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Abstract

Network embedding has recently attracted lots of attentions
in data mining. Existing network embedding methods mainly
focus on networks with pairwise relationships. In real world,
however, the relationships among data points could go be-
yond pairwise, i.e., three or more objects are involved in
each relationship represented by a hyperedge, thus forming
hyper-networks. These hyper-networks pose great challenges
to existing network embedding methods when the hyperedges
are indecomposable, that is to say, any subset of nodes in
a hyperedge cannot form another hyperedge. These inde-
composable hyperedges are especially common in hetero-
geneous networks. In this paper, we propose a novel Deep
Hyper-Network Embedding (DHNE) model to embed hyper-
networks with indecomposable hyperedges. More specifi-
cally, we theoretically prove that any linear similarity met-
ric in embedding space commonly used in existing meth-
ods cannot maintain the indecomposibility property in hyper-
networks, and thus propose a new deep model to realize
a non-linear tuplewise similarity function while preserving
both local and global proximities in the formed embedding
space. We conduct extensive experiments on four different
types of hyper-networks, including a GPS network, an on-
line social network, a drug network and a semantic network.
The empirical results demonstrate that our method can signif-
icantly and consistently outperform the state-of-the-art algo-
rithms.

Introduction

Nowadays, networks are widely used to represent the rich
relationships of data objects in various domains, forming so-
cial networks, biology networks, brain networks, etc. Many
methods are proposed for network analysis, among which
network embedding methods (Tang et al. 2015; Wang, Cui,
and Zhu 2016; Deng et al. 2016; Ou et al. 2015) arouse
more and more interests in recent years. Most of the existing
network embedding methods are designed for conventional
pairwise networks, where each edge links only a pair of
nodes. However, in real world applications, the relationships
among data objects are much more complicated and they
typically go beyond pairwise. For example, John purchas-
ing a shirt with cotton material forms a high-order relation-
ship 〈John, shirt, cotton〉. The network capturing those high-
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order node relationships is usually referred to as a hyper-
network.

A typical way to analyze hyper-network is to expand them
into conventional pairwise networks and then apply the an-
alytical algorithms developed on pairwise networks. Clique
expansion (Sun, Ji, and Ye 2008) (Figure 1 (c)) and star ex-
pansion (Agarwal, Branson, and Belongie 2006) (Figure 1
(d)) are two representative techniques to achieve such a goal.
In clique expansion, each hyperedge is expanded as a clique.
In star expansion, a hypergraph is transformed into a bipar-
tite graph where each hyperedge is represented by an in-
stance node which links to the original nodes it contains.
These methods assume that the hyperedges are decompos-
able either explicitly or implicitly. That is to say, if we treat
a hyperedge as a set of nodes, then any subset of nodes in
this hyperedge can form another hyperedge. In a homoge-
neous hyper-network, this assumption is reasonable, as the
formation of hyperedges are, in most cases, caused by the la-
tent similarity among the involved objects such as common
labels. However, when learning the heterogeneous hyper-
network embedding, we need to address the following new
requirements.

1. Indecomposablity: The hyperedges in heterogeneous
hyper-networks are usually indecomposable. In this case,
a set of nodes in a hyperedge has a strong relationship,
while the nodes in its subset does not necessarily have a
strong relationship. For example, in the recommendation
system with 〈user, movie, tag〉 relationships, the 〈user,
tag〉 relationships are not typically strong. This means that
we cannot simply decompose hyperedges using those tra-
ditional expansion methods.

2. Structure Preserving: The local structures are preserved
by the observed relationships in network embedding.
However, due to the sparsity of networks, many exist-
ing relationships are not observed. It is not sufficient for
preserving hyper-network structure using only local struc-
tures. And global structures, e.g. the neighborhood struc-
ture, are required to address the sparsity problem. How to
capture and preserve both local and global structures si-
multaneously in a hyper-network is still an unsolved prob-
lem.

To address Indecomposablity issue, we design an inde-
composable tuplewise similarity function. The function is
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Figure 1: (a) An example of a hyper-network. (b) Our
method. (c) The clique expansion. (d) The star expansion.
Our method models the hyperedge as a whole and the tuple-
wise similarity is preserved. In clique expansion, each hy-
peredge is expanded into a clique. Each pair of nodes has
explicit similarity. As for the star expansion, each node in
one hyperedge links to a new node which stands for the ori-
gin hyperedge. Each pair of nodes in the origin hyperedge
has implicit similarity for the reason that they link to the
same node.

directly defined over all the nodes in a hyperedge, ensur-
ing that the subsets of a hyperedge are not incorporated in
network embedding. We theoretically prove that the inde-
composable tuplewise similarity function can not be a lin-
ear function. Therefore, we realize the tuplewise similarity
function with a deep neural network and add a non-linear
activation function to make it highly non-linear. To address
Structure Preserving issue, we design a deep autoencoder
to learn node representations by reconstructing neighbor-
hood structures, ensuring that the nodes with similar neigh-
borhood structures will have similar embeddings. The tu-
plewise similarity function and deep autoencoder are jointly
optimized to simultaneously address the two issues.

It is worthwhile to highlight the following contributions
of this paper:

• We investigate the problem of indecomposable hyper-
network embedding, where indecomposibility of hyper-
edges is a common property in hyper-networks but largely
ignored in literature. We propose a novel deep model,
named Deep Hyper-Network Embedding (DHNE), to
learn embeddings for the nodes in heterogeneous hyper-
networks, which can simultaneously address indecompos-
able hyperedges while preserving rich structural informa-
tion. The complexity of this method is linear to the num-
ber of node and it can be used in large scale networks

• We theoretically prove that any linear similarity metric
in embedding space cannot maintain the indecomposibil-
ity property in hyper-networks, and thus propose a novel
deep model to simultaneously maintain the indecomposi-
bility as well as the local and global structural information
in hyper-networks.

• We conduct experiments on four real-world information
networks. The results demonstrate the effectiveness and
efficiency of the proposed model.

The remainder of this paper is organized as follows. In the

next section, we review the related work. Section 3 gives the
preliminaries and formally defines our problem. In Section
4, we introduce the proposed model in details. Experimental
results are presented in section 5. Finally, we conclude in
Section 6.

Related work

Our work is related to network embedding which aims to
learn low-dimension representations for networks. Earlier
works, such as Local Linear Embedding (LLE) (Roweis and
Saul 2000), Laplacian eigenmaps (Belkin and Niyogi 2001)
and IsoMap (Tenenbaum, De Silva, and Langford 2000), are
based on matrix factorization. They express a network as
a matrix where the entries represent relationships and cal-
culate the leading eigenvectors as network representations.
Eigendecomposition is a very expensive operation so these
methods cannot efficiently scale to large real world net-
works. Recently, DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) learns latent representations of nodes in a network by
modeling a stream of short random walks. LINE (Tang et
al. 2015) optimizes an objective function which aims to pre-
serve both the first-order and second-order proximities of
networks. HOPE (Ou et al. 2016) extends the work to utilize
higher-order information and M-NMF (Wang et al. 2017)
incorporates the community structure into network embed-
ding. Furthermore, due to the powerful representation abil-
ity of deep learning (Niepert, Ahmed, and Kutzkov 2016),
several network embedding methods based on deep learn-
ing (Chang et al. 2015; Wang, Cui, and Zhu 2016) have
been proposed. (Wang, Cui, and Zhu 2016) proposes a deep
model with a semi-supervised architecture, which simulta-
neously optimizes the first-order and second-order proxim-
ity. (Chang et al. 2015) employs deep model to transfer dif-
ferent objects in heterogeneous networks to unified vector
representations.

However, all of the above methods assume pairwise rela-
tionships among objects in real world networks. In view of
the aforementioned facts, a series of methods (Zhou, Huang,
and Schölkopf 2006; Liu et al. 2013; Wu, Han, and Zhuang
2010) is proposed by generalizing spectral clustering tech-
niques (Ng et al. 2001) to hypergraphs. Nevertheless, these
methods focus on homogeneous hypergraph. They construct
hyperedge by latent similarity like common label and pre-
serve hyperedge implicitly. Therefore, they cannot preserve
the structure of indecomposable hyperedges. For heteroge-
neous hyper-network, the tensor decomposition (Kolda and
Bader 2009; Rendle and Schmidt-Thieme 2010; Symeonidis
2016) may be directly applied to learn the embedding. Un-
fortunately, the time cost of tensor decomposition is usually
very expensive so it cannot scale efficiently to large network.
Besides, HyperEdge Based Embedding (HEBE) (Gui et al.
2016) is proposed to model the proximity among partici-
pating objects in each heterogeneous event as a hyperedge
based on prediction. It does not take high-order network
structure and high degree of sparsity into account which af-
fects the predictive performance in our task.
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Table 1: Notations.

Symbols Meaning

T number of node types
V = {Vt}Tt=1 node set

E = {(v1, v2, ..., vni
)} hyperedge set

A adjacency matrix of hyper-network
Xj

i embedding of node i with type j
S(X1,X2, ...,XN ) N -tuplewise similarity function

W
(i)
j the i-th layer weight matrix with type j

b
(i)
j the i-th layer biases with type j

Notations and Definitions

In this section, we define the problem of hyper-network em-
bedding. The key notations used in this paper are shown in
Table 1. First we give the definition of a hyper-network.

Definition 1 (Hyper-network). A hyper-network is defined
as a hypergraph G = (V,E) with the set of nodes V be-
longing to T types V = {Vt}Tt=1 and the set of edges
E which may have more than two nodes E = {Ei =
(v1, v2, ..., vni

)}(ni ≥ 2). If the number of nodes is 2 for
each hyperedge, the hyper-network degenerates to a net-
work. The type of edge Ei is defined as the combination of
types of nodes belonging to the edge. If T ≥ 2, the hyper-
network is defined as a heterogeneous hyper-network.

To obtain the embeddings in a hyper-network, the inde-
composable tuplewise relationships need be preserved. We
define the indecomposable structures as the first-order prox-
imity of hyper-network:

Definition 2 (The First-order Proximity of Hyper-network).
The first-order proximity of hyper-network measures the
N-tuplewise similarity between nodes. For any N vertexes
v1, v2, ..., vN , if there exists a hyperedge among these N
vertexes, the first-order proximity of these N vertexes is de-
fined as 1, but this implies no first-order proximity for any
subsets of these N vertexes.

The first-order proximity implies the indecomposable
similarity of several entities in real world. Meanwhile, real
world networks are always incomplete and sparse. Only con-
sidering first-order proximity is not sufficient for learning
node embeddings. Higher order proximity needs to be con-
sidered to fix this issue. We then introduce the second-order
proximity of hyper-network to capture the global structure.

Definition 3 (The Second-order Proximity of Hyper-net-
work). The second-order Proximity of hyper-network mea-
sures the proximity of two nodes with respect to their
neighborhood structures. For any node vi ∈ Ei, Ei/vi
is defined as a neighborhood of vi. If vi’s neighborhoods
{Ei/vi for any vi ∈ Ei} are similar to vj’s, then vi’s em-
bedding xi should be similar to vj’s embedding xj .

For example, in Figure 1(a), A1’s neighborhoods set is
{(L2,U1), (L1,U2)}. A1 and A2 have second-order similar-
ity since they have common neighborhood, (L1,U2).

Figure 2: Framework of Deep Hyper-Network Embedding.

Deep Hyper-Network Embedding

In this section, we introduce the proposed Deep Hyper-
Network Embedding (DHNE). The framework is shown in
Figure 2.

Loss function

To preserve the first-order proximity of a hyper-network, an
N -tuplewise similarity measure in embedding space is re-
quired. If there exists a hyperedge among N vertexes, the
N -tuplewise similarity of these vertexes should be large, and
small otherwise.
Property 1. We mark Xi as the embedding of node vi and
S as N -tuplewise similarity function.
• if (v1, v2, ..., vN ) ∈ E, S(X1,X2, ..,XN ) should be

large (without loss of generality, large than a threshold
l).

• if (v1, v2, ..., vN ) /∈ E, S(X1,X2, ..,XN ) should be
small (without loss of generality, smaller than a thresh-
old s).
In our model, we propose a data-dependent N -tuplewise

similarity function. In this paper, we mainly focus on hyper-
edges with uniform length N = 3, but it is easy to extend to
N > 3.

Here we provide the theorem to demonstrate that a linear
tuplewise similarity function cannot satisfy Property 1.
Theorem 1. Linear function S(X1,X2, ...,XN ) =∑

i WiXi cannot satisfy Property 1.

Proof. To prove it by contradiction, we assume that theo-
rem 1 is false, i.e., the linear function S satisfies Property 1.
We suggest the following counter example. Assume we have
3 types of nodes, and each type of node has 2 clusters (0 and
1). There is a hyperedge if and only if 3 nodes from differ-
ent types have the same cluster id. We use Yj

i to represent
embeddings of nodes with type j in cluster i. By Property 1,
we have

W1Y
1
0 +W2Y

2
0 +W3Y

3
0 > l (1)

W1Y
1
1 +W2Y

2
0 +W3Y

3
0 < s (2)

W1Y
1
1 +W2Y

2
1 +W3Y

3
1 > l (3)

W1Y
0
1 +W2Y

2
1 +W3Y

3
1 < s. (4)
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By combining Equation (1)(2)(3)(4), we get W1 ∗ (Y1
0 −

Y1
1) > l − s and W1 ∗ (Y1

1 − Y1
0) > l − s, which is a

contradiction.
This completes the proof.

Above theorem shows that N-tuplewise similarity func-
tion S should be in a non-linear form. This motivates us to
model it by a multilayer perceptron. The multilayer percep-
tron is composed of two parts, which are shown separately
in the second layer and third layer of Figure 2. The second
layer is a fully connected layer with non-linear activation
functions. With the input of the embeddings (Xa

i ,X
b
j ,X

c
k)

of 3 nodes (vi, vj , vk), we concatenate them and map them
non-linearly to a common latent space L. Their joint repre-
sentation in latent space is shown as follows:

Lijk = σ(W(2)
a ∗Xa

i+W
(2)
b ∗Xb

j+W(2)
c ∗Xc

k+b(2)), (5)

where σ is the sigmoid function.
After obtaining the latent representation Lijk, we finally

map it to a probability space in the third layer to get the
similarity:

Sijk ≡ S(Xa
i ,X

b
j ,X

c
k) = σ(W(3) ∗ Lijk + b(3)). (6)

Combining the aforementioned two layers, we obtain a
non-linear tuplewise similarity measure function S . In or-
der to make this similarity function satisfy Property 1, we
present the objective function as follows:

L1 = −(Rijk logSijk + (1−Rijk) log(1− Sijk)), (7)

where Rijk is defined as 1 if there is a hyperedge between
vi, vj and vk and 0 otherwise. From the objective function,
it is easy to check that if Rijk equals to 1, the similarity
Sijk should be large, and otherwise the similarity should be
small. In other words, the first-order proximity is preserved.

Next, we consider to preserve the second-order proxim-
ity. The first layer of Figure 2 is designed to preserve the
second-order proximity. Second-order proximity measures
neighborhood structure similarity. Here, we define the adja-
cency matrix of hyper-network to capture the neighborhood
structure. First, we give some basic definitions of hyper-
graph. For a hypergraph G = (V,E), a |V| ∗ |E| incidence
matrix H with entries h(v, e) = 1 if v ∈ e and 0 otherwise,
is defined to represent the hypergraph. For a vertex v ∈ V,
the degree of vertex is defined by d(v) =

∑
e∈E h(v, e). Let

Dv denote the diagonal matrix containing the vertex degree.
Then the adjacency matrix A of hypergraph G can be de-
fined as A = HHT − Dv , where HT is the transpose of
H. The entries of adjacency matrix A denote the concurrent
times between two nodes, and the i-th row of adjacency ma-
trix A shows the neighborhood structure of vertex vi. We
use an adjacency matrix A as our input feature and an au-
toencoder (LeCun, Bengio, and Hinton 2015) as the model
to preserve the neighborhood structure. The autoencoder is
composed by an encoder and a decoder. The encoder is a
non-linear mapping from feature space A to latent represen-
tation space X and the decoder is a non-linear mapping from

latent representation X space back to origin feature space Â,
which is shown as follows:

Xi = σ(W(1) ∗Ai + b(1)) (8)

Âi = σ(Ŵ(1) ∗Xi + b̂(1)). (9)

The goal of autoencoder is to minimize the reconstruc-
tion error between the input and the output. The autoen-
coder’s reconstruction process will make the nodes with
similar neighborhoods have similar latent representations,
and thus the second-order proximity is preserved. It is note-
worthy that the input feature is the adjacency matrix of the
hyper-network, and the adjacency matrix is often extremely
sparse. To speed up our model, we only reconstruct non-zero
element in the adjacency matrix. The reconstruction error is
shown as follows:

||sign(Ai)� (Ai − Âi)||2F , (10)

where sign is the sign function.
Furthermore, in hyper-networks, the vertexes often have

various types, forming heterogeneous hyper-networks. Con-
sidering the special characteristics of different types of
nodes, it is required to learn unique latent spaces for dif-
ferent node types. In our model, each heterogeneous type of
entities have their own autoencoder model as shown in Fig-
ure 2. Then for all types of nodes, the loss function is defined
as:

L2 =
∑

t

||sign(At
i)� (At

i − Ât
i)||2F , (11)

where t is the index for node types.
To preserve both first-order proximity and second-order

proximity of heterogeneous hyper-networks, we jointly min-
imize the objective function by combining Equation 7 and
Equation 11:

L = L1 + αL2. (12)

Optimization

We use stochastic gradient descent (SGD) to optimize the
model. The key step is to calculate the partial deriva-
tive of the parameters θ = {W(i),b(i),Ŵ(i), b̂(i)}3i=1.
These derivatives can be easily estimated by using back-
propagation algorithm (LeCun, Bengio, and Hinton 2015).
Notice that there is only positive relationship in most real
world network, so this algorithm may converge to a trivial
solution where all tuplewise relationships are similar. To ad-
dress this problem, we sample multiple negative edges based
on noisy distribution for each edge, as in (Mikolov et al.
2013). The whole algorithm is shown in Algorithm 1.

Analysis

In this section, we present the out-of-sample extension and
complexity analysis.
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Algorithm 1 The Deep Hyper-Network Embedding
(DHNE)

Require: the hyper-network G = (V,E) with adjacency
matrix A, the parameter α

Ensure: Hyper-network Embeddings E and updated Pa-
rameters θ = {W(i),b(i),Ŵ(i), b̂(i)}3i=1

1: initial parameters θ by random process
2: while the value of objective function do not converge

do
3: generate next batch from the hyperedge set E
4: sample negative hyperedge randomly
5: calculate partial derivative ∂L/∂θ with back-

propagation algorithm to update θ.
6: end while

Out-of-sample extension For a newly arrived vertex v, we
can easily obtain its adjacency vector by its connections to
existing vertexes. We feed its adjacency vector into the spe-
cific autoencoder corresponding to its type, and apply Equa-
tion 8 to get representation for vertex v. The complexity for
such steps is O(dvd), where dv is the degree of vertex v and
d is the dimensionality of the embedding space..

Complexity analysis During the training procedure, the
time complexity of calculating gradients and updating pa-
rameters is O((nd + dl + l)bI), where n is the number of
nodes, d is the dimension of embedding vectors, l is the size
of latent layer, b is the batch size and I is the number of it-
erations. Parameter l is usually related to the dimension of
embedding vectors d but independent with the number of
vertexes n. The batch size is normally a small number. The
number of iterations is also not related with the number of
vertexes n. Therefore, the complexity of training procedure
is linear to the number of vertexes.

Experiment

In this section, we evaluate our proposed method on several
real world datasets and multiple application scenarios.

Datasets

In order to comprehensively evaluate the effectiveness of our
proposed method, we use four different types of datasets,
including a GPS network, a social network, a medicine net-
work and a semantic network. The detailed information is
shown as follows.

• GPS (Zheng et al. 2010): The dataset describes a user
joins in an activity in certain location. The (user, loca-
tion, activity) relations are used for building the hyper-
network.

• MovieLens (Harper and Konstan 2016): This dataset de-
scribes personal tagging activity from MovieLens1. Each
movie is labeled by at least one genres. The (user, movie,
tag) relations are considered as the hyperedges to form a
hyper-network.

1https://movielens.org/

Table 2: Statistics of the datasets.

datasets node type #(V) #(E)

GPS user location activity 146 70 5 1436
MovieLens user movie tag 2113 5908 9079 47957

drug user drug reaction 12 1076 6398 171756
wordnet head relation tail 40504 18 40551 145966

• drug2: This dataset is obtained from FDA Adverse Event
Reporting System (FAERS). It contains information on
adverse event and medication error reports submitted to
FDA. We construct hyper-network by (user, drug, reac-
tion) relationships, i.e., a user who has certain reaction
and takes some drugs will lead to adverse event.

• wordnet (Bordes et al. 2013): This dataset consists of a
collection of triplets (synset, relation type, synset) ex-
tracted from WordNet 3.0. We can construct the hyper-
network by regarding head entity, relation, tail entity as
three types of nodes and the triplet relationships as hyper-
edges.

The detailed statistics of the datasets are summarized in Ta-
ble 2.

Parameter Settings

We compared DHNE against the following six widely-used
algorithms: DeepWalk (Perozzi, Al-Rfou, and Skiena 2014),
LINE (Tang et al. 2015), node2vec (Grover and Leskovec
2016), Spectral Hypergraph Embedding (SHE) (Zhou,
Huang, and Schölkopf 2006), Tensor decomposition (Kolda
and Bader 2009) and HyperEdge Based Embedding
(HEBE) (Gui et al. 2016).

In summary, DeepWalk, LINE and node2vec are conven-
tional pairwise network embedding methods. In our experi-
ment, we use clique expansion in Figure 1(c) to transform a
hyper-network in a conventional network, and then use these
three methods to learn node embeddings from the conven-
tional networks. SHE is designed for homogeneous hyper-
network embeddings. Tensor method is a direct way for
preserving high-order relationship in heterogeneous hyper-
network. HEBE learns node embeddings for heterogeneous
event data. Note that DeepWalk, LINE , node2vec and SHE
can only measure pairwise relationship. In order to make
them applicable to network reconstruction and link predic-
tion in hyper-networks, without loss of generality, we use
the mean or minimum value among all pairwise similarities
in a candidate hyperedge to represent the tuplewise similar-
ity of the hyperedge. For DeepWalk and node2vec, we set
window size as 10, walk length as 40, walks per vertex as
10. For LINE, we set the number of negative samples as 5.

We uniformly set the representation size as 64 for all
methods. Specifically, for DeepWalk and node2vec, we set
window size as 10, walk length as 40, walks per vertex as
10. For LINE, we set the number of negative samples as 5.

For our model, we use one-layer autoencoder to preserve
hyper-network structure and one-layer fully connected layer
to learn tuplewise similarity function. The size of hidden

2http://www.fda.gov/Drugs/
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Table 3: AUC value for network reconstruction.

methods GPS MovieLens drug wordnet

DHNE 0.9598 0.9344 0.9356 0.9073

mean

deepwalk 0.6714 0.8233 0.5750 0.8176
line 0.8058 0.8431 0.6908 0.8365

node2vec 0.6715 0.9142 0.6694 0.8609
SHE 0.8596 0.7530 0.5486 0.5618

min
deepwalk 0.6034 0.7117 0.5321 0.7423

line 0.7369 0.7910 0.7625 0.7751
node2vec 0.6578 0.9100 0.6557 0.8387

SHE 0.7981 0.7972 0.6236 0.5918

tensor 0.9229 0.8640 0.7025 0.7771
HEBE 0.9337 0.8772 0.8236 0.7391

layer of autoencoder is set as 64 which is also the repre-
sentation size. The size of fully connect layer is set as sum
of the embedding length from all types, 192. We do grid
search from {0.01, 0.1, 1, 2, 5, 10} to tune the parameter α
which is shown in Parameter Sensitivity section. Similar to
LINE (Tang et al. 2015), the learning rate is set with the
starting value ρ0 = 0.025 and decreased linearly with the
times of iterations.

Network Reconstruction

A good network embedding method should preserve the
original network structure well in the embedding space.
We first evaluate our proposed algorithm on network re-
construction task. We use the learned embeddings to pre-
dict the links of origin networks. The AUC (Area Under the
Curve) (Fawcett 2006) is used as the evaluation metric. The
results are show in Table 3.

From the results, we have the following observations:

• Our method achieves significant improvements on AUC
values over the baselines on all four datasets. It demon-
strates that our method is able to preserve the origin net-
work structure well.

• Compared with the baselines, our method achieves higher
improvements in sparse drug and wordnet datasets than
those on GPS and MovieLens datasets. It indicates the ro-
bustness of proposed methods on sparse datasets.

• The results of DHNE perform better than DeepWalk,
LINE and SHE which assume that high-order rela-
tionships are decomposable. It demonstrates the impor-
tance of preserving indecomposable hyperedge in hyper-
network.

Link Prediction

Link prediction is a widely-used application in real world
especially in recommendation systems. In this section, we
fulfil two link prediction tasks on all the four datasets. The
two tasks evaluate the overall performance and the perfor-
mance with different sparsity of the networks, respectively.
We calculate AUC value as in network reconstruction task
to evaluate the performance.
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Figure 3: left: ROC curve on GPS; right: Performance for
link prediction on networks of different sparsity.

For the first task, we randomly hide 20 percentage of ex-
isting edges and use the left network to train hyper-network
embedding models. After training, we obtain embedding for
each node and similarity function for N nodes and apply the
similarity function to predict the held-out links. For GPS
dataset which is a small and dense dataset, we can draw
ROC curve for this task to observe the performance at vari-
ous threshold settings, as shown in Figure 3 left. The AUC
results on all datasets are shown in Table 4. The observations
are illustrated as follows:

• Our method achieves significant improvements over the
baselines on all the datasets. It demonstrates the learned
embeddings of our method have strong predictive power
for unseen links.

• By comparing the performance of LINE, DeepWalk, SHE
and DHNE, we can observe that transforming the in-
decomposable high-order relationship into multiple pair-
wise relationship will damage the predictive power of the
learned embeddings.

• As Tensor and HEBE can somewhat address the indecom-
posibility of hyperedges, the large improvement margin of
our method over these two methods clearly demonstrates
the importance of second-order proximities in hyper-
network embedding.

For the second task, we change the sparsity of network by
randomly hiding different ratios of existing edges and repeat
the previous task. Particularly, we conduct this task on the
drug dataset as it has the most hyperedges. The ratio of re-
mained edges is selected from 10% to 90%. The results are
shown in Figure 3 right.

We can observe that DHNE has a significant improve-
ments over the best baselines on all sparsity of networks.
It demonstrates the effectiveness of DHNE on sparse net-
works.

Classification

In this section, we conduct multi-label classification (Bha-
tia et al. 2015) on MovieLens dataset and multi-class clas-
sification in wordnet, because only these two datasets have
label or category information. After deriving the node em-
beddings from different methods, we choose SVM as the
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Table 4: AUC value for link prediction.

methods GPS MovieLens drug wordnet

DHNE 0.9166 0.8676 0.9254 0.8268

mean

deepwalk 0.6593 0.7151 0.5822 0.5952
line 0.7795 0.7170 0.7057 0.6819

node2vec 0.5835 0.8211 0.6573 0.8003
SHE 0.8687 0.7459 0.5899 0.5426

min

deepwalk 0.5715 0.6307 0.5493 0.5542
line 0.7219 0.6265 0.7651 0.6225

node2vec 0.5869 0.7675 0.6546 0.7985
SHE 0.8078 0.8012 0.6508 0.5507

tensor 0.8646 0.7201 0.6470 0.6516
HEBE 0.8355 0.7740 0.8191 0.6364
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Figure 4: top: multi-label classification on MovieLens
dataset; bottom: multi-class classification on wordnet
dataset.

classifier. For MovieLens dataset, we randomly sample 10%
to 90% of the vertexes as the training samples and use the
left vertexes to test the performance. For wordnet dataset, the
portion of training data is selected from 1% to 10%. Besides,
we remove the nodes without labels on these two datasets.
Averaged Macro-F1 and Micro-F1 are used to evaluate the
performance. The results are shown in Figure 4.

From the results, we have following observations:

• In both Micro-F1 and Macro-F1 curves, our method per-
forms consistently better than baselines. It demonstrates
the effectiveness of our proposed method in classification
tasks.

• When the labelled data becomes richer, the relative im-
provement of our method is more obvious than baselines.
Besides, as shown in Figure 4 bottom, when the labeled
data is quite sparse, our method still outperforms the base-
lines. This demonstrates the robustness of our method.
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Figure 5: left, middle: Parameter w.r.t. embedding dimen-
sions d, the value of α; right: training time per batch w.r.t.
embedding dimensions.

Parameter Sensitivity

In this section, we investigate how parameters influence the
performance and training time. Especially, we evaluate the
effect of the ratio of first-order proximity loss and second-
order proximity loss α and the embedding dimension d. For
brevity, we report the results by link prediction task with
drug dataset.

Effect of embedding dimension We show how the di-
mension of embedding space affects the performance in Fig-
ure 5 left. We can see that the performance raises firstly
when the number of embedding dimension increases. This is
reasonable because higher embedding dimensions can em-
body more information of a hyper-network. After the em-
bedding dimension is larger than 32, the curve is relatively
stable, demonstrating that our algorithm is not very sensitive
to embedding dimension.

Effect of parameter α The parameter α measures the
trade-off of the first-order proximity and second-order prox-
imity of a hyper-network. We show how the values of α af-
fect the performance in Figure 5 middle. When α equals 0,
only the first-order proximity is taken into account in our
method. The performance with α between 0.1 and 2 is bet-
ter than that of α = 0, demonstrating the importance of
second-order proximity. The fact that the performance with
α between 0.1 and 2 is better than that of α = 5 can demon-
strate the importance of the first-order proximity. In sum-
mary, both the first-order proximity and the second-order
proximity are necessary for hyper-network embedding.

Training time analysis To testify the scalability, we test
training time per batch, as shown in Figure 5 right. We can
observe that the training time scales linearly with the num-
ber of nodes. This results conform to the above complexity
analysis and indicate the scalability of our model.

Conclusion

In this paper, we propose a novel deep model named DHNE
to learn the low-dimensional representation for hyper-
networks with indecomposible hyperedges. More specifi-
cally, we theoretically prove that any linear similarity met-
ric in embedding space commonly used in existing methods
cannot maintain the indecomposibility property in hyper-
networks, and thus propose a new deep model to realize
a non-linear tuplewise similarity function while preserving
both local and global proximities in the formed embedding
space. We conduct extensive experiments on four different
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types of hyper-networks, including a GPS network, an on-
line social network, a drug network and a semantic network.
The empirical results demonstrate that our method can sig-
nificantly and consistently outperform the state-of-the-art al-
gorithms.
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