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Abstract

Affective image understanding has been extensively studied
in the last decade since more and more users express emotion
via visual contents. While current algorithms based on con-
volutional neural networks aim to distinguish emotional cate-
gories in a discrete label space, the task is inherently ambigu-
ous. This is mainly because emotional labels with the same
polarity (i.e., positive or negative) are highly related, which is
different from concrete object concepts such as cat, dog and
bird. To the best of our knowledge, few methods focus on
leveraging such characteristic of emotions for affective image
understanding. In this work, we address the problem of under-
standing affective images via deep metric learning and pro-
pose a multi-task deep framework to optimize both retrieval
and classification goals. We propose the sentiment constraints
adapted from the triplet constraints, which are able to ex-
plore the hierarchical relation of emotion labels. We further
exploit the sentiment vector as an effective representation to
distinguish affective images utilizing the texture representa-
tion derived from convolutional layers. Extensive evaluations
on four widely-used affective datasets, i.e., Flickr and Insta-
gram, IAPSa, Art Photo, and Abstract Paintings, demonstrate
that the proposed algorithm performs favorably against the
state-of-the-art methods on both affective image retrieval and
classification tasks.

Introduction

Psychological studies have demonstrated that visual con-
tents (e.g., images and videos) can evoke a variety of emo-
tional responses for human observers (Detenber, Simons,
and Bennett Jr. 1998). As such, it is intriguing and impor-
tant to understand the emotion of a given image due to its
broad potential applications including emotion semantic im-
age retrieval (ESIR) (Wang and He 2008), aesthetic quality
categorization (Lu et al. 2014), and opinion mining (Qian,
Zhang, and Xu 2016; Zhao et al. 2016), to name a few.

Numerous methods have been developed for classify-
ing (Machajdik and Hanbury 2010; Zhao et al. 2014a) and
retrieving (Zhang et al. 2013; Zhao et al. 2014b) affective
images, where the main focus is to extract low-level fea-
tures (e.g., texture, color and composition) that can well
represent the evoked emotion from visual contents. Instead
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Figure 1: Examples from the Flickr and Instagram dataset
where different colors indicate different sentiments. The
Mikels’ emotion wheel suggests that pairwise emotion cor-
relation can be defined as the reciprocal of the corresponding
distance. Clearly the emotion labels with the same polarity
(i.e., positive emotions in the top row, or negative emotions
in the bottom row) are highly related.

of designing visual features manually, convolutional neu-
ral networks (CNNs) provide end-to-end feature learning
frameworks. Several CNN-based methods for affective im-
age classification demonstrate the effectiveness of deep rep-
resentations over hand-crafted features (You et al. 2016;
Yang, She, and Sun 2017).

However, compared to conventional vision tasks (e.g., ob-
ject recognition), affective image understanding is inher-
ently ambiguous due to the following two challenges,
namely subjectivity and complexity of emotions. First, the
emotions are not semantically independent of each other,
which is drastically different from concrete object concepts
(e.g., cat, dog and bird). Figure 1 shows that there exists a
clear hierarchical relation that the emotions with the same
polarity (e.g., both positive or negative) are highly related.
Moreover, the correlation between emotions with the same
polarity can be defined by the reciprocal of pairwise distance
in Mikels’ wheel (Mikels et al. 2005), where the neighbor-
ing emotions are more related to each other. However, exist-
ing studies have rarely focused on leveraging the relation of
emotions for affective image understanding since they are
trained in the discrete label space (You et al. 2015). Sec-
ond, most CNN-based methods rely on the feature repre-
sentation ability of CNNs, especially fully-connected lay-
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ers (Xu et al. 2014). There exists an underlying assumption
that the CNN’s features, which are good at distinguishing
high-level semantic contents (e.g., objects), are also good
at distinguishing the image emotion. However, this is not
necessarily true for emotions and it is possible that these
features are insufficient to characterize them. In fact, some
studies reveal that texture information is one of the most im-
portant elements related to visual emotion (Machajdik and
Hanbury 2010; Rao, Xu, and Xu 2016), which is not empha-
sized in recent deep models for affective image understand-
ing.

In this work, we address emotion relations via deep metric
learning (Hoffer and Ailon 2015), which allows incorporat-
ing similarity constraints (e.g., triplets) to learn the feature
embedding. However, compared with classification models
which emphasize the softmax loss, the learned embedding
provides sub-par results when used as features for classi-
fication. To address this, this paper proposes a multi-task
framework to simultaneously optimize the classification and
retrieval tasks by combining the softmax loss and sentiment
loss in the CNN training. Specifically, we present novel sen-
timent constraints by considering the relations among emo-
tional categories demonstrated in the Mikels’ wheel, which
extend triplet constraints to a hierarchical structure. More-
over, inspired by the Gram matrix (Gatys, Ecker, and Bethge
2015), we propose a sentiment vector based on the texture
information from the convolutional layer, which calculates
the correlations between feature responses. Our framework
uses the sentiment vector rather than the fully-connected
feature vector to measure the difference between affective
images, which is more effective for characterizing emotions.

The contributions of this work are summarized as fol-
lows: First, we address the challenges of affective image un-
derstanding via deep metric learning, and propose a unified
framework to simultaneously optimize the retrieval and clas-
sification goals. We propose the sentiment constraint gener-
alized from the triplet constraint to incorporate the relation
of emotional categories to the CNN learning process. Sec-
ond, we propose the sentiment vector to measure the differ-
ence between affective images, which captures the texture
information from multiple convolutional layers. The experi-
mental results on four popular affective datasets (i.e., Flickr
and Instagram, IAPSa, Art Photos and Abstract Paintings)
demonstrate that our proposed framework can effectively re-
trieve similar images based on emotions and also outperform
the state-of-the-art methods for emotion classification.

Related Work
In this section, we review the affective image understand-
ing methods and metric learning algorithms which are most
related to this work.
Affective Image Understanding. Most affective image un-
derstanding methods focus on the classification problem us-
ing hand-crafted features or discriminative representations
from deep learning. Numerous methods based on low-level
features (Yanulevskaya et al. 2008) or mid-level representa-
tions (Chen et al. 2014b; Zhao et al. 2017a; 2017b) have
been developed. Recently, the relationship between CNN
features and human emotions has also been demonstrated

on photographs. The DeepSentiBank (Chen et al. 2014a)
method constructs a detector for visual sentiment concept
based on the classification on adjective-noun pairs. This rep-
resentation encodes statistical cues for detecting emotions
depicted in images effectively. Some methods aim to incor-
porate the model weights learned from a large-scale gen-
eral dataset (Deng et al. 2009) and fine-tune the state-of-the-
art CNNs for the task of visual emotion prediction. You et
al. (You et al. 2015) propose a novel progressive CNN ar-
chitecture to utilize large-scale web data, and further per-
form benchmarking analysis on the Flickr and Instagram
dataset (You et al. 2016).

Most existing CNN-based methods for affective image
classification employ the softmax loss to maximize the prob-
ability of the correct class, which fails to consider the re-
lations between different emotional categories since these
models are trained in a discrete label space. Moreover, in
(Zhang et al. 2013), Zhang et al. apply a multiple kernel
learning framework to retrieve and classify affective images,
whereas Zhao et al. (Zhao et al. 2014b) evaluate the perfor-
mance of different features on affective image retrieval in a
multi-graph learning framework. Both models lead to sub-
optimal performance when locating images at the affective
level, since off-the-shelf features are used as input without
end-to-end feature learning. In this work, we propose to in-
corporate the sentiment constraints to the CNN by employ-
ing deep metric learning for both affective image classifica-
tion and retrieval tasks.

Deep Metric Learning. Metric learning has been widely
studied in pattern recognition and image analysis within
the past decades (Bellet, Habrard, and Sebban 2013). Re-
cent methods employ CNNs with either pairwise (con-
trastive) (Chopra, Hadsell, and LeCun 2005) or triplet
constraints (Chechik et al. 2010) to learn feature embed-
dings capturing the semantic similarity among images. Deep
learning methods are verified to perform favorably against
conventional methods based on hand-crafted features. As
such, deep metric learning methods have been successfully
applied to a variety of domains, e.g., face verification (Taig-
man et al. 2014), image retrieval (Wang et al. 2014), and
geo-localization (Lin et al. 2015). Other than using classi-
fication constraints alone, a few schemes incorporate simi-
larity constraints to generate discriminative features (Wang
et al. 2014; Zhang et al. 2016). The most related work
is (Zhang et al. 2016) which jointly optimizes the softmax
and triplet losses for the fine-grained task. Our framework
differs from that paper in two aspects: (1) The relation be-
tween emotional categories is different from that of fine-
grained categories. The fine-grained labels are explicitly dis-
tinguished, while the emotion relations with the same / dif-
ferent polarity are also taken into consideration. (2) Exist-
ing schemes use features from the last few fully connected
layers of CNNs as feature embeddings (You et al. 2016),
while we adopt the sentiment vector utilizing the texture in-
formation from the convolutional layers for better affective
image understanding. Extensive experiments show the ef-
fectiveness of our framework for retrieving and classifying
affective images.
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Figure 2: Illustration of the proposed algorithm. Given the mini-batches containing images with different emotions, we first gen-
erate the sentiment vector to measure the emotional difference with the 1× 1 convolutional layer followed by the inner product
operation. Our framework simultaneously optimizes the classification loss (i.e., softmax) and similarity loss (i.e., sentiment).

Proposed Algorithm
Figure 2 shows the main steps of the proposed algorithm.
Given the mini-batches of affective images, sentiment vec-
tors (SVs) can be generated based on the Gram matrix from
multiple convolutional layers. The sentiment constraint is
then embedded in the training as the sentiment loss to un-
cover the relation of emotions. Then the unified framework
is simultaneously optimized with the softmax loss as well as
the sentiment loss for affective image understanding.

Sentiment Metric Learning

We propose to learn a sentiment metric by comparing image
pairs according to the Euclidean distance D of their texture
representation with unit norm:

D(xi, xj) �→ ‖SVi − SVj‖22 , (1)
where xi and xj denote the different anchor images from the
training set Γ, and SVi and SVj refer to the sentiment vec-
tors computed from the convolutional layers. The distance
between different emotional images is arguably subjective,
but the general relationship is clear and should be well sat-
isfied: images with the same polarity are close to each other
while those of the opposite polarity should be further apart.
Thus, we generalize the triplet constraint to the sentiment
constraint taking emotion relationships into consideration.
Triplet Constraints. Existing algorithms (Schroff,
Kalenichenko, and Philbin 2015) usually generate mini-
batches of triplets, i.e., an anchor ai, a positive instance pi
of the same class, and a negative instance ni of a different
class. The goal is to learn an embedding function that
assigns a smaller distance to more similar image pairs,
which can be expressed as:

D(ai, pi) + α < D(ai, ni), ∀(ai, pi, ni) ⊂ Γ, (2)
where α > 0 is a margin that is enforced between positive
and negative pairs.

Sentiment Constraints. There exists a hierarchical relation
between sentiment labels. For example, Mikels’ eight emo-
tions have four positive and four negative emotions (Mikels
et al. 2005). We ensure that an image ai (anchor) of a spe-
cific emotion is closer to all images pi (positive) of exactly
the same emotion, which is again closer than it is to any
related images ri with emotion of the same polarity, while
images with the opposite polarity ni remain the furthest dis-
tance away. The difference between these two constraints is
illustrated in Figure 3. Formally, a sentiment constraint can
be denoted as{

D∗(ai, pi) + α1 < D∗(ai, ri)
D∗(ai, ri) + α2 < D∗(ai, ni)

, ∀(ai, pi, ri, ni) ⊂ Γ,

(3)
where α1, α2 > 0 control the margins between different sen-
timent labels. For images xi and xj with emotional labels yi
and yj , we define D∗(xi, xj) = θD(xi, xj), θ ∝ 1

dis(yi,yj)
,

where dis(yi, yj) denotes 1 + “the number of steps required
to reach one emotion from another by the Mikels’ wheel”.
With a weak form of prior knowledge, the sentiment con-
straint is able to utilize the natural emotion relation that not
only the emotions can be divided into two polarities, but also
the correlation of the same polar emotion is different. There-
fore, the sentiment metric is learned by minimizing the sen-
timent loss function:

Esml =
N∑
i=1

[D∗(ai, pi)−D∗(ai, ri) + α1]+

+
N∑
i=1

[D∗(ai, ri)−D∗(ai, ni) + α2]+ ,

(4)

where N is the number of training images. [·]+ = max(0, ·)
since we only need to optimize the situation when the senti-
ment constraint is violated.
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Figure 3: Different from the existing triplet constraint (a)
involving anchor, positive and negative samples, our senti-
ment constraint (b) consists of the anchor, positive, related
and negative samples considering the natural polarities of
sentiment labels. Moreover, the correlation between the la-
bels with the same polarity is also considered in (3).

Sentiment Vector for Feature Embedding

To effectively represent image texture, which has been
proven as one of the important low-level visual features re-
lated to image emotion categorization (Machajdik and Han-
bury 2010), we utilize deep representations and propose the
sentiment vector consisting of multiple Gram layers, each of
which computes inner products of filter responses in a con-
volutional layer (Gatys, Ecker, and Bethge 2015).

Specifically, we first feed the image into a CNN and com-
pute the response of each intermediate convolutional layer
l ∈ {1, 2, · · · , L}. Assume that layer l contains Nl filters
and therefore Nl feature maps, with each map of the size of
Wl × Hl. Since a CNN usually has tens of filters or even
more in a layer, there would be thousands of elements in
the Gram matrix which causes heavy computation burden.
To improve the generalization ability of the proposed frame-
work, We employ the 1 × 1 convolutional layer adding the
non-linear activation while shrinking the size of the Gram
matrix. Thus the response in layer l can then be stored in a
matrix F l ∈ R

Ml×N ′
l , where F l

ij is the activation of the jth

filter at position i in the layer l, N ′
l is the number of filters

and Ml = Wl ×Hl. These feature maps can be represented
as a two-dimensional matrix Φl ∈ R

N ′
l×N ′

l . Each element in
the Gram matrix denotes the correlation between each pair
of feature maps, where Φl

ij =
∑Ml

k=1 F
l
kiF

l
kj is the inner

product between the ith and jth vectorized feature maps in
the layer l.

Since the matrix is a symmetrical matrix, the number of
independent elements is N ′

l (N
′
l + 1)/2. We define the sen-

timent vector SV from layer l as

SV l = [Φl
1,1,Φ

l
2,1,Φ

l
2,2, · · · ,Φl

N ′
l ,1

, · · · ,Φl
N ′

l ,N
′
l
]. (5)

The sentiment vectors from multiple convolutional layers
are then concatenated as SV = [SV 1, SV 2, · · · , SV L],
which is then normalized to unit l2 norm to form the sen-
timent vector used in sentiment metric learning.

Multi-Task Framework

In the standard training process, traditional classification
constraints such as the softmax loss are optimized to max-
imize the probability of the correct class. Given a training
set {(x(i), y(i))}Ni=1, here, x(i) is the ith affective image and

y(i) ∈ {1, 2, · · · , C} is the corresponding sentiment label.
Let {h(i)

j |j = 1, 2, · · · , C} be the activation values of unit j
in the last fully connected layer for x(i), then the fine-tuning
of the last layer is done by minimizing the softmax loss:

Ecls = − 1

N

⎡
⎣ N∑

i=1

C∑
j=1

1(y(i) = j) ln p
(i)
j

⎤
⎦ , (6)

where the indicator function 1(δ) = 1 if δ is true, otherwise
0. In addition, p(i)j indicates the probability that the label of

x(i) is j, which is given by p
(i)
j =

exp(h
(i)
j )

∑C
k=1 exp(h

(i)
k )

.

The loss of softmax can be seen as the sum of the nega-
tive log-likelihood over all training images {xi}Ni=1, which
penalizes the classification error for each class equally and
thus ignore the intra-class variance.

Thus, given the sentiment triplets and the labels of images
as input, we explicitly train the deep model to optimize the
classification and similarity constraints. Our loss function is
integrated with two losses via a weighted combination:

E = (1− ω)Ecls + ωEsml, (7)

where Ecls and Esml denote the classification loss and sen-
timent loss, respectively. ω is the weight to control the trade-
off between the two losses.

Experimental Results

To evaluate the effectiveness of our proposed method for af-
fective image understanding, we conduct thorough experi-
ments on the affective datasets. In particular, we demonstrate
that our learned feature embeddings can be used for affective
level image retrieval, with significantly better performance
than the state of the art. Meanwhile, our framework also
achieves promising classification accuracy compared with
several baseline methods.

Datasets

We perform our experiments on four datasets, including
Flickr and Instagram (FI) (You et al. 2016), IAPSa, ArtPhoto
and Abstract Paintings (Machajdik and Hanbury 2010). FI
is collected from social websites by querying with Mikels’
eight emotions as keywords. 225 Amazon Mechanical Turk
workers were then hired to label the images, which ended up
with 23,308 images receiving at least three agrees.1 The In-
ternational Affective Picture System (IAPS) (Lang, Bradley,
and Cuthbert 2008) is a common stimulus dataset which
is widely used in visual emotion understanding research,
from which IAPSa selects 395 pictures annotated with the
same eight emotion categories. ArtPhoto includes 806 artis-
tic photographs from a photo sharing site. Abstract Paintings
contains 228 peer rated abstract paintings consisting of color
and texture.

1We have 22,713 manually labeled images as some images no
longer exist on the Internet.
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Table 1: Performance of classification and retrieval tasks on
the FI dataset. Here, ‘∗’, ‘•’ and ‘
’ denote using different
sampling methods (i.e., random sampling, hard sampling,
semi-hard sampling). Different embeddings are employed to
represent sentiments, i.e., fully-connected layers (FC), sen-
timent vectors (SV ).

Constraints
Feature Acc.(%) mAP8 mAP2Softmax Center Triplet Senti

√
FC 65.18 0.3583 0.6773√
FC 63.14 0.3695 0.7254√∗ FC 63.46 0.3712 0.7278√ √∗ FC 64.08 0.4016 0.7456√ √• FC 64.58 0.4228 0.7532√ √� FC 65.35 0.4426 0.7592√ √� FC 65.84 0.4575 0.7913√ √� SV 67.64 0.4885 0.8098

Implementation Details

We build our framework based on the GoogleNet-
Inception (Szegedy et al. 2015), which achieves state-of-
the-art performance in large-scale image classification on
ImageNet. First, the network is initialized with the weights
trained for the large-scale dataset, and then fine-tuned on the
FI dataset with the FC8 layer changed to 8, which is split
randomly into 80% training, 5% validation and 15% testing
set. The learning rates of the convolutional layers and the
last fully-connected layer are initialized as 10−4 and 10−3,
respectively. We fine-tune all layers by stochastic gradient
descent (SGD) through the whole net using batches of 128,
which ensures that at least 8 images are contained for each
emotion. A total of 100 epochs are run to update the pa-
rameters, which is enough for our framework to converge.
We set the margin α in the triplet loss to 0.2, while α1 and
α2 in the sentiment loss are set to 0.2, 0.1, respectively. We
set the weight ω as 0.7; discussions regarding its sensitivity
is given in the following subsection. The feature dimension
for the triplet loss is 512. The sentiment vector from each
layer is 136 using 16 filters with kernel size of 1× 1, result-
ing in a total of 680-dimensional features as embeddings.
All our experiments are carried out on two NVIDIA GTX
1080 GPUs with 32 GB CPU memory on-board. With the
help of transfer learning, we also employ our framework on
three datasets with limited training examples. In details, we
transfer the parameters of the network fine-tuned on the FI
as well as the hyper-parameters to the small-scale datasets,
which are split into 80% training and 20% testing set ran-
domly. We conduct 5-fold validation and report the average
performance.

Baseline

We focus on the comparison of different methods, includ-
ing methods using low-level and mid-level features as well
as deep methods. We extract three low-level features in-
cluding local descriptors like SIFT, HOG and Gabor. The
1,200-dimensional ANP detectors of SentiBank as well as
the 2,089-dimensional features from the DeepSentiBank are

(a) Softmax (c) Ours(b) Softmax+Triplet

Figure 4: Visualization of feature embeddings using t-SNE
on the testing set of the FI. Different colors represent dif-
ferent sentiment labels. (a) and (b) show the feature space
using the FC feature, while (c) denotes the feature space of
using the sentiment vector. As can be seen, our framework
can separate emotional categories more effectively.

exploited as mid-level features. LIBSVM (Chang and Lin
2011) is employed for classification. For the CNN-based
methods, we focus on the comparison of models trained
with different constraints, and various architectures are also
evaluated in our experiments, i.e., AlexNet, VGGNet, and
GoogleNet. We compare the performance of models pre-
trained on the ImageNet as well as models fine-tuned on the
affective datasets, where softmax loss is employed for op-
timization. We show the results of using LIBSVM trained
on features extracted from the last FC layer with dimensions
reduced by employing PCA. In practice, we find that dif-
ferent cost values (parameter C in LIBSVM) produce sim-
ilar accuracies, so we just use the default value. Moreover,
we compare the CNN directly employing the similarity loss
(e.g., triplet loss, center loss) for learning the representation,
and also the models jointly optimizing the softmax loss and
triplet loss (Zhang et al. 2016).

Evaluation To search for an image which has a similar
emotion as a given query image, we determine the nearest
neighbors in terms of the feature representation as (Wang et
al. 2014). For the FI dataset, we use each image in the test
set as input to retrieve all the relevant images from the train-
ing set. For the three small sets, each image is used as input
to retrieve relevant images from the remaining ones follow-
ing (Zhao et al. 2014b). We evaluate the performance of re-
trieval using commonly used measurements. Nearest neigh-
bor rate (NN) evaluates the retrieval precision of the first
returned result. First tier (FT) and Second tier (ST) denote
the recall of the top m and 2m retrieval results, where m
is the number of the relevant images in the whole dataset.
Mean average precision (mAP) denotes the mean precision
of the retrieval results. We focus on the mAP of eight emo-
tions (i.e., mAP8) as well as the mAP of the binary polarities
(i.e., mAP2). Discounted cumulative gain (DCG) measures
the importance of different positions of relevant results, as-
suming that users are more likely to consider the frontal
results. Average normalized modified retrieval rank (AN-
MRR) takes the ranking sequence of relevant images within
the retrieved images. All these retrieval measurements range

495



Table 2: Classification and retrieval performance on the FI dataset. We compare different baselines for learning the sentiment
representation, including the traditional methods and CNN based methods. Here, ‘S + T’ denotes using softmax and triplet loss
to jointly train the model. Note that ImageNet is the only model without fine-tuning, while the others have been fine-tuned.

Algorithm Acc.(%) Retrieval Performance
mAP8 ↑ mAP2 ↑ FT ↑ ST↑ NN ↑ DCG↑ ANMRR↓

Baseline

SIFT 37.56 0.1705 0.5913 0.1830 0.3513 0.2462 0.4507 0.6553
HOG 44.67 0.2115 0.6002 0.1926 0.3620 0.3225 0.4639 0.6424
Gabor 36.33 0.1724 0.5942 0.1768 0.3395 0.2641 0.4434 0.6770
SentiBank 49.09 0.2337 0.6168 0.2422 0.4232 0.3990 0.5223 0.5934
DeepSentiBank 56.15 0.2559 0.6247 0.2658 0.4468 0.4583 0.5509 0.5655

FC-CNN

ImageNet (Softmax) 47.15 0.2376 0.6240 0.2480 0.4309 0.4695 0.5284 0.5863
AlexNet (Softmax) 58.13 0.2709 0.6328 0.2795 0.4693 0.5038 0.5633 0.5463
VggNet (Softmax) 64.55 0.3013 0.6552 0.3007 0.4887 0.5511 0.5860 0.5161
GoogleNet (Softmax) 65.18 0.3583 0.6773 0.3571 0.5619 0.5816 0.6403 0.4517
GoogleNet (Triplet) 63.46 0.3951 0.6981 0.3932 0.6081 0.5578 0.6762 0.4082
GoogleNet (S + T) 65.35 0.4426 0.7592 0.4435 0.6513 0.5866 0.7119 0.3603

Ours 67.64 0.4885 0.8098 0.4834 0.6978 0.6023 0.7802 0.3135

Query Images Top-3 Retrieval Results

0.1005 0.1023 0.1100Sadness

0.1386 0.1465 0.1687Amusement

Fear 0.1730 0.1915 0.1934
Amusement Disgust

Figure 5: Sample retrieval results of the proposed method
from FI. Given the query images (first column), the top-3
retrieval results and the corresponding Euclidean distances
are shown. Moreover, a failure retrieval case is shown in the
last row with red boxes.

from 0 to 1. A higher value represents better performance
for the first five measurements and a lower value indicates
better performance for ANMRR.

Performance Evaluation on the FI dataset

We first evaluate the proposed algorithm against different
methods on the current largest FI dataset (You et al. 2016).

Constraints and Sampling Methods Table 1 shows the
classification accuracy and the retrieval mAP using the fea-
ture representations extracted by models trained with differ-
ent loss functions. Compared to the softmax loss, results of
using the metric learning constraints (e.g., triplet and center
losses) are more effective for retrieval. However, their clas-
sification performance is inferior to the model trained with
the softmax loss. For the triplet-based CNN, the triplet sam-

pling method is also crucial since there are O(N3) possible
triplets on a dataset with N training data. A good triplet sam-
pling method can ensure stable convergence. We observe
that during the training process, given the anchor image, ran-
domly selecting the violated triplets leads to slow conver-
gence. When employing the hard sampling that only selects
the hardest negatives may unstably lead to bad local mini-
mal, since the hard cases may contain noise and cause over-
fitting. In this paper, we employ the semi-hard sampling,
where all the positive images are considered and the semi-
hard negative images are randomly selected in a mini-batch
inspired by (Schroff, Kalenichenko, and Philbin 2015) lead-
ing to the O(N2) sentiment triplets. This sampling method
converges more quickly while being less aggressive than the
hard sampling, and so we employ the semi-hard sampling
in the remaining experiments. Table 1 shows that with the
semi-hard sampling, the scheme based on jointly optimizing
the softmax and triplet losses achieves better results on both
tasks. The model trained with softmax loss and our senti-
ment constraint further improves mAP8 and mAP2, which
illustrates that our sentiment constraint is able to capture the
relation of emotions. Moreover, the performance of our pro-
posed framework using sentiment vectors achieves 67.64%
and outperforms the fine-tuned CNN models by 2.5%, which
illustrates that utilizing the texture information from the
CNN can be more discriminative than the fully-connected
layer. The retrieval performance also demonstrates that us-
ing the proposed sentiment vectors the embedding is more
effective for distinguishing the affective images than the FC
feature, by capturing the texture information from the con-
volutional layers. To provide insights of our promising re-
sults for affective image understanding, we use the sentiment
vectors from our proposed framework to visualize the fea-
ture space after dimensionality reduction (Maaten and Hin-
ton 2008). Figure 4 shows that the features from the senti-
ment constraint are consistently much better separated than
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(a) IAPSa (b) ArtPhoto (c) AbstractPaintings

Figure 6: Classification and retrieval performance on IAPSa, Artphoto and Abstract Paintings. We compare different baselines
for learning the sentiment representation, including traditional methods as well as CNN-based methods. Note that the Multi-
graph (Zhao et al. 2014b) method is only proposed for affective image retrieval, thus the classification result is not applicable.

ones from the conventional softmax loss, while our method
further enlarges the inter-class variance benefited from in-
corporating emotion relations into feature learning process.

Affective Image Retrieval We compare the retrieval per-
formance with different methods on the FI dataset. Table 2
shows that the low-level generic features are not effective
for affective image retrieval. The mid-level representations
achieve similar performance as the features from ImageNet
trained for object classification. The fine-tuned classifica-
tion models improve the retrieval performance since the
models can learn discriminative representations to distin-
guish emotions, while the CNN trained with the triplet con-
straint is more effective to locate the images at the affective
level. Compared with jointly optimizing the softmax loss
and triplet loss, our proposed method improves mAP8 and
mAP2 by a large margin. We also show our top-3 retrieval
results from the FI dataset in Figure 5, which illustrate the
efficacy of our proposed framework for retrieving affective
images. The distances between the retrieved images and the
query images are also given reflecting the emotional differ-
ences. In the first example, the top-1 retrieved image with
smallest distance obviously belongs to amusement with the
Minion figure whereas the remaining two with larger dis-
tances evoke the amusement emotion in a subtle way. For
the second example, all three retrieved images have consis-
tently small distances, and all of them arouse similar emo-
tion as the queried image. The last example shows that since
emotion evoked by images may involve higher abstraction,
there are also cases that the retrieval results fail to capture
the affective-level semantic parts of images.

Affective Image Classification We report the classifica-
tion accuracy of different methods in Table 2. The deep rep-
resentations outperform the hand-crafted features designed
based on several small-scale datasets for specific domains.
The fine-tuned CNNs show the discriminative ability to rec-
ognize emotions, and the models with deeper architecture
can achieve better performance. Training with the triplet loss
achieves worse performance than the fine-tuned GoogleNet,
as it is more suitable for retrieval rather than classification.
Our algorithm optimizing both losses performs favorably
against the fine-tuned CNN models by about 2% improve-
ment, which is higher than these compared methods.

Hyper-parameters The margins α and α1 are set to 0.2
as a trade-off between the performance and stable train-
ing (Schroff, Kalenichenko, and Philbin 2015). Experiments
were also conducted to study the influence of changing α2,
where stable performance was achieved for α2 in the range
of [0.1,0.2]. The effect of parameter ω in (7) is analyzed,
where ω indicates the weight of similarity constraint term in
the optimization objective function. Since the softmax loss
may contain more information than a triplet in each itera-
tion, it is sensible to assign a higher weight. Our experiments
show that the performance is not sensitive to small variations
of ω, i.e., within 0.5% difference in a range of [0.6, 0.8].

Results on Small-Scale Datasets

We report the results on three widely-used datasets with
comparisons to several other state-of-the-art methods. Fig-
ure 6 shows the performance of classification and retrieval.
Since emotion anger only contains 8 and 3 images in the
IAPSa and Abstract Paintings datasets, they are not enough
to perform the 5-fold cross validation. Overall, the deep vi-
sual features contribute significantly to achieving better re-
sults over the manually crafted visual features in both tasks,
while our framework achieves the best results illustrating the
generalization ability to the small-scale datasets.

Conclusions

In this work, we propose to incorporate the hierarchical re-
lation of emotions via deep metric learning, and present a
multi-task framework that jointly optimizes the classifica-
tion loss and sentiment loss in an end-to-end manner. We
exploit the sentiment constraint for utilizing the emotion re-
lations, and further propose the sentiment vector based on
the Gram matrix for the distance comparison between affec-
tive images. Extensive experiments show that our algorithm
performs favorably against the state-of-the-art approaches
on four popular affective datasets for both affective image
classification and retrieval tasks.

Acknowledgments

This research was sponsored by NSFC (61620106008,
61572264), CAST (YESS20150117), Huawei Innovation
Research Program (HIRP), and IBM Global SUR award.

497



References

Bellet, A.; Habrard, A.; and Sebban, M. 2013. A survey
on metric learning for feature vectors and structured data.
arXiv:1306.6709.
Chang, C., and Lin, C. 2011. LIBSVM: A library for support
vector machines. ACM TIST 2(3):27:1–27:27.
Chechik, G.; Sharma, V.; Shalit, U.; and Bengio, S. 2010.
Large scale online learning of image similarity through
ranking. Journal of Machine Learning Research 11:1109–
1135.
Chen, T.; Borth, D.; Darrell, T.; and Chang, S. F. 2014a.
Deepsentibank: Visual sentiment concept classification with
deep convolutional neural networks. In arXiv:1410.8586.
Chen, T.; Yu, F. X.; Chen, J.; Cui, Y.; Chen, Y.-Y.; and
Chang, S.-F. 2014b. Object-based visual sentiment concept
analysis and application. In ACM MM.
Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
similarity metric discriminatively, with application to face
verification. In CVPR.
Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Li, F.
2009. ImageNet: A large-scale hierarchical image database.
In CVPR.
Detenber, B. H.; Simons, R. F.; and Bennett Jr., G. G. 1998.
Roll ’em!: The effects of picture motion on emotional re-
sponses. J. Broadcast. & Electr. Media 42(1):113–127.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. Texture
synthesis using convolutional neural networks. Febs Letters
70(1):51–55.
Hoffer, E., and Ailon, N. 2015. Deep metric learning using
triplet network. In International Workshop on Similarity-
Based Pattern Recognition.
Lang, P. J.; Bradley, M. M.; and Cuthbert, B. N. 2008. In-
ternational Affective Picture System (IAPS): Affective rat-
ings of pictures and instruction manual. Tech. Rep. A-8, U.
Florida.
Lin, T.; Cui, Y.; Belongie, S. J.; and Hays, J. 2015. Learning
deep representations for ground-to-aerial geolocalization. In
CVPR.
Lu, X.; Lin, Z.; Jin, H.; Yang, J.; and Wang, J. Z. 2014.
RAPID: Rating pictorial aesthetics using deep learning. In
ACM MM.
Maaten, L. V. D., and Hinton, G. 2008. Visualizing data
using t-SNE. J. Mach. Learn. Research 9:2579–2605.
Machajdik, J., and Hanbury, A. 2010. Affective image clas-
sification using features inspired by psychology and art the-
ory. In ACM MM.
Mikels, J. A.; Fredrickson, B. L.; Larkin, G. R.; Lindberg,
C. M.; Maglio, S. J.; and Reuter-Lorenz, P. A. 2005. Emo-
tional category data on images from the International Affec-
tive Picture System. Behavior Res. Methods 37(4):626–630.
Qian, S.; Zhang, T.; and Xu, C. 2016. Multi-modal multi-
view topic-opinion mining for social event analysis. In ACM
MM.

Rao, T.; Xu, M.; and Xu, D. 2016. Learning multi-
level deep representations for image emotion classification.
arXiv:1611.07145.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering. In
CVPR.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. E.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In CVPR.
Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014.
DeepFace: Closing the gap to human-level performance in
face verification. In CVPR.
Wang, W., and He, Q. 2008. A survey on emotional semantic
image retrieval. In ICIP.
Wang, J.; Song, Y.; Leung, T.; Rosenberg, C.; Wang, J.;
Philbin, J.; Chen, B.; and Wu, Y. 2014. Learning fine-
grained image similarity with deep ranking. In CVPR.
Xu, C.; Cetintas, S.; Lee, K.-C.; and Li, L.-J. 2014. Vi-
sual sentiment prediction with deep convolutional neural
networks. arXiv:1411.5731.
Yang, J.; She, D.; and Sun, M. 2017. Joint image emo-
tion classification and distribution learning via deep convo-
lutional neural network. In IJCAI.
Yanulevskaya, V.; Van Gemert, J.; Roth, K.; Herbold, A.-K.;
Sebe, N.; and Geusebroek, J.-M. 2008. Emotional valence
categorization using holistic image features. In ICIP.
You, Q.; Luo, J.; Jin, H.; and Yang, J. 2015. Robust image
sentiment analysis using progressively trained and domain
transferred deep networks. In AAAI.
You, Q.; Luo, J.; Jin, H.; and Yang, J. 2016. Building a large
scale dataset for image emotion recognition: The fine print
and the benchmark. In AAAI.
Zhang, H.; Yang, Z.; Gönen, M.; Koskela, M.; Laaksonen,
J.; Honkela, T.; and Oja, E. 2013. Affective abstract image
classification and retrieval using multiple kernel learning. In
ICONIP.
Zhang, X.; Zhou, F.; Lin, Y.; and Zhang, S. 2016. Embed-
ding label structures for fine-grained feature representation.
In CVPR.
Zhao, S.; Gao, Y.; Jiang, X.; Yao, H.; Chua, T.-S.; and Sun,
X. 2014a. Exploring principles-of-art features for image
emotion recognition. In ACM MM.
Zhao, S.; Yao, H.; Yang, Y.; and Zhang, Y. 2014b. Affective
image retrieval via multi-graph learning. In ACM MM.
Zhao, S.; Yao, H.; Gao, Y.; Ji, R.; Xie, W.; Jiang, X.; and
Chua, T. 2016. Predicting personalized emotion perceptions
of social images. In ACM MM.
Zhao, S.; Ding, G.; Gao, Y.; and Han, J. 2017a. Approx-
imating discrete probability distribution of image emotions
by multi-modal features fusion. In IJCAI.
Zhao, S.; Yao, H.; Gao, Y.; Ji, R.; and Ding, G. 2017b. Con-
tinuous probability distribution prediction of image emo-
tions via multitask shared sparse regression. IEEE Trans-
actions on Multimedia 19(3):632–645.

498


