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Abstract

In traditional models for word-of-mouth recommendations
and viral marketing, the objective function has generally been
based on reaching as many people as possible. However, a
number of studies have shown that the indiscriminate spread
of a product by word-of-mouth can result in overexposure,
reaching people who evaluate it negatively. This can lead to
an effect in which the over-promotion of a product can pro-
duce negative reputational effects, by reaching a part of the
audience that is not receptive to it.
How should one make use of social influence when there is
a risk of overexposure? In this paper, we develop and ana-
lyze a theoretical model for this process; we show how it cap-
tures a number of the qualitative phenomena associated with
overexposure, and for the main formulation of our model, we
provide a polynomial-time algorithm to find the optimal mar-
keting strategy. We also present simulations of the model on
real network topologies, quantifying the extent to which our
optimal strategies outperform natural baselines.

Introduction

A rich line of research has studied the effectiveness of mar-
keting strategies based on person-to-person recommenda-
tion within a social network — a process often termed vi-
ral marketing (Jurvetson 2000) and closely connected to
the broader sociological literature on the diffusion of inno-
vations in social networks (Rogers 1995). A key genre of
theoretical question that emerged early in this literature is
the problem of optimally “seeding” a product in a social
network through the selection of a set of initial adopters
(Domingos and Richardson 2001; Kempe, Kleinberg, and
Tardos 2003; Richardson and Domingos 2002). In this class
of questions, we consider a firm that has a product they
would like to market to a group of agents on a social net-
work; it is often the case that the firm cannot target all the
participants in the network, and so they seek to target the
most influential ones so as to maximize exposure and create
a cascade of adoptions. Approaches to this question have
generally been based on objective functions in which the
goal is to maximize the number of people who are reached
by the network cascade — or more generally, in which the
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objective function monotonically increases in the number of
people reached.
The dangers of overexposure. Separately from this, lines
of research in both marketing and in the dynamics of on-line
information have provided diverse evidence that the bene-
fits of a marketing campaign are not in fact purely increas-
ing in the number of people reached. An influential example
of such a finding is the Groupon effect, in which viral mar-
keting via Groupon coupons leads to lower Yelp ratings. In
(Byers, Mitzenmacher, and Zervas 2012), they note the neg-
ative effect Groupon has on average Yelp ratings and provide
arguments for the underlying mechanism; one of their cen-
tral hypotheses is that by using Groupon as a matchmaker,
businesses may be attracting customers from a portion of
the population that is less inclined to like the product. In an-
other example, (Kovcs and Sharkey 2014) discusses a setting
on Goodreads where books that win prestigious awards (or
are short-listed for them) attract more readers following the
announcement, which again leads to a drop in the average
rating of the book on the platform. In (Aizen et al. 2004),
they find a similar effect for on-line videos and other me-
dia; they receive a discontinuous drop in their ratings when
a popular blog links to them, driving users to the item who
may not be interested in it.

Research in marketing has shown that exposure to dif-
ferent groups and influence between such groups can help
or hurt adoption (Hu and den Bulte 2014; Joshi, Reibstein,
and Zhang 2016; Berger and Heath 2007). For example, (Hu
and den Bulte 2014) argues that agents adopt products to
boost their status; and so as word-of-mouth effects for a
product become stronger among middle-income individuals,
there might be a negative impact on adoption among higher-
income individuals. Similar behavior is observed in health
campaigns. In (Wakefield et al. 2003), they discuss the im-
portance of segmenting populations and exposing groups to
anti-smoking campaigns whose themes the group is most
susceptible to in order to maximize impact of future cam-
paigns.

We think of these effects collectively as different forms of
overexposure; while reaching many potential customers is
not a concern in and of itself, the empirical research above
suggests that there may exist particular subsets of the pop-
ulation — potentially large subsets — who will react neg-
atively to the product. When a marketing cascade reaches
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members of this negatively inclined subset, the marketing
campaign can suffer negative payoff that may offset the
benefits it has received from other parts of the population.
This negative payoff can come in the form of harm to the
firm’s reputation, either through latent consumer impres-
sions and effects on brand loyalty (Cretu and Brodie 2007;
Cravens, Oliver, and Ramamoorti 2003) or through explic-
itly visible negative reviews on rating sites.

Despite the importance of these considerations in mar-
keting, they have not been incorporated into models of
influence-based marketing in social networks. What types of
algorithmic issues arise when we seek to spread a word-of-
mouth cascade through a network, but must simultaneously
ensure that it reaches the “right” part of the audience — the
potential customers who will like the product, rather than
those who will react negatively to it?
The present work: A model of cascades with the risk of
overexposure. In this paper, we propose a basic theoreti-
cal model for the problem of seeding a cascade when there
are benefits from reaching positively inclined customers and
costs from reaching negatively inclined customers.

There are many potential factors that play a role in the
distinction between positively and negatively inclined cus-
tomers, and for our model we focus on a stylized framework
in which each product has a known parameter φ in the in-
terval [0, 1] that serves as some measure for the breadth of
its appeal. At this level of generality, this parameter could
serve as a proxy for a number of things, including quality;
or a one-dimensional combination of price and quality; or —
in the case where the social network represents a population
defined by a specific interest — compatibility with the core
interests of network’s members.

Each node in the network is an agent who will evaluate the
product when they first learn of it; agents differ in how crit-
ical they are of new products, with agents of low criticality
tending to like a wider range of products and agents of high
criticality tending to reject more products. Thus, each agent
i has a criticality parameter θi in the interval [0, 1]; since we
assume that the firm has a history of marketing products to
this network over a period of time, it knows this parameter
θi. When exposed to a product, an agent accepts the prod-
uct if φ ≥ θi and advertises the product to their neighbors,
leading to the potential for a cascade. However, if φ < θi,
then the agent rejects the product, which results in a negative
payoff to the firm; the cascade stops at such agents i, since
they do not advertise it to their neighbors.

The firm’s goal is to advertise the product to a subset of
the nodes in the network — the seed set — resulting in a po-
tential cascade of further nodes who learn about the product,
so as to maximize its overall payoff. This payoff includes a
positive term for each agent i who sees the product and has
φ ≥ θi, and a negative term for each agent i who sees the
product and has φ < θi; agents who are never reached by the
cascade never find out about the product, and the firm gets
zero payoff from them.
Overview of Results. We obtain theoretical results for two
main settings of this problem: the unbudgeted case, in which
the firm can initially advertise the product to an arbitrary
seed set of nodes, and the budgeted case, in which the firm

can advertise the project to at most k nodes, for a given
parameter k. We note that typically in influence maximiza-
tion problems, the unbudgeted case is not interesting: if the
payoff is monotonically increasing in the number of nodes
who are exposed to the product, then the optimal unbud-
geted strategy is simply to show the product to everyone. In
a world with negative payoffs from overexposure, however,
the unbudgeted optimzation problem becomes non-trivial:
we must trade off the benefits of showing the product to cus-
tomers who will like it against the negatives that arise when
these customers in turn share it with others who do not.

For the unbudgeted problem, we give a polynomial-time
algorithm for finding the optimal seed set. The algorithm
uses network flow techniques on a graph derived from the
underlying social network with the given set of parameters
θi. In contrast, we provide an NP-hardness result for the bud-
geted problem.

We then provide a natural generalization of the model:
rather than each agent exhibiting only two possible behav-
iors (rejecting the product, or accepting it and promoting it),
we allow for a wider range of agent behaviors. In particular,
we will assume each agent has three parameters which con-
trol whether the agent ignores the product, views but rejects
the product, accepts the product but does not broadcast it to
its neighbors, and accepts the product and advertises it to
neighbors. We show how to extend our results to this more
general setting, obtaining a polynomial-time algorithm for
the unbudgeted case and an NP-hardness result for the bud-
geted case.

Finally, we perform computational simulations of our al-
gorithm for the unbudgeted case on sample network topolo-
gies derived from moderately-sized social networks. We find
an interesting effect in which the performance of the optimal
algorithm transitions between two behaviors as φ varies. For
small φ the payoff grows slowly while a baseline that pro-
motes the product to every agent i with θi < φ achieves neg-
ative payoff (reflecting the consequences of overexposure).
Then, for large φ, the payoff grows quickly, approaching a
simple upper bound consisting of all i for which θi < φ.

Preliminaries
There is a product with a parameter φ ∈ [0, 1], measuring the
breadth of its appeal. G is an unweighted, undirected graph
with n agents as its nodes. For each agent i, the agent’s crit-
icality parameter θi ∈ [0, 1] measures the minimum thresh-
old for φ the agent demands before adoption. Thus, higher
values of θi correspond to more critical agents. We assume
that these values are fixed and known to the firm.

The firm chooses an initial set of agents S ⊆ V to “seed”
with the product. If an agent i sees the product, it accepts
it if θi ≤ φ and rejects it if θi > φ. We say that an agent
i is accepting in the former case and rejecting in the latter
case. Each accepting agent who is exposed to the product
advertises it to their neighbors, who then, recursively, are
also exposed to the product. We will assume throughout that
the firm chooses a seed set consisting entirely of accepting
nodes (noting, of course, that rejecting nodes might subse-
quently be exposed to the product after nodes in the seed set
advertise it to their neighbors).
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We write V (S) for the set of agents exposed to the product
if the seed set is S. Formally, V (S) is the set of all agents i
who have a path to some node in j ∈ S such that all of the
internal nodes on the i-j path are accepting agents; this is the
“chain of recommendations” by which the product reached
i. Among the nodes in V (S), we define V +(S) to be the set
of agents who accept the product and V −(S) to be the set of
agents who reject the product.

The payoff function associated with seed set S is
π(S) = |V +(S)| − |V −(S)|. (1)

We can, more generally, assume that there is a payoff of p to
accepting the product and a negative payoff of q to rejecting
the product, and we set the payoff function to be:

π(S) = p|V +(S)| − q|V −(S)|. (2)
We will call this the generalized payoff function, and simply
refer to Equation 1 as the payoff function. The overarching
question then is:
Problem 1. Given a set of agents V with criticality param-
eters θi (i ∈ V ) on a social network G = (V,E), and given
a product of quality φ, what is the optimal seed set S ⊆ V
that the firm should target in order to maximize the payoff
given by equation (2)?

In contrast to much of the influence maximization liter-
ature, we assume that the agents’ likelihood of adoption,
once exposed to this product, is not affected by which of
their neighbors have accepted or rejected the product. This
differs from, for instance, models in which each agent re-
quires a certain fraction (or number) of its neighbors to have
accepted the product before it does; or models where prob-
abilistic contagion takes place across the edges. These all
form interesting directions for further work; here, however,
we focus on questions in which the intrinsic appeal of the
product, via φ, determines adoption decisions, and the social
network provides communication pathways for other agents
to hear about the product.

Before proceeding to the main result, we develop some
further terminology that will be helpful in reasoning about
the seed-sets.
Definition 2. Let i be an accepting node, and let S = {i}.
Then we say that V (S) is the cluster of i, denoted by Ci; we
call V +(S) the interior of Ci and denote it by Co

i , and we
call V −(S) the boundary of Ci and denote it by Cb

i .
We denote the payoff corresponding to the seed set S =

{i} by πi. Note that,

πi = p|Co
i | − q|Cb

i |.
Lemma 3. Given an accepting node i ∈ V , and a node
j ∈ Co

i , we have Ci = Cj .

Proof. If j is in the interior of Ci, then there exists a path
(k1, k2, · · · , k�) in G, where i = k1 and j = k� such that
each node along the path has θ ≤ φ. (That is, each node
ki is exposed to and accepts the product as a result of ki−1’s
advertisement.) We would like to prove that if S = {j}, then
i would be exposed to the product. Equivalently, we want to
show there exists a path from j to i of nodes with θ ≤ φ; but
this is precisely the path (k�, k�−1, · · · , k1).

For an arbitrary seed set S, the set V (S) may consist
of multiple interior-disjoint clusters, which we label by
{C1, C2, · · · , Ck}, where k ≤ |S|. Note that each of these
clusters might be associated with more than one agent in the
seed-set and that ∪k

i=1Ci = V (S). (Likewise, ∪k
i=1C

o
i =

V +(S) and ∪k
i=1C

b
i = V −(S).)

Given a seed-set S and corresponding clusters, a direct
consequence of Lemma 3 is that adding more nodes already
contained in these clusters to the seed-set does not change
the payoff.

Lemma 4. Given a set S′ of accepting nodes such that S ⊆
S′ ⊆ V (S), we have π(S) = π(S′).

It therefore suffices to seed a single agent within a cluster.
Given a cluster Ci, we will simply pick an arbitrary node in
the interior of the cluster to be the canonical node i and use
that to refer to the cluster even if Ci is formed as a result of
seeding another node j ∈ Co

i .

Main Model

Given that all θi are known to the firm, a naive approach
would suggest to seed all i where πi ≥ 0. While this is guar-
anteed to give a nonnegative payoff, S need not be optimal.

Example 5. Consider the graph below, where nodes in blue
accept the product and those in red reject the product.

1

2

3

4

5

6

7

Suppose p = q = 1. Then, a naive approach would set
S = ∅, since each of the clusters has negative payoff. How-
ever, setting S = {1, 2, 6, 7} has payoff 1.

This phenomenon is a result of the fact that the clusters
Ci might have boundaries that intersect non-trivially. Thus,
there could be agents whose πi < 0 but Cb

i is in a sense
“paid for” by seeding other agents; and hence we could have
a net-positive payoff from including i subject to seeding
other agents whose cluster boundaries intersect with Cb

i .
Using this observation, in this section we will give a

polynomial-time algorithm for finding the optimal seed-set
under the generalized payoff function using a network flow
argument. We first begin by constructing a flow network.

Given an instance defined by G and φ, we let
{C1, C2, · · · , Ck} be the set of all distinct clusters in G,
with disjoint interiors. We form a flow network as follows:
set A = {1, 2, · · · , k} corresponding to the canonical nodes
of the clusters above and R be the set of agents in the bound-
aries of all clusters. We add an edge from the source node s
to each node i ∈ A with capacity p · |Co

i | and label this value
by capi, and an edge from each node j ∈ R to t with capac-
ity q. We add an edge between i and j if and only if j ∈ Cb

i ,
and set these edges to have infinite capacity. We denote this
corresponding flow network by GN .
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1, 2

6, 7

3

4

5

s t

Example 6. For the above example, GN is:
In this example, the edges out of s have capacities 2p and

edges into t have capacities q. Edges between blue and red
notes have infinite capacity. Assuming 4p ≥ 3q, the min-cut
(X,Y ) has Y = {t} and all other nodes in X .
Lemma 7. Given a min-cut (X,Y ) in GN , the optimal seed
set in G is A ∩X .

Proof. The min-cut (X,Y ) must have value at most q|R|
since we can trivially obtain that by setting the cut to be
(V (GN )\{t}, {t}). Given a node i ∈ X , which we recall
corresponds to the canonical node of a cluster, if a node
j ∈ R is exposed to the product as a result of seeding any
node in the cluster, then j ∈ X . Otherwise, we would have
edge (i, j) included in the cut, which has infinite capacity
contradicting the minimality of the cut (X,Y ). Therefore,
the min-cut will include all nodes in the seed-set as well as
all nodes that are exposed to the product as a result of the
corresponding seed-set in S.

Note that the edges across the cut are of two forms: (s, i)
or (j, t), where i ∈ A and j ∈ R. The first set of edges con-
tribute

∑
i∈A∩Y capi (recall capi = p · |Co

i |) and the latter
contributes |R ∩X|q. Therefore, the objective for finding a
min-cut can be equally stated as minimizing

∑

i∈A∩Y
capi +|R ∩X|q.

over cuts (X,Y ). Note that
∑

i∈A
capi =

∑

i∈A∩X
capi +

∑

i∈A∩Y
capi .

Therefore, we have

(
∑

i∈A∩Y
capi +|R ∩X|q)

= (
∑

i∈A
capi −

∑

i∈A∩X
capi +|R ∩X|q)

=
∑

i∈A
capi −(

∑

i∈A∩X
capi − |R ∩X|q)

Note the term (
∑

i∈A∩X capi − |R ∩ X|q) is precisely
what the payoff objective function is maximizing, giving a
correspondence between the min-cut and optimal seed set.

We therefore have the main result of this section:
Theorem 8. There is a polynomial-time algorithm for com-
puting the optimal seed-set for Problem 1 when there are no
budgets for the size of the seed-set.

An interesting phenomenon is that the payoff is not mono-
tone in φ even when considering optimal seed-sets. Take the
following example:
Example 9. Suppose we are given the network below with
the numbers specifying the θi for each corresponding node:

0.2

0.2

0.5

1

1

1

1

If φ ∈ [0, 0.2), we cannot do better than the empty-set.
If φ ∈ [0.2, 0.5), the seed-set that includes either of the two
left-most nodes gives a payoff of 1, which is optimal. For the
case where φ ∈ (0.5, 1), the empty-set is again optimal.

This example gives a concrete way to think about over-
exposure phenomena such as the Groupon effect (Byers,
Mitzenmacher, and Zervas 2012) discussed in the introduc-
tion. Viewed in the current terms, we could say that by us-
ing Groupon, one could increase the broad-appeal measure
of the product (e.g., cheaper, signaling higher quality, etc),
which therefore exposes the product to portions of the mar-
ket that would have previously not been exposed to it, and
this could lead to a worse payoff.

Generalized Model

We now consider the generalized model where there are
three parameters corresponding to each agent i, τi ≤ θi ≤
σi. An agent considers a product if τi ≤ φ, adopts a product
if θi ≤ φ, and advertises it to their friends if σi ≤ φ. If an
agent is exposed to a product but φ < τi, then the payoff
associated with the agent is 0. If φ ∈ [τi, θi), then the agent
rejects the product, for a payoff of −q < 0. As before, there
is a payoff of p > 0 if the agent accepts the product; how-
ever, the agent only advertises the product to its neighbors
after accepting if φ ≥ σi. We therefore have four types of
agents:
• Type I: Agents for which φ < τi,
• Type II: Agents for which φ ∈ [τi, θi),
• Type III: Agents for which φ ∈ [θi, σi), and
• Type IV: Agents for which φ ≥ σi.

We denote the set of all agents of Type I by T1 (and like-
wise for the other types). The basic model above is the spe-
cial case where τi = 0 and θi = σi for all i ∈ V . In this
instance, we only have agents of Types II and IV.
Lemma 10. Given any seed-set S, we note:

1. π(S) = π(S ∪ T1),
2. π(S) ≤ π(S ∪ T3).

Proof. These follow from the observation that:

1. Agents of Type I are those that do not look at the product
since φ is below their threshold τi, and thus do not affect
the payoff function when added to any seed-set.
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2. Agents of Type III are those for which φ ≥ θi, and there-
fore they accept the product, but do not advertise it to their
friends. Therefore, adding such an agent to the seed-set
increases the payoff by exactly p > 0 per agent added.

In the simplest case, we have τi = θi and σi = 1, such
that agents will be either of Type I or III, and the optimal
seed-set is precisely S = T3. That is, agents only view a
product if they are going to accept it and they never advertise
it to their neighbors, and there is no cascade triggered as a
result of seeding agents.

When this is not the case, we will note that the results in
the previous section can be adapted to this setting to find
an optimal seed-set efficiently. Given a network G in this
generalized setting, consider a corresponding network G′ =
(V ′, E′), which is the subgraph of G consisting of agents
of only Types II and IV. We can then apply the algorithm in
the previous section to this subgraph G′ to find an optimal
seed-set. We claim that the union of this with agents of Type
III yields an optimal seed-set in G.
Theorem 11. Given a product with a value φ and a net-
work G with agents of parameters τi, θi, and σi, there is a
polynomial-time algorithm for finding an optimal seed-set to
maximize the payoff function.

Proof. Given such a graph G, and a corresponding subgraph
G′ with an optimal seed-set S′, we argue that S′ ∪ T3 is an
optimal seed-set in G.

For the sake of contradiction, suppose S is an optimal
seed-set in G, such that π(S) > π(S′ ∪ T3). By Lemma 10,
we can assume that S does not include any agent of Type I
and includes all agents of Type III. This assumption implies
π(S\T3) > π(S′). But since S\T3 ⊆ G′, this contradicts
the optimality of S′.

Returning to the implications for the Groupon effect, we
note that a firm can efficiently maximize its payoff over the
choice of both the seed set and φ. Suppose the firm knows
the parameters τi, θi, σi for each of the agents i. Given n
agents, these values divide up the unit interval into at most
4n subintervals Ij . It is easy to see that the payoff depends
only on which subinterval φ is contained in, but does not
vary within a subinterval. Earlier, we saw the payoff need
not be monotone in φ; but by trying values of φ in each of
the 3n subintervals, the firm can determine a value of φ and
a seed set that maximize its payoff.

Budgeted Seeding is Hard

In this section, we show that the seeding problem, even for
the initial model, is NP-hard if we consider the case where
there is a budget k for the size of the seed-set and we want
to find S subject to the constraint that |S| ≤ k. In the tradi-
tional influence maximization literature, we leverage prop-
erties of the payoff function such as its submodularity or
supermodularity to give algorithms that find optimal or near-
optimal seed-sets. The payoff function here, however, is nei-
ther submodular nor supermodular. Here, we show an even

stronger hardness result: it is NP-hard to decide if there is
a (budgeted) set yielding positive payoff. Since it is NP-
hard to tell whether the optimum in any instance is positive
or negative, it is therefore also NP-hard to provide an ap-
proximation algorithm with any multiplicative guarantee —
a sharp contrast with the multiplicative approximation guar-
antees available for budgeted problems in more traditional
influence maximization settings.
Theorem 12. The decision problem of whether there exists
a seed set S with |S| ≤ k and π(S) > 0 is NP-complete.

Proof. We will prove this using a reduction from the NP-
complete Clique problem on d-regular graphs: given a d-
regular graph G and a number k, the question is to determine
whether there exists a k-clique — a set of k nodes that are
all mutually adjacent. (We also require d ≥ k.)

We will reduce an instance of k-clique on d-regular
graphs to an instance of the decision version of our bud-
geted seed-set problem as follows. Given such an instance
of Clique specified by a d-regular graph G and a number k,
we construct an instance of the budgeted seed set problem
on a new graph G′ obtained from G as follows: we replace
each (i, k) ∈ E, with two new edges (i, j), (j, k), where j is
a new node introduced by subdividing (i, k). Let V be the set
of nodes originally in G, and V ′ the set of nodes introduced
by subdividing. In the seed-set instance on G′, we define θi
and φ such that θi < φ for all i ∈ V and θi > φ for all
i ∈ V ′. We define the payoff coefficients p, q by q = 1 and
p = d− (k − 1)/2 + ε for some 0 < ε < 1/n2.

We will show that G has a k-clique if and only if there is
a seed set of size at most k in G′ with positive payoff.

First, suppose that S is a set of k nodes in G that are
all mutually adjacent, and consider the corresponding set of
nodes S in G′. As a seed set, S has k accepting nodes and
kd − (

k
2

)
rejecting neighbors, since G is d-regular but the

nodes on the
(
k
2

)
subdivided edges are double-counted. Thus

the payoff from S is kp−(kd−(
k
2

)
) = k(p−d+(k−1)/2),

which is positive by our choice of p.
For the converse, suppose S has size k′ ≤ k and has pos-

itive payoff in G′. Since the seed set consists entirely of ac-
cepting neighbors (any others can be omitted without de-
creasing the payoff), S ⊆ V , and hence so the neighbors
of S reject the product. If S induces � edges in G, then the
payoff from S includes a negative term from each neighbor,
with the nodes on the � subdivided edges double-counted,
so the payoff is k′p − (k′d − �). If |S| = k′ < k, then
since � ≤ (

k′

2

)
, the payoff is at most k′p − (k′d − (

k′

2

)
) =

k′(p − d + (k′ − 1)/2), which is negative by our choice of
p. If |S| = k and � ≤ (

k
2

) − 1, then the payoff is at most
kp − (kd − (

(
k
2

) − 1)) = k(p − d + (k − 1)/2 − 1/k),
which again is negative by our choice of p. Thus it must be
that |S| = k and � =

(
k
2

)
, so S induces a k-clique as re-

quired.

Experimental Results
In this section, we present some computational results us-
ing datasets obtained from SNAP (Stanford Network Anal-
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Figure 1: Payoff as a function of product quality φ for (a) email and (b) text networks for the general model where τi, θi, σi are
chosen from the uniform distribution on [0, 1] . The blue curve represents the natural upper bound of the total number of agents
with θi < φ . The green line corresponds to the payoff obtained by seeding agents whose τi ≤ φ. The purple line represents
the number of agents of Type III, where φ ∈ [θi, σi) and the red line corresponds to the seed set selected by our algorithm. The
difference between the red and green curve captures the Groupon Effect of overexposure.

ysis Project). In particular, we consider an email network
from a European research institution (Paranjape, Benson,
and Leskovec 2017; Leskovec, Kleinberg, and Faloutsos
2007) and a text message network from a social-networking
platform at UC-Irvine (Panzarasa, Opsahl, and Carley 2009).

The former is a directed network of emails sent between
employees over an 803-day period, with 986 nodes and
24929 directed edges. The latter is a directed network of
text messages sent between students through an online so-
cial network at UC Irvine over a 193-day period, with 1899
nodes and 20296 directed edges. In both networks, we use
the edge (i, j) to indicate that i sent at least one email or text
to node j over the time period considered.

For both of these networks, we present results correspond-
ing to the general model. We consider 100 evenly-spaced
values of φ in [0, 1] and compare the seed-set obtained by
our algorithm with some natural baselines. The parameters
τi ≤ θi ≤ σi for each agent are chosen as follows: we draw
three numbers independently from an underlying distribu-
tion (we analyze both the uniform distribution on [0, 1] and
the Gaussian distribution with mean 0.5 and standard devia-
tion 0.1); we then sort these three numbers in non-decreasing
order and set them to be τi, θi, and σi respectively.

For each φ we run 100 trials and present the average pay-
off. The average time to run one simulation is 0.915 seconds
for the text network and 0.454 seconds for the email net-
work. This includes the time to read the data and assemble
the network; the average time spent only on computing the
min-cut for the corresponding network is 0.052 and 0.054
seconds respectively.

For each of these figures, we give a natural upper-bound
which is the number of agents such that θi < φ. This in-
cludes agents of type III and IV. We note that the seed-set
obtained by our algorithm often gives a payoff close to this
upper bound. We compare this to two natural baselines: the
first sets agents of Type III to be the seed-set and the sec-
ond sets agents of both Types III and IV to be the seed-set.

We show that the first baseline performs well for lower val-
ues of φ, where the second baseline underperforms signif-
icantly; and, the second picks up performance significantly
for higher values of φ while the first baseline suffers. The
seed-set obtained by our algorithm, on the other hand, out-
performs both baselines by a notable margin for moderate
values of φ. This gap in performance corresponds to the
overexposure effect in our models.

Each of the figures show that the seed-set chosen by our
algorithm outperforms these natural baselines. In Figure 1,
we note for φ < 2/3 the optimal seed-set obtained through
our algorithm is close to picking only agents of type III.
Adding on agents of type IV performs worse than both
seeding just agents of type III or the optimal seed-set. This
changes for φ values over 2/3. Here, the number of agents
of type III drops, and thus the payoff obtained by seeding
agents of type III drops with it. On the other hand, the seed-
set consisting of all agents of types III and IV picks up per-
formance, coming close to the optimal seed-set for φ ≈ 0.7.
This behavior appears in both the text and email networks.

Further Related Work

As noted in the introduction, our work — through its fo-
cus on selecting a seed set of nodes with which to start
a cascade — follows the motivation underlying the line
of theoretical work on influence maximization (Domingos
and Richardson 2001; Kempe, Kleinberg, and Tardos 2003;
Richardson and Domingos 2002). A related line of work has
made use of rich datasets on digital friend-to-friend recom-
mendations on e-commerce sites to analyze the flow of prod-
uct recommendations through an underlying social network
(Leskovec, Adamic, and Huberman 2007). Further work has
experimentally explored influence strategies, with individu-
als either immediately broadcasting their product adoption
to their social network, or selecting individuals to recom-
mend the product to (Aral and Walker 2011).

The consequences of negative consumer reactions have
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Figure 2: These plots give payoff for (a) email and (b) text network for the general model with parameters chosen from the
Gaussian distribution with mean 0.5 and standard deviation 0.1 for 100 evenly-spaced φ values in [0, 1].

been analyzed in a range of different domains. In the in-
troduction we noted examples involving Groupon (Byers,
Mitzenmacher, and Zervas 2012), book prizes (Kovcs and
Sharkey 2014), and on-line media collections (Aizen et al.
2004). Although experimentally introduced negative ratings
tend to be compensated for in later reviews, positive re-
views can lead to herding effects (Muchnik, Aral, and Tay-
lor 2013). There has also been research seeking to quantify
the economic impact of negative ratings, in contexts ranging
from seller reputations in on-line auctions (Bajari and Hor-
tascu 2004; Resnick et al. 2006) to on-line product reviews
(Pang and Lee 2008). This work has been consistent in as-
cribing non-trivial economic consequences to negative con-
sumer impressions and their articulation through on-line rat-
ings and reviews. Recent work has also considered the rate
at which social-media content receives “likes” as a fraction
of its total impressions, for quantifying a social media audi-
ence’s response to cascading content (Rotabi et al. 2017).

The literature on pricing goods with network effects is an-
other domain that has developed models in which consumers
are heterogeneous in their response to diffusing content. The
underlying models are different from what we pursue here;
a canonical structure in the literature on pricing with net-
work effects is a set of consumers with different levels of
willingness to pay for a product (Katz and Shapiro 1985).
This willingness to pay can change as the product becomes
more popular; a line of work has thus considered how a
product with network effects can be priced adaptively over
time as it diffuses through the network (Arthur et al. 2009;
Hartline, Mirrokni, and Sundararajan 2008). The variation
in willingness to pay can be viewed as a type of “critical-
ity,” with some consumers evaluating products more strictly
and others less strictly. But a key contrast with our work is
that highly critical individuals in these pricing models do
not generally confer a negative payoff when they refuse to
purchase an item.

Conclusion

Theoretical models of viral marketing in social networks
have generally used the assumption that all exposures to a

product are beneficial to the firm conducting the marketing.
A separate line of empirical research in marketing, however,
provides a more complex picture, in which different poten-
tial customers may have either positive or negative reactions
to a product, and it can be a mistake to pursue a strategy that
elicits too many negative reactions from potential customers.

In this work, we have proposed a new set of theoreti-
cal models for viral marketing, by taking into account these
types of overexposure effects. Our models make it possible
to consider the optimization trade-offs that arise from trying
to reach a large set of positively inclined potential customers
while reducing the number of negatively inclined potential
customers who are reached in the process. Even in the case
where the marketer has no budget on the number of people
it can expose to the product, this tension between positive
and negative reactions leads to a non-trivial optimization
problem. We provide a polynomial-time algorithm for this
problem, using techniques from network flow, and we prove
hardness for the case in which a budget constraint is added to
the problem formulation. Computational experiments show
how our polynomial-time algorithm yields strong results on
network data.

Our framework suggests many directions for future work.
It would be interesting to integrate the role of negative pay-
offs in our model here with other technical components that
are familiar from the literature on influence maximization,
particularly the use of richer (and potentially probabilistic)
functions governing the spread from one participant in the
network to another. For example, when nodes have non-
trivial thresholds for adoption — requiring both that they
evaluate the product positively and also that they have heard
about it from at least k other people, for some k > 1 — how
significantly do the structures of optimal solutions change?

It will also be interesting to develop richer formalisms
for the process by which positive and negative reactions
arise when potential customers are exposed to good or bad
products. With such extended formalisms we can more fully
bring together considerations of overexposure and reputa-
tional costs into the literature on network-based marketing.
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