulated annealing, greedy algorithm, and spectral opti-
mization (Newman and Girvan 2004; Blondel et al. 2008;
Newman 2013).

Latent factor models for overlapping community
detection

Latent factor models are used as principled and effective
methods for community detection. Typical methods include:
(1) mixed membership block models (Airoldi et al. 2008;
Ball, Karrer, and Newman 2011; Gopalan and Blei 2013),
and (2) non-negative matrix factorization methods and its
variants (Ding, He, and Simon 2005; Choi 2008; Ding et
al. 2006; Yuan and Oja 2005; Ren et al. 2009; Yang and
Leskovec 2013; Jin et al. 2013). Mixed membership block
models follow a probabilistic framework, where the link
probability between nodes is fully determined by their rep-
resentation. The representation of each node is defined as
a multinomial distribution over communities. Such a nor-
malization constraint on node representation indicates that a
higher probability of membership to one community implies
a lower probability of membership to other communities.
Consequently, these models are inappropriate for modeling
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Figure 6: The performance of our method and Ball’s method
in the number of edges to be dealt during each iteration. We
use a log-linear plot to demonstrate the change of edges. The
horizontal axis is the iteration step and the vertical axis is the
number of edges.

the mixed membership of nodes (Kim and Leskovec 2012).
Non-negative matrix factorization methods take each node
as a dimension of network, and regard the task of commu-
nity detection as finding a low-dimensional representation
of network. However, they don’t guarantee that the obtained
representation corresponds to communities, thus requiring
some heuristic constraint to improve their interpretability.

Conclusion

In this paper, we propose to accelerate a well-performed and
principled model, i.e., Poisson model, to offer an off-the-
shelf method for overlapping community detection in mas-
sive networks. The acceleration strategy works in two levels:
the edge level and the dimension level. Edge level acceler-
ation keeps removing edges with both end nodes’ represen-
tations being converged, and dimension level acceleration
takes advantage of the sparsity in representation by keep-
ing track of only non-zero entries in a node’s representation.
Experiment results demonstrate that the proposed strategies
speedup the community detection method based on Poisson
model by 1 to 2 orders of magnitudes, while achieving com-
parable accuracy at community detection.

Acknowledgments

This work was funded by the National Basic Research
Program of China (973 Program) under grant numbers
2013CB329606 and 2014CB340401, and the National
Natural Science Foundation of China under grant numbers
61472400, 61425016, 61433014 and 61602439.
Huawei Shen is also funded by K.C.Wong Education
Foundation, and the Youth Innovation Promotion Associa-
tion CAS.

References

Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; and Xing, E. P.
2008. Mixed membership stochastic blockmodels. Journal
of Machine Learning Research 9(Sep):1981–2014.

424



Ball, B.; Karrer, B.; and Newman, M. E. 2011. Efficient and
principled method for detecting communities in networks.
Physical Review E 84(3):036103.
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefeb-
vre, E. 2008. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experi-
ment 2008(10):P10008.
Cheng, X.-Q.; Ren, F.-X.; Shen, H.-W.; Zhang, Z.-K.; and
Zhou, T. 2010. Bridgeness: a local index on edge signifi-
cance in maintaining global connectivity. Journal of Statis-
tical Mechanics: Theory and Experiment 2010(10):P10011.
Choi, S. 2008. Algorithms for orthogonal nonneg-
ative matrix factorization. In Neural Networks, 2008.
IJCNN 2008.(IEEE World Congress on Computational In-
telligence). IEEE International Joint Conference on, 1828–
1832. IEEE.
Ding, C.; Li, T.; Peng, W.; and Park, H. 2006. Orthog-
onal nonnegative matrix t-factorizations for clustering. In
Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 126–135.
ACM.
Ding, C.; He, X.; and Simon, H. D. 2005. On the equiva-
lence of nonnegative matrix factorization and spectral clus-
tering. In Proceedings of the 2005 SIAM International Con-
ference on Data Mining, 606–610. SIAM.
Fortunato, S. 2010. Community detection in graphs. Physics
reports 486(3):75–174.
Girvan, M., and Newman, M. E. 2002. Community struc-
ture in social and biological networks. Proceedings of the
national academy of sciences 99(12):7821–7826.
Gopalan, P. K., and Blei, D. M. 2013. Efficient discovery of
overlapping communities in massive networks. Proceedings
of the National Academy of Sciences 110(36):14534–14539.
Jin, D.; He, D.; Hu, Q.; Baquero, C.; and Yang, B. 2013. Ex-
tending a configuration model to find communities in com-
plex networks. Journal of Statistical Mechanics: Theory and
Experiment 2013(09):P09013.
Karrer, B., and Newman, M. E. 2011. Stochastic blockmod-
els and community structure in networks. Physical Review
E 83(1):016107.
Kim, M., and Leskovec, J. 2012. Latent multi-group mem-
bership graph model. arXiv preprint arXiv:1205.4546.
Lancichinetti, A., and Fortunato, S. 2009. Benchmarks
for testing community detection algorithms on directed and
weighted graphs with overlapping communities. Physical
Review E 80(1):016118.
Lancichinetti, A.; Fortunato, S.; and Radicchi, F. 2008.
Benchmark graphs for testing community detection algo-
rithms. Physical review E 78(4):046110.
Latouche, P.; Birmele, E.; and Ambroise, C. 2012.
Variational bayesian inference and complexity control for
stochastic block models. Statistical Modelling 12(1):93–
115.
Lee, D. D., and Seung, H. S. 1999. Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755):788–791.

Newman, M. E., and Girvan, M. 2004. Finding and evalu-
ating community structure in networks. Physical review E
69(2):026113.
Newman, M. E., and Leicht, E. A. 2007. Mixture models
and exploratory analysis in networks. Proceedings of the
National Academy of Sciences 104(23):9564–9569.
Newman, M. E., and Peixoto, T. P. 2015. General-
ized communities in networks. Physical review letters
115(8):088701.
Newman, M. E. 2006. Finding community structure in net-
works using the eigenvectors of matrices. Physical review E
74(3):036104.
Newman, M. E. 2013. Spectral methods for commu-
nity detection and graph partitioning. Physical Review E
88(4):042822.
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