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Abstract

Instance Search (INS) is a fundamental problem for many
applications, while it is more challenging comparing to tra-
ditional image search since the relevancy is defined at the in-
stance level. Existing works have demonstrated the success
of many complex ensemble systems that are typically con-
ducted by firstly generating object proposals, and then ex-
tracting handcrafted and/or CNN features of each proposal
for matching. However, object bounding box proposals and
feature extraction are often conducted in two separated steps,
thus the effectiveness of these methods collapses. Also, due
to the large amount of generated proposals, matching speed
becomes the bottleneck that limits its application to large-
scale datasets. To tackle these issues, in this paper we pro-
pose an effective and efficient Deep Region Hashing (DRH)
approach for large-scale INS using an image patch as the
query. Specifically, DRH is an end-to-end deep neural net-
work which consists of object proposal, feature extraction,
and hash code generation. DRH shares full-image convolu-
tional feature map with the region proposal network, thus
enabling nearly cost-free region proposals. Also, each high-
dimensional, real-valued region features are mapped onto a
low-dimensional, compact binary codes for the efficient ob-
ject region level matching on large-scale dataset. Experimen-
tal results on four datasets show that our DRH can achieve
even better performance than the state-of-the-arts in terms of
mAP, while the efficiency is improved by nearly 100 times.

Introduction

Large-scale instance search (INS) is to efficiently retrieve
the images containing a specific instance in a large scale im-
age dataset, giving a query image of that instance. It has long
been a hot research topic due to the many applications such
as image classification and detection (Vedaldi and Zisserman
2012; Wang et al. 2016).

Early research (Philbin et al. 2007; Qin, Wengert, and
Gool 2013) usually extracts image-level handcrafted fea-
tures such as color, shape and texture to search a user
query. Recently, due to the development of deep neural
networks, using the outputs of last fully-connected net-
work layers as global image descriptors to support image
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classification and retrieval have demonstrated their advan-
tage over prior state-of-the-art (Ng, Yang, and Davis 2015;
Razavian et al. 2014; Gao et al. 2017). More recently, we
have witnessed the research attention shifted from features
extracted from the fully-connected layers to deep convolu-
tional layers (Babenko and Lempitsky 2015), and it turns
out that convolutional layer activations have superior per-
formance in image retrieval. To improve the search effi-
ciency, lots of hashing methods were proposed, from tradi-
tional handcrafted based hashing methods (Liu et al. 2013;
Song et al. 2017; Zhang et al. 2016; Liu et al. 2014a;
Zhu, Zhang, and Huang 2014; Song et al. 2013; Yang et
al. 2016; Zhu et al. 2013; 2017) to deep learning based
hashing methods (Zhao et al. 2015; Lin et al. 2015; Li,
Wang, and Kang 2016; Yao et al. 2016; Wang et al. 2016;
Song et al. 2018). However, using image-level features may
fail to search instances in images. As illustrated in Fig.
1, sometimes a target region is only a small portion of a
database image. Directly comparing the query image and a
whole image in the database may result an inaccurate match-
ing. Therefore, it is necessary to consider the local region
information.

Recently, many successful INS approaches (Tao et al.
2014; Mohedano et al. 2016) were proposed by combin-
ing fast filtering with more computationally expensive spa-
tial verification and query expansion. More specifically, all
images in a database are firstly ranked according to their
distances to the query, and then a spatial verification is ap-
plied to re-rank the search results, and finally a query ex-
pansion is followed to improve the search performance. An
intuitive way for spatial verification is the sliding window
strategy. It generates sliding windows at different scales and
aspect ratios over an image. Each window is then compared
to the query instance in order to find the optimal location
that contains the query. A more advanced strategy is to use
object proposal algorithms (Uijlings et al. 2013; Girshick
et al. 2014; Pont-Tuset et al. 2016; Chavali et al. 2016).
It evaluates many image locations and determines whether
they contain the object or not. Therefore, the query instance
only need to compare with the object proposal instead of
all the image locations. Existing works (Tao et al. 2014;
Tao, Smeulders, and Chang 2015) have demonstrated the
success of many complex ensemble systems that are con-
ducted by firstly generating object bounding box propos-
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Figure 1: Purely using global hash codes to calculate the
similarity between query instance and database images is
not accurate enough. (a) is a query instance with a deep hash
code representation Hq; (c) is a database image with a deep
global region hash code Hg by taking the whole image as a
region; (b) is a region pooled from (c) and with a deep region
hash code Hl. However, it is clear that conducting INS using
global region (c) is not as accurate as using local region (b).

als and then extracting handcrafted and/or CNN features for
each bonding box. Because the region detection and feature
extraction are conducted in two separate steps, the detected
regions may not be the optimal one for feature extraction,
leading to suboptimal results.

Faster R-CNN (Ren et al. 2015) introduces a region pro-
posal network which integrates feature extraction and region
proposal in a single network. The detection network shares
the full-image convolutional features, thus enabling nearly
cost-free region proposals. Inspired by this, (Salvador et al.
2016) utilize Faster R-CNN to propose some object candi-
dates and perform search on the extracted convolutional fea-
tures. However, efficiency is a big issue for these region pro-
posal based methods. The successfully selective search and
RPN are still generating hundreds to thousands of candidate
regions. If a dataset has N images and each image contains
M regions, each region is represented by a d-dimensional
feature vector, then an exhaustive search for each query re-
quires N ×M × d operation to measure the distances to the
candidate regions. Therefore, the expensive computational
cost for nearest neighbors search in high-dimensional data
limits their application to large scale datasets.

In this paper we propose a fast and effective Deep Region
Hashing (DRH) approach for visual instance search in large
scale datasets with an image patch as the query. It is worth-
while to highlight the following aspects of DRH: (1) We
propose an effective and efficient end-to-end Deep Region
Hashing (DRH) approach, which consists of object proposal,
feature extraction, and hash code generation, for large-scale
INS with an image patch as the query. Given an image, DRH
can automatically generate the hash codes for the whole im-
age and the object candidate regions. (2) We design differ-
ent strategies for object proposals based on the convolutional
feature map. The region proposal is nearly cost-free, and we
also integrate hashing strategy into our approach to enable
efficient INS on large-scale datasets. (3) Extensive experi-

mental results on four datasets show that our generated hash
codes can achieve even better performance than the state-of-
the-arts using real-valued features in terms of mAP, while
the efficiency is improved by nearly 100 times.

Methodology

This paper explores instance search from images using hash
codes of image regions detected by an object proposal CNN
or sliding window. In our setup, query instances are defined
by a bounding box over the query images. The framework
of our DRH-based instance search is shown in Fig.2, and it
has two phases, i.e., offline DRH training phase and online
instance search phase. In this section, we describe these two
phases in details.

Deep Region Hashing

As is shown in Fig. 2, the DRH training phase consists of
three components, i.e., CNN-based feature map generation,
region proposals and region hash code generation. Next, we
illustrate each of them.

CNN-based Representations As mentioned above, we
focus on leveraging convolutional networks for hash learn-
ing. We adopt the well known architecture in (Conneau et al.
2016) as our basic framework. As shown in Fig. 2, our net-
work has 5 groups of convolution layers, 4 max convolution-
pooling layers, 1 Region of Interest Pooling layer (RoI) and
1 hashing layer. Following (Conneau et al. 2016), we use
64, 128, 256, 512, 512 filters in the 5 groups of convolu-
tional layers, respectively. More specifically, our network
firstly processes an arbitrary image with several convolu-
tional (conv) and max pooling layers to produce a conv fea-
ture map. Next, for each region proposal, a region of interest
(RoI) pooling layer extracts a fixed-length (i.e., 512) feature
from the feature map. Each feature map is then fed into the
region hash layer that finally outputs hash codes represent-
ing the corresponding RoI.

Region Pooling Layer There are two ways to generate re-
gion proposals: 1) sliding window (the number of region
proposal is determined by a sliding window overlaping pa-
rameter λ ) and 2) the Region Proposal Network (RPN) pro-
posed by Fater RCNN (Ren et al. 2015). It provides a set
of object proposals, and we use them as our region propos-
als by assuming that the query image always contains some
objects.

1) Sliding window. Given a raw image with the size of
W × H , our network firstly generates a conv feature map
Wc×Hc, where W , Wc and H , Hc are the width and height
of the original image and conv map. Next, we choose win-
dows of any possible combinations of width

{
Wc,

Wc

2 , Wc

3

}
and height

{
Hc,

Hc

2 , Hc

3

}
. We use a sliding window strategy

directly on the conv map with overlap in both directions. The
percentage of overlap is measured by a overlapping param-
eter λ. Next, we utilize a simple filtering strategy to discard
those windows. If W

H ≤ th, we discard the scale Wc

3 . When
H
W ≤ th, we discard Hc

3 , otherwise we keep the original set-
tings. When the width and height are set to Wc and Hc, we
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Figure 2: The overview of DRH. It contains two parts, i.e., deep region hashing network part and instance search part. The first
part trains a network for feature extraction, object proposal and hash code generation, while the second part utilizes DRH to get
the query results.

can generate a global region image descriptor, which will be
used as the input for global region hash code generation.

2) RPN network. Faster R-CNN (Ren et al. 2015) pro-
posed a Region Proposal Network (RPN), which takes conv
feature map as input and outputs a set of rectangular object
proposals, each with an abjectness scores. Given a conv fea-
ture map Wc × Hc, it generates Wc × Hc × 9 (typically
216, 00 regions). Specifically, the RPN proposed by Faster
R-CNN is able to propose object regions and extract the con-
volutional activations for each of them. Therefore, for each
region proposal, it can compute a descriptor by aggregating
the activations of that window in the RoI pooling layer, giv-
ing raise to the region-wise descriptors. In order to conduct
image-level operation, we obtain a global region by setting
the whole conv map as a region. To conduct instance-level
search, we obtain local regions which have smaller size than
the global region.

After region proposal generation either adopting sliding
window based approach or RPN approach, for each image
we obtain a set of regions which include a global region and
several local regions. Next, we apply max pooling to the cor-
responding region window on the conv map to generate ROI
feature for each region.

Region Hashing Layer For instance search, directly using
RoI features to compare the query feature with all the ROI
features is effective and it should work well in small dataset.
However, in terms of large-scale dataset, this approach is
computationally expensive and requires large memory since
it involves huge vector operations. In this paper, we aim to

improve its accuracy and efficiency. Inspired by the success
of hashing in terms of search accuracy and search time cost,
we propose a region hashing layer to generate hash codes for
the region proposals.

Here, we convert each RoI feature to a set of binary hash
code. Given a RoI feature xr ∈ R

1×512, the latent region
hash layer output is hr = σ(Wrxr + br), where Wr is the
hash function and br is the bias. Next, we perform the binary
hash for the output hr ∈ R

1×Lr to obtain a binary code yr =
sgn(σ(Wrxr+br)) ∈ {0, 1}Lr . To obtain a qualified binary
hash code, we propose the following optimization problem:

min
Wr,br

� =
1

2
g (yr, hr)− α

2
t(hr) +

β

2
r (Wr) +

η

2
o (br) (1)

where g (yr, hr) is the penalty function to minimize the
quantization loss between the RoI feature hr and yr.
t(hr), r (Wr) and o (br) are the regularization term for
hr, Wr and br. α, β and η are parameters. We define
g (yr, hr) and t(hr) as bellow:

g (yr, hr) = ‖yr − hr‖2F , t(hr) = tr
(
hrh

T
r

)
(2)

where −t(hr) aims to maximize the variance of learned bi-
nary vectors to ensure balanced bits and tr(.) operation is
to calculate the trace of a matrix . The last two terms r (Wr)
and o (br) are regularizers to control the scales of the param-
eters, and they are defined as:

r (Wr) = ‖Wr‖2F , o (br) = ‖br‖2F (3)

To solve this optimization problem, we employ the
stochastic gradient descent method to learn parameters
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Wr, br. The gradient of the objective function in (2) with
respect to different parameters are computed as following:

∂�
∂Wr

=((hr − yr − αhr)� σ′(Wrhr + br))xr
T +βWr

∂�
∂br

= (hr − yr − αhr)� σ′(Wrhr + br) + ηbr
(4)

where � is element-wise multiplication. The parameters Wr

and br are updated with gradient descent algorithm until
convergence.

Network Training We train our models using stochastic
gradient descent with momentum, with back-propagation
used to compute the gradient of the objective function
∇Loss (Wr, br) with respect to all parameters Wr and br.
More specifically, we randomly initialize the RoI pooling
layer and region hashing layer by drawing weights from
a zero-mean Gaussian distribution with standard deviation
0.01. The shared convolutional layers are initialized by pre-
training a model (Radenovic, Tolias, and Chum 2016). Next,
we tune all the layers of the RoI layer and the hashing layer
to conserve memory. In particular, for RPN training we fix
the convolutional layers and only update the RPN layers pa-
rameters. The pascal voc 2007 dataset is used to train the
RPN and for this study we choose the Top 3̃00 regions as in-
put to the region hash layer. For sliding window based region
proposal, we use different scales to directly extract regions
and then input them into the region hash layer. At this stage,
the parameters for conv layers and region pooling layers are
obtained. Next, we fix the parameters of conv layers and the
region pooling layer to train the region hash layer. In ad-
dition, learning rate is set to 0.01 in the experiments. The
parameters α, β, η were empirically set as 100, 0.001 and
0.001 respectively.

Instance Search using DRH

This section describes the INS pipeline by utilizing DRH
approach. This pipeline consists of a Global Region Hashing
(gDRH) search, Local Region Hashing (lDRH) re-ranking
and two Region Hashing Query Expansions (QE).

Global Region Hashing Search (gDRH). It is conducted
by computing the similarity between the hash code of a
query and the global region hash codes of dataset images.
For each item in the dataset, we use the hash codes gener-
ated by the whole image region. Next, the image query list
is sorted based on the hamming distance of dataset items to
the query. After gDRH, we choose top M images to form
the 1st ranking list Xrank =

{
xrank
1 , · · · , xrank

M

}
.

Local Region Hashing Re-search (lDRH). After we
obtained the Xrank, we perform the local region hashing
search by computing the hamming distance between query
instance hash code and hash codes of each local region in
the top M images. To clarify, the hashing query expansions
introduced below is optional. For each image, the distance
score is calculated by using the minimal hamming distances
between the hash code of query instance and all the local
region hash codes within that image. Finally, the images are
re-ordered based on the distances and we get the final query
list Xrank′

1 =
{
xrank′
1 , · · · , xrank′

M

}
.

Region Hashing Query Expansions (QE). In this study,
we further investigate two query expansion strategies based
on the global and local hash codes:

1) Global Region Hashing Query expansion (gQE). Af-
ter the Global Region Search, we conduct the global hash-
ing query expansion, which is applied after the gDRH and
before the lDRH. Specifically, we firstly choose the global
hash code of the top q images within the Xrank to calcu-
late similarities between each of them with each global hash
code of the Xrank images. For xrank

i , the similarity score
is computed by using the max similarity between xrank

i and
the top q images’ global region hash codes. Next, the Xrank

is re-ordered to Xrankq =
{
xrankq
1 , · · · , xrankq

M

}
and fi-

nally we conduct lDRH on the Xrankq list.
2) Local Region Hashing Query Expansion (lQE). Here,

to conduct local region hashing query expansion, initially we
need to conduct gDRH and lDRH to get the Xrank′

. Here
gQE is optional. Next, we get the top q best matched re-
gion hash code from images within the Xrank′

list and then
compare the q best region hash codes with all the regions of
the Xrank′

. Thus, we choose the max value as the similar-
ity score for each image and finally the Xrank′

is re-ranked
based on those similarity scores.

Experiment

We evaluate our algorithm on the task of instance search.
Firstly, we study the influence of different components of
our framework. Then, we compare DRH with state-of-the-
art algorithms in terms of efficiency and effectiveness on
four standard datasets.

Datasets and Evaluation Metric

We consider two publicly available datasets. 1) Oxford
Buildings (Philbin et al. 2007) contains two sub-datasets:
Oxford 5k, which contains 5,062 high revolutionary (1024×
768) images, including 11 different landmarks (i.e., a par-
ticular part of a building), and each represented by several
possible queries; and Oxford 105K, which combines Oxford
5K with 100, 000 distractors to allow for evaluation of scal-
ability. 2) Paris Buildings (Philbin et al. 2008) contains two
sub-datasets as well: Paris 6k including 6,300 high revolu-
tionary (1024 × 768) images of Paris landmarks; and Paris
106 K, which is generated by adding 100, 000 Flickr distrac-
tor images to Paris 6k dataset. Compared with Oxford Build-
ings, it has images representing buildings with some similar-
ities in architectural styles. The hashing layer is trained on a
dataset which is composed of Oxford 5K training examples
and Paris 6k training examples.

For each dataset, we follow the standard procedures to
evaluate the retrieval performance. In this paper, we use
mean Average Precision (mAP) as the evaluation metric.

Performance using Different Settings

There are several different settings affecting the perfor-
mance of our algorithm. To comprehensively study the per-
formance of DRH with different settings, we further study
different components of DRH including: 1) Hash code
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Figure 3: The qualitative results of DRH searching on 5K dataset. 7 queries (i.e., redcliffe camera, all souls, ashmolean, balliol,
bodleian, christ church and hertford) and the corresponding search results are shown in each row. Specifically, the query is
shown in the left, with selected top 9 ranked retrieved images shown in the right.

length L; 2) region proposal component and its parameters;
and 3) query expansion and its settings.

The Effect of Hash Code Length L Firstly, we investi-
gate the influence of hash code length by using gDRH to
conduct INS. We report the mAP of gDRH with different
code length L, and also the mAP of INS using the max pool-
ing on conv5 feature. The results are shown in Tab. 1. These
results show that with the increase of hash code length L
from 128 to 4096, the performance of gDRH increases from
42.5% to 78.3% on the oxford 5k dataset, while the mAP in-
creases from 53.1% to 81.5% on the Paris 6k dataset. Com-
paring L = 1024 to L = 4096, the code length increased to
4 times, but the performance is only improved by 3.5% and
4.2%. Therefore, to balance the search efficiency and effec-
tiveness, we use L = 1024 as the default setting. On the
other hand, the best performance of gDRH (i.e., L = 4096)
is slightly lower than that of using max pooling on conv5
features, with 1.4% and 0.9% decreases, respectively. This
is due to the information loss of hash codes.

The Effect of Region Proposals In this sub-experiment,
we explore firstly the two ways of region proposal: sliding
window based and RPN based approaches. Both of them can
generate different number of object proposals. For RPN, we

Table 1: The performance (mAP) variance with different
code lengths L using gDRH.

Method oxford 5K Paris 6K

gDRH (128-bits) 0.425 0.531
gDRH (256-bits) 0.583 0.629
gDRH (512-bits) 0.668 0.724

gDRH (1024-bits) 0.748 0.773
gDRH (4096-bits) 0.783 0.815

Max Conv Feature 512 0.797 0.824

choose 300 regions to generate region hash code for lDRH.
For sliding window, we tune λ = [0.4, 0.5, 0.6, 0.7] to get
different number of object proposals. We further study the
mAP of different top M results. gDRH can get some ini-
tial retrieval results, and in this subsection, we refine the re-
sults by using lDRH, i.e., gDRH+lDRH. The reported re-
sults (Tab. 2) are on the Oxford 5k dataset. From these re-
sults, we can make several observations.
1) Compared with RPN based DRH, the sliding window
based DRH performs slightly better. It also requires less
number of region boxes and does not need training a RPN
network, thus we adopt sliding window based DRH as the
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Table 2: The influence of Top M , λ and the way of region
generation. This experiment is conducted on the oxford 5k
dataset with L = 1024.

Sliding Window based DRH RPN-DRH

gDRH+lDRH
λ = 0.4
∼21boxes

λ = 0.5
∼36 boxes

λ = 0.6
∼40boxes

λ = 0.7
∼60boxes ∼300 boxes

M=100 0.773 0.774 0.776 0.772 0.772
M=200 0.779 0.780 0.781 0.778 0.778
M=400 0.779 0.781 0.783 0.780 0.780
M=800 0.782 0.784 0.786 0.783 0.783

Table 3: The effect of query expansions (gQE and lQE).

Settings gDRH gQE lDRH lQE
oxford

5k
Paris

6k

No QE
yes no no no 0.745 0.773
yes no yes no 0.783 0.801

gQE
(different q)

yes yes,q=4 no no 0.813 0.823
yes yes,q=5 no no 0.809 0.828
yes yes,q=6 no no 0.815 0.835
yes yes,q=7 no no 0.789 0.842

gQE+lQE
(q=6)

yes yes no no 0.815 0.835
yes yes yes no 0.804 0.831
yes no yes yes 0.833 0.819
yes yes yes yes 0.851 0.849

gQE+lQE
(q=7)

yes yes no no 0.789 0.842
yes yes yes no 0.804 0.834
yes no yes yes 0.826 0.821
yes yes yes yes 0.838 0.854

default approach to conduct the following experiments. RPN
is supposed to generate better region proposals than sliding
window, but a worse performance is achieved in the exper-
iment. One potential reason is that RPN is trained on pas-
cal voc dataset, which is robust to propose the object of
‘buildings’. On the other hand, the objects in ‘Oxford build-
ings’ are usually very large, thus they can be readily captured
by sliding windows.
2) For sliding window based DRH, λ affects the perfor-
mance. In general, the performance is not very sensitive to λ.
The best performance is achieved when λ = 0.6, and it only
generates about 40 regions for each image. In the following
experiments, the default setting for λ is 0.6.
3) The top M results have no significant impact on mAP
either for DRH. In general, with the increase of M , the per-
formance increases as well. When M = 800, the algorithm
achieves the best results. When M = 400, the performance
is 0.3% lower than M = 800. Considering the memory cost,
we choose M = 400 for the following experiments.

The Effect of Query Expansions In this subsection, we
study the effect of query expansions. This study aims to ex-
plore: the effect of lDRH, the effect of q for gQE, the effect
of gQE and lQE for DRH, as well as several combinations.
The experiment results are shown in Tab. 3. From Tab. 3, we
have some observations below:
1) The lDRH improves the INS. In terms of mAP, for oxford
5k and paris 6k datasets, it increases by 3.8% and 2.8% ,
respectively.
2) The gQE improves the performance of DRH. When q =
6, it performs the best (i.e., 85.1%) on the Oxford 5k dataset,

and when q = 7 it gains the best performance on the Paris
6k dataset. In the following experiments, q is set as 6.
3) The experimental results show that by combining gQE
and lQE, DRH performs the best (i.e., 85.1% for oxford 5k
and 85.4% for Paris 6k datasets). Therefore, query expan-
sion strategy can improve INS.

Comparing with State-of-the-art Methods

To evaluate the performance of DRH, we compare our meth-
ods with the state-of-the-art deep features based methods.
These methods can be divided into four categories: 1) Fea-
ture Encoding approaches (Iscen et al. 2014; Iscen, Rab-
bat, and Furon 2016; Ng, Yang, and Davis 2015). 2) Ag-
gregating Deep features (Razavian et al. 2014; Babenko
and Lempitsky 2015; Tolias, Sicre, and Jégou 2015; Kalan-
tidis, Mellina, and Osindero 2015; Mohedano et al. 2016;
Salvador et al. 2016; Tao et al. 2014; Tao, Smeulders, and
Chang 2015). 3) Integrating with Locality and QE. 4) Hash-
ing methods (Jegou, Douze, and Schmid 2008; Liu et al.
2014b). Lots of hashing methods are proposed for image re-
trieval .

The comparison results are shown in Tab. 4 and we also
show some qualitative results in Fig. 3. From these results,
we have the following observations. (1) First, our approach
performs the best on both two large-scale datasets oxford
105k and Paris 106k with the mAP of 0.825 and 0.802,
respectively. In addition, the performance on oxford 105k
is higher than Tolias et al. +AML+QE (Tolias, Sicre, and
Jégou 2015) with a 9.3% increase. (2) On Paris 6k dataset,
our performance is slightly lower than that of Tolias et
al. +AML+QE (Tolias, Sicre, and Jégou 2015) by 1.1%,
but on the Oxford 5k dataset, it outperforms Mohedano
et al.+Rerank+LQE (Mohedano et al. 2016) by 6.3%. (3)
The performance of CNN features aggregation is better than
CNN features in general, and it can be further improved by
integrating re-ranking and query expansion strategies. On
the other hand, hashing methods perform the worst in terms
of mAP. This is probably due to the information loss of hash
codes. (4) The qualitative results show that DRH can retrieve
instances precisely, even for the cases when the query im-
age is different from the whole target image, but similar to a
small region of it.

Efficiency Study

In this subsection, we compare the efficiency of our DRH
to the state-of-the-art algorithms. The time cost for instance
search usually consists of two parts: filtering and re-ranking.
For our DRH, the re-ranking is conducted using M=400
candidates, and each of which has around 40 local regions.
Therefore, the time cost for re-ranking can be ignored com-
pared with the filtering step. For the comparing algorithms,
they have different re-ranking strategies, and some of them
do not have this step. Therefore, we only report the time for
filtering step of these comparing algorithms.

We choose (Tolias, Sicre, and Jégou 2015) as the rep-
resentative algorithm for non-hashing algorithms. To make
fair comparison, we implement the linear scan of the conv5
feature (Tolias, Sicre, and Jégou 2015) and hash codes us-
ing CPP. All the experiments are done on a server with In-
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Table 4: Comparison to state-of-the-art methods using Deep representations.

Methods
Oxford

5K
Oxford
105K

Paris
6K

Paris
106K

CNN
Feature
Encoding

Iscen et al.-Keans (Iscen et al. 2014) 0.656 0.612 0.797 0.757
Iscen et al.-Rand (Iscen et al. 2014) 0.251 0.437 0.212 0.444
Ng et al. (Ng, Yang, and Davis 2015) 0.649 - 0.694 -
Iscen et al. (Iscen, Rabbat, and Furon 2016) 0.737 0.655 0.853 0.789

CNN
Featues
Aggregation

Razavian et al. (Razavian et al. 2014) 0.556 - 0.697 -
Bebenko et al. (Babenko and Lempitsky 2015) 0.657 0.642 - -
Tolias et al. (Tolias, Sicre, and Jégou 2015) 0.669 0.616 0.830 0.757
Kalantidis et al. (Kalantidis, Mellina, and Osindero 2015) 0.684 0.637 0.765 0.691
Mohedano et al. (Mohedano et al. 2016) 0.739 0.593 0.820 0.648
Salvador et al. (Salvador et al. 2016) 0.710 - 0.798 -
Tao et al. (Tao et al. 2014) 0.765 - - -
Tao et al. (Tao, Smeulders, and Chang 2015) 0.722 - - -

Integration
with Locality
and QE

Kalantidis et al.
+GQE (Kalantidis, Mellina, and Osindero 2015) 0.749 0.706 0.848 0.794

Tolias et al.
+AML+QE (Tolias, Sicre, and Jégou 2015) 0.773 0.732 0.865 0.798

Mohedano et al. (Mohedano et al. 2016)
+Rerank+LQE 0.788 0.651 0.848 0.641

Salvador et al. (Salvador et al. 2016)
+CS-SR+QE 0.786 - 0.842 -

Hashing
Jegou et al. (Jegou, Douze, and Schmid 2008) 0.503 - 0.491 -
Liu et al. (Liu et al. 2014b) 0.518 - 0.511 -

ours
DRH(gDRH+lDRH) 0.783 0.754 0.801 0.733
DRH All 0.851 0.825 0.849 0.802

Table 5: The time cost (ms) for different algorithms

Datasets
CNN feature

(Tolias 2015))
512-D conv5

DRH
512-D hash

DRH
1024-D hash

Oxford 105K 1078 3 12
Paris 106K 1137 3 12

tel@Core i7-6700K. The graphics is GeGorce GTX TITAN
X/PCle/SSE2. The search time is average number of mil-
liseconds to return top M = 400 results to a query, and the
time costs are reported in Tab. 5.

There results show that directly using max pooling fea-
tures extracted from conv5 to conduct INS search is much
slower than using our hash codes. It takes 1078 ms on Ox-
ford 105k dataset and 1137 ms on Paris 106k dataset for
(Tolias, Sicre, and Jégou 2015). By contrast, when the code
length is 512, our DRH is more than 300 times faster than
(Tolias, Sicre, and Jégou 2015), and it takes 3 ms on both
Oxford 105k and Paris 106k datasets. Even when the code
length increases to 1024, DRH can achieve nearly 100 times
faster than (Tolias, Sicre, and Jégou 2015). Therefore, our
method has the ability to work on large scale datasets.

Conclusion

In this work, we propose an unsupervised deep region hash-
ing (DRH) method, a fast and efficient approach for large-
scale INS with an image patch as the query input. We firstly

utilize deep conv feature map to extract nearly 40 regions
to generate hash codes to represent each image. Next, the
gDRH search, gQE, lDRH and lQE are applied to further
improve the INS search performance. Experiment on four
datasets demonstrate the superiority of our DRH compared
to others in terms of both efficiency and effectiveness.
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