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Abstract

We study transfer learning in convolutional network architec-
tures applied to the task of recognizing audio, such as en-
vironmental sound events and speech commands. Our key
finding is that not only is it possible to transfer representa-
tions from an unrelated task like environmental sound classi-
fication to a voice-focused task like speech command recog-
nition, but also that doing so improves accuracies signifi-
cantly. We also investigate the effect of increased model ca-
pacity for transfer learning audio, by first validating known
results from the field of Computer Vision of achieving bet-
ter accuracies with increasingly deeper networks on two au-
dio datasets: UrbanSound8k and Google Speech Commands.
Then we propose a simple multiscale input representation us-
ing dilated convolutions and show that it is able to aggregate
larger contexts and increase classification performance. Fur-
ther, the models trained using a combination of transfer learn-
ing and multiscale input representations need only 50% of the
training data to achieve similar accuracies as a freshly trained
model with 100% of the training data. Finally, we demon-
strate a positive interaction effect for the multiscale input and
transfer learning, making a case for the joint application of
the two techniques.

Introduction

Detection of everyday sounds, such as sounds originating
from machinery, traffic sounds, animal sounds, and mu-
sic is essential for building autonomous agents responsive
to their surroundings. This has myriad applications rang-
ing from autonomous vehicles (Chu et al. 2006) to surveil-
lance (Ntalampiras, Potamitis, and Fakotakis 2009) to moni-
toring noise pollution in cities (Maijala et al. 2018; Salamon,
Jacoby, and Bello 2014). Similarly, Spoken Term Recogni-
tion (Miller et al. 2007) has broad applications from con-
versational agents (Sainath and Parada 2015) to monitoring
news (Parlak and Saraclar 2008). While many approaches
have focused individually on the classification of everyday
sounds or recognizing speech, there has been limited investi-
gation into the relationship between models trained on both
tasks.

In this paper, we present a systematic study of mod-
ern convolutional neural network architectures and transfer
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learning between two unrelated audio domains – environ-
mental sounds and speech commands. Additionally, we in-
troduce a method for increasing the input resolution of the
networks using a single layer of dilated convolutions at mul-
tiple scales. Our experiments are designed to answer ques-
tions about model capacity, the effect of multiscale dilated
convolutions, and the quality of feature learning on audio
spectrograms.

In our first experiment, we study model capacity of sev-
eral convolutional network architectures by measuring the
performance at varying depths, with and without multiscale
dilated convolutions as inputs on an environmental sound
classification task.

Informed by the first experiment, we selected a single
convolutional network architecture in our second experi-
ment to evaluate the effectiveness of transfer learning from
environmental sounds to speech commands. Models that
were pre-trained on environmental sounds and adapted to
speech commands were compared to models trained solely
on speech commands. Additionally, we investigated whether
or not multiscale input through dilated convolutions had a
significant impact on the transfer learning. The results of
this experiment strongly suggest that the pre-trained con-
volutional networks with the multiscale inputs are learning
important properties about audio spectrograms.

Finally, in our third experiment, we repeated the second
experiment of transfer learning from environmental sounds
to speech commands but varied the amount of speech com-
mand data used for adapting and training. We observe that
the pre-trained models need far less data to adapt to the
new domain and achieved the much higher accuracy than the
models trained only on the speech command data. We also
report experiments demonstrating that this gain in accuracy
and reduction in training data is additive when multi-scale
input representations are used with pre-training.

We conclude by discussing the implications and scope of
our experiments.

Related Work

Classifying audio signals has a long and diverse history.
In particular, the classification of environmental sounds
has attracted researchers from speech to signal process-
ing to bioacoustics employing a range of approaches, such
as Support Vector Machines (Temko et al. 2006), Random
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No. Audio Samples Total Hours No. Classes
UrbanSound8K 8732 8.75 10
Google Speech Commands 64721 17.97 30

Table 1: Descriptions of the two labeled audio datasets that were used, UrbanSound8K and Google Speech Commands, in terms
of the number of audio samples, total hours, and total number of classes.

Forests Classifiers (Piczak 2015b), and Multi Layer Percep-
trons (Inkyu Choi and Kim 2016). Recently, (Piczak 2015a)
and (Salamon and Bello 2016) show Convolutional Neural
Networks outperform the traditional methods. Despite the
success, neither of these approaches have investigated ex-
tremely deep networks (100+ layers) on audio data, one of
the goals of this paper.

Relatedly, automatic tagging of music has seen several
convolutional networks (Dieleman and Schrauwen 2014;
Choi, Fazekas, and Sandler 2016; Lee and Nam 2017), but
the networks have been relatively small compared the ones
we investigate in this paper. In contrast, domains of audio
classification have not seen the systematic application of
the increasingly deeper convolutional network architectures
that have immensely advanced Computer Vision (Deng et al.
2009; He et al. 2016; Huang et al. 2016).

For audio classification, however, only recently did Her-
shey et al. (2017) apply a 50-layer Residual Network (also
called ResNets) (He et al. 2016) and a 48-layer Inception-
V3 (Szegedy et al. 2015) network to classify the soundtracks
of videos. We extend the audio classification task to models
larger than a 100 layers. Our largest network is a 169 layers
deep that we were able to train on a single NVIDIA Titan X
GPU in 20 minutes on the UrbanSound8K dataset ( 8 hours
of training data), without needing any specialized large-scale
training infrastructure.

Incorporating information from multiple scales is a chal-
lenge to convolutional networks, but recently dilated con-
volutions have shown efficacy in doing so for image clas-
sification tasks (Yu and Koltun 2015). Dilations were suc-
cessfully used by Oord et al.(2016) for a text-to-speech
task where the dilated convolution layers are applied hier-
archically as a generative model of audio waveforms. Pre-
vious works on using multiscale spectrogram (Dieleman
and Schrauwen 2014; Choi, Fazekas, and Sandler 2016;
Lee and Nam 2017) do not study the effect of multiscale
convolutions on spectrogram features. Perhaps the closest
work to ours in integrating multiple scales of information in
a single layer is Pons et al. (2017), but this work focuses
on uses convolutions of heuristically-derived sizes, while
we leverage the computational efficiency of dilated convo-
lutions in a simple and straight forward utilization. To the
best of our knowledge, this is the first work to systematically
study the effect of multiple scales of dilated convolutions for
audio classification.

A prominent use of convolutional neural networks in
Computer Vision is to utilize transfer learning to classify
new image categories (Zeiler and Fergus 2014). Xu et al.
(2014) demonstrate transferring representations from speech
models trained in one language to another (English to Chi-
nese). Choi et al. (2017) and Hamel et al. (2013) demonstrate

transfer learning between one music task and another music
task. Wang and Metze (2017) show positive results of trans-
ferring latent representations learned from a large unlabeled
sound event corpus to a smaller labeled sound event corpus.

The work by Lim, Kim, and Kim (2016) is similar to our
work in that they study how to transfer from a speech corpus
to a sound event corpus. Our work differs in two ways: first,
we show results on deep convolutional networks up to 169
layers as opposed to Multilayer Perceptrons up to 6 layers,
and second, we also propose a new multiscale representa-
tion based on dilated convolutions and show its positive in-
teraction with transfer learning. We believe this work is the
first to investigate cross-domain (speech commands vs. en-
vironmental sounds) transfer learning for modern network
architectures.

Datasets

In our experiment, we utilize two datasets: UrbanSound8K,
a dataset of 10 categories of environmental sounds (Sala-
mon, Jacoby, and Bello 2014) and Google Speech Com-
mands, a dataset of 30 categories of spoken terms (Warden
2017). Both datasets are collections where each audio clip
represent a single class—types of common urban sounds for
UrbanSound8K and single word speech utterances for the
Speech Commands dataset. In this work, we perform sev-
eral transfer learning experiments and in these experiments,
UrbanSound8K serves as the source dataset and Google
Speech Commands is the target dataset.

UrbanSound8K

The UrbanSound8K dataset, originally derived from the
FreeSound1 collection, consists of 8372 audio samples be-
longing to 10 categories – air_conditioner, car_horn, chil-
dren_playing, dog_bark, drilling, engine_idling, gun_shot,
jackhammer, siren, and street_music. Most audio samples
are limited to 4 seconds long. The dataset comes partitioned
into 10 folds for cross validation purposes. Audio samples
are also labeled with their “salience”—a binary label de-
noting whether they were recorded in the foreground or
background. While an interesting property, we did not ex-
plore how knowledge of salience could be used to improve
model performance. This collection is quite challenging as
many of the classes are highly confusable, even to a hu-
man ear, like jackhammer and drilling or engine_idling and
air_conditioner due to the high timbre similarity, and the
classes children_playing and street_music due to presence
of complex harmonic tones. The UrbanSound8K dataset was
created with a balanced distribution across the classes.

1freesound.org
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Google Speech Commands

The Google Speech Commands dataset is an order of magni-
tude larger than the UrbanSound8K dataset and completely
different in nature (environmental sounds vs. speech). The
dataset is a crowd-sourced collection of 47,348 utterances
of 20 short words—yes, no, up, down, left, right, on, off,
stop, and go. The dataset was gathered by prompting peo-
ple to speak single-word commands over the course of a
five minute session, with most speakers saying each of them
five times. The dataset also includes 17,373 samples from
10 non-command words. These words, like bed, bird, cat,
dog, happy, etc., are unrelated to the core commands and
are added to help distinguish unrecognized words. Unlike
the core command words, the non-command words were
said at most once by the speakers. Table 1 summarizes both
datasets.

Feature Extraction

To prepare the audio data for neural network consumption,
each audio file was processed with the following sequence
of steps to do minimal feature extraction. First, the audio is
re-sampled to 22kHz mono and partitioned into overlapping
frames. The frames are 46 ms long and have 50% overlap
(23 ms). This is in-line with the feature extraction protocol
used by Salamon and Bello (2016). Then, the Mel spectrum
is extracted using a Fourier transform and a Mel filter bank
with 64 filters. The preprocessing pipeline is created using
the Yaafe audio processing library (Mathieu et al. 2010) and
results in each audio clip transformed into a sequence of
frames with each frame being a 64-dimensional feature vec-
tor. In addition to the Yaafe preprocessing pipeline, we nor-
malize the feature dimensions by subtracting their mean and
dividing by their variance. In our experiments, we found this
input normalization nonnegotiable.

Models

In this work, we apply modern convolutional neural net-
works to audio spectrograms. While seemingly straight for-
ward, there are many methodological considerations that, al-
though explored by the Computer Vision community, have
not been as extensively reported for audio spectrograms. We
investigate these considerations by experimentally varying
two important properties of modern convolutional networks:
network depth using skip connection techniques and multi-
scale input resolution using dilated convolutions.

Dilated Convolutions for Multiscale Inputs

Convolutional operations, intuitively, are windowed opera-
tions that scan over an input tensor. The free parameters of
these operations are the size of the window (called the ker-
nel size) and the step size of the scan (called the stride). The
kernel size and stride parameterize the receptive field of the
convolution: they control how much each convolution op-
eration “sees” which allows for designing certain types of
information flow.

More recently, a parameter referred to as dilation has been
introduced as a way to increase the receptive field without
increasing the number of parameters of the convolutional

kernel (Yu and Koltun 2015). A dilation is, intuitively, a
stride in the kernel—it is a spacing between the scalars in
the kernel such that when it is scanned across an input ten-
sor, the kernel subsamples a wider range of input values.
This is visualized in Figure 1. More formally, consider a
single position in the output tensor, Ym,n. A convolution op-
eration computes this value by summing over element-wise
multiplications, as shown in Equation 1. In contrast, a di-
lated convolution, shown in Equation 2, sums element-wise
multiplications that are d steps apart.

Ym,n =
k∑

i=0

k∑

i=0

Wi,j ∗Xm+i, n+j (1)

Ym,n =

k∑

i=0

k∑

j=0

Wi,j ∗Xm+i∗d, n+j∗d (2)

The core methodological contribution of this paper com-
bines multiple convolutions with different dilation values
into a single layer in order to fuse multiple scales of infor-
mation. Specifically, we combine the outputs of four con-
volutional kernels with dilations of 1, 2, 3, and 4, a kernel
size of 3 (both width and height are 3), and a stride of 1.
By using a padding operation which reflects the kernel size
and dilation of each convolution2, the resulting output ten-
sors are the same size and can be stacked along the channel
dimension. To summarize, multiple convolutions with vary-
ing dilation and padding values are used to compute two-
dimensional feature maps across a spectrogram, and subse-
quently stacked to form a stack of feature maps which can
be used as input to another convolutional layer.

Increasingly Deeper Convolutional Networks

Several techniques have surfaced in recent years which en-
able dramatically deeper convolutional neural networks. In
this study, we investigate the effectiveness of these tech-
niques on classifying audio spectrograms. Specifically, we
use two architectures, Residual Networks (ResNets) and
DenseNets, which employ different techniques to achieve
network depth.

ResNets Building on the traditional feed-forward architec-
ture, ResNets (He et al. 2016) add a residual connection that
allows the output of one layer to skip one or more layers
before being summed with the output of another layer. Con-
sequently, the computation at a single layer can potentially
use the output of all previous layers and not just the imme-
diately preceding layer. More formally, let Fl represent the
computation of a layer at depth l and xl−1 represent the out-
put of computation at layer l − 1. In this notation, the tra-
ditional feed-forward network performs a sequence of oper-
ations such that xl = Fl(xl−1). With ResNets, a skip con-
nection is added so that the computation of xl−1 is summed
with the computation of Fl(xl−1):

xl = Fl(xl−1) + xl−1 (3)
2A 3x3 kernel is dilated with d = 2 and padding = 2 is used

to ensure the output tensor is the same size as the input tensor
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Figure 1: Starting with an audio spectrogram, we employ a set of dilations at different scales and with equivalent padding to
produce new features maps which can be treated as stacked channels. Shown here are the first three dilations (d=1, d=2, d=3)
with the fourth not shown to save space.

There are three ResNet models used in this work: ResNet-
18, ResNet-34, and ResNet-50.

DenseNets In addition to ResNets, we use the DenseNets
convolutional network architecture because of its state of
the art performance and novel use of skip connections.
DenseNets (Huang et al. 2016) were built upon a simple
observation: convolutional networks greatly benefit from
shorter connections between layers closer to the input and
layers closer to the output. In more formal notation, the com-
putation for xl is dependent on the computations of all pre-
vious layers and all downstream layers have direct access to
the feature maps of all earlier layers:

xl = Fl(xl−1, xl−2, . . . , x0) (4)

There are three DenseNet models that are evaluated in this
work: DenseNet-121, DenseNet-161, and DenseNet-169.

Adapting Convolutional Network Models Traditional
convolutional network architectures have been constructed
and validated in Computer Vision settings. As a conse-
quence, there are two modifications required to adapt image-
specific convolutional network models to audio spectro-
grams. The first modification is the simpler change of adapt-
ing the number of channels in the first-layer to correspond
to the single channel mono audio spectrogram. The second
modification addresses each network’s assumption that the
input is a fixed input size. Since convolutional neural net-
works are designed to reduce a fixed input size to a fixed
output size, violating the fixed input size requires solving the
fixed output size problem. This was addressed by replacing
the last max/average pooling layer with one that dynamically
matches the length and width of the tensor that is output of
the network.

Baseline Model

To provide a baseline for the modeling choices presented
in this work, we implement the current state-of-the-art
on the UrbanSound8K dataset, a convolutional network
model called SB-CNN and proposed by (Salamon and
Bello 2016).SB-CNN has three layers of convolutions, in-
terspersed with max-pooling operations. The output of the
third layer is flattened and two fully connected layers are
then applied to result in a distribution over UrbanSound8K’s

label set. SB-CNN’s design is very similar to traditional feed
forward convolutional networks and is a useful comparison
for the other models in this study.

Experiments and Results3

In this work, we conducted three experiments to measure
the effects of convolutional neural network architectures,
multiscale inputs, and transfer learning on classifying au-
dio spectrograms. For the first experiment, we evaluated the
choice of convolutional network architecture and the use
of multiscale inputs on classifying environment sounds. In
the second experiment, we selected and held constant the
DenseNet-121 convolutional network architecture in order
to measure the effects of multiscale inputs and the use of
transfer learning on classifying speech commands. Finally,
we repeat the second experiment but add a third factor by
ablating the amount of data available for training in order to
fully gauge the effectiveness of multiscale inputs and trans-
fer learning.

Convolutional Networks on Environmental Sounds

The first experiment has two critical factors: the con-
volutional network architecture (SB-CNN, ResNet-18,
ResNet-34, ResNet-50, DenseNet-121, DenseNet-161, and
DenseNet-169) and multiscale inputs (with or without mul-
tiscale input). Each combination of architecture and mul-
tiscale input is instantiated and evaluated on the Urban-
Sound8K dataset.

Training Details For this experiment, we use the 10-
fold cross-validation specified by the UrbanSound8K
dataset (Salamon, Jacoby, and Bello 2014). Specifically, the
model is trained on 8 of the 10 folds, validated on the 9th
at the end of every epoch to determine when the training al-
gorithm should terminate, and after training terminates, the
model is evaluated on the remaining fold. Per standard cross-
validation procedure, this is repeated 10 times with a differ-
ent fold serving as the final evaluation fold in each repetition.

3This version of the paper reports better results on the Google
Speech Commands dataset than an earlier version. The difference
was primarily due to switching optimization algorithms from SGD
to Adam.
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Figure 2: The accuracy on the UrbanSound8k dataset—aggregated over 10-fold cross validation—is shown as box plots for the
convolutional network architectures and multiscale inputs. The body of each box plot denotes the 25th and 75th percentiles, the
line in the body is the median, and the whiskers mark the most extreme observations.

Without Multiscale With Multiscale
SB-CNN 68.51±5.40 68.64±6.46
ResNet18 64.53±5.41 66.33±4.73
ResNet34 64.62±4.65 65.25±6.15
ResNet50 67.34±5.40 69.35±5.97

DenseNet121 72.61±5.14 70.82±5.48
DenseNet161 71.57±8.10 71.12±8.73
DenseNet169 70.33±6.96 69.56±7.45

Table 2: The micro-averaged accuracy and its standard de-
viation on the UrbanSound8K are shown for each of the 7
models and 2 multiscale conditions that were evaluated.

We further augment this setup by using early stopping mech-
anism that terminates training when performance on the val-
idation fold has not improved for 10 epochs4. The model pa-
rameters from the best performing epoch—as measured on
the 9th fold—are reloaded and used to evaluate final test set
performance. The remaining critical hyper parameters are
reported in Table 5.

Results The results are presented in Table 2 and Figure
2, but can be summarized with the following observations.
First, the DenseNet architectures—which have been shown
to be state-of-the-art for Computer Vision tasks—out per-
form ResNet and the SB-CNN baseline. Next, ResNet did
not perform as well as expected and did not out perform SB-
CNN on most comparisons. As a side note, despite our care-
ful effort in closely following the description in Salamon and
Bello (2016), we were unable to reproduce the SB-CNN ac-
curacy of 73% as reported by the authors5. These results sug-
gest that the kinds of skip connections in DenseNet provide
a more robust model, although such a complex model might

4The choice of 10 was derived empirically by exploring 5, 10,
and 15 as the number of epochs to wait.

5Our code, experiment notebooks, library versions, environ-
ment details, and hyperparameter setting details are available at:
http://bit.ly/r7aaai18

No Multiscale
Fresh Initialization Pretrained

left vs. right Subset 96.70±1.41 97.09±1.16
All 30 Terms 91.48±1.67 91.63±1.95

Table 3: Classification performance for the pre-trained and
non-pre-trained models without multiscale input on both
sets of the speech commands dataset and the left vs. right
subset.

Multiscale
Fresh Initialization Pretrained

left vs. right Subset 97.05±1.27 97.31±1.39
All 30 Terms 91.23±1.72 92.15±1.71

Table 4: Classification performance for the pre-trained and
non-pre-trained models with multiscale input on both sets of
the speech commands dataset and the left vs. right subset.

not be needed and SB-CNN could provide enough perfor-
mance in certain circumstances.

Transfer Learning for Speech Commands

In the second experiment, we evaluated how well transfer
learning works from environmental sounds to speech com-
mands both with and without multiscale inputs. To better
assess the quality of learning, the speech command classi-
fication task was broken into two separate tasks of increas-
ing difficulty: discriminating between the commands left vs.
right and discriminating between all 30 short utterance cat-
egories. In total, there were six conditions in a factorial de-
sign: freshly initialized vs pre-trained network, multiscale
input vs no multiscale input, and two versions of the dataset.

Training Details To isolate the effects of transfer learning
and multiscale inputs, the DenseNet-121 convolutional net-
work architecture was used for all conditions. In the transfer
learning conditions, pre-trained network parameters which
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Figure 3: For transfer learning, the DenseNet-121 architecture is trained on only the left vs. right subset of the Google Speech
Commands dataset using 25%, 50%, 75% or 100% of the data, with or without multiscale input, and with or without being
pre-trained on UrbanSound8k.

were learned during the first experiment are loaded. Then,
the final linear layer is replaced with one which matches the
number of output classes needed for either the full speech
command dataset or the left vs right subset. The remaining
critical hyper parameters are reported in Table 5.

Results The results, shown in Tables 3 and 4, can be sum-
marized with the following observations. First, the perfor-
mance on the Google Speech Commands dataset is fairly
high—around 91% for the non-pre-trained model with no
multiscale inputs. This suggests that, despite the size, the
dataset might be easy enough to get high performance. Next,
the pre-trained networks have a significant increased perfor-
mance (p < 0.0001) over networks that started with freshly
initialized parameters. Additionally, there is an small in-
teraction between the pre-training and multiscale such that
the performance is highest under this condition. Finally,
it’s an interesting point to note that despite being an or-
der of magnitude larger than the UrbanSound8K dataset,
the Google Speech Commands dataset still benefited from
learning transfer using the pre-trained representations from
an unrelated classification task. This result is compelling be-
cause it suggests a strong interaction effect between the pre-
training and multiscale dilated convolutions and warrants
further investigation.

Transfer Learning and Target Dataset Ablation

In the final experiment of this study, we further evaluated
the effectiveness of transfer learning and multiscale inputs
by varying the amount of target training data available. Lim-
iting the amount of target training data gives a sense of how
well the pre-trained network generalizes. This is largely in-
tended to better understand the interaction effects between
multiscale inputs and pre-training.

Training Details In contrast with the second experiment
where 100% of the target training dataset was used, the tar-
get dataset is ablated to either 25%, 50%, or 75% of its to-
tal. The ablations are selected using a fixed random number

seed and repeated with 2 different seeds. Results are reported
for the left vs. right subset of speech commands and on the
whole dataset of 20 commands and 10 non-commands.

Results The results are shown in Figure 3 for the whole
dataset and the left vs. right subset. There are several key
take-away points. First, for the left vs. right subset, using
only 75% of the training data, the pre-trained network ob-
tained the nearly same performance as the freshly initialized
network with 100% of the training data. The amount of train-
ing data drops further to 50% when the multiscale input rep-
resentation is used in conjunction with pre-training. Next,
there is a consistent synergistic effect between pre-training
and multiscale inputs. The final take-away point is that the
benefits of multiscale inputs are much lower in the freshly
initialized networks. This is strong evidence of the interac-
tion between pre-training and multiscale inputs: using pre-
trained multiscale input through dilated convolutions promi-
nently increases the transfer capabilities of the network.

Discussion

In this paper, we have analyzed modern convolutional neu-
ral network architectures for classifying audio spectrograms.
By systematically enumerating the networks, the choice to
use multiscale input, and the use of transfer learning, we
have illuminated several key lessons.

Lessons The first lesson informs which convolutional net-
work architecture should be used for classifying audio spec-
trograms. In Figure 4, the convolutional network architec-
tures are plotted according to their training time, number
of parameters, and accuracy. Overall, the evidence suggests
that DenseNet architectures provide the best accuracy vs.
model size vs. training time tradeoff for audio classification
tasks.

The second lesson is that transfer learning from environ-
mental sounds to speech commands has great potential. Not
only were the pre-trained networks able to obtain higher ac-
curacies with smaller subsets of the target data, but this pat-
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Optimizer Learning Rate Weight Decay Dataset Split
Convolutional Networks on Environmental Sounds Adam 0.001 1e-5 10-fold CV
Transfer Learning for Speech Commands Adam 0.001/0.005 1e-4 60% / 20% / 20%
Transfer Learning and Target Dataset Ablation Adam 0.001/0.005 1e-4 60% / 20% / 20%

Table 5: The critical hyper-parameters from our three experiments. Where two learning rates are indicated, the rates were used
during transfer learning, and the larger rate was used for the newly initialized layers while the smaller rate was used for the
pre-trained network parameters.

Figure 4: The classification accuracies for the convolutional
network architectures—both with and without multiscale in-
puts using dilated kernel—are shown as a function of model
size (number of parameters) and average training time.

tern was amplified for pre-trained networks which used the
multiscale inputs. This suggests that the multiscale dilated
convolutions could be learning important patterns and reg-
ularities in sound identification that transfer well to speech
command classification.

Future Work The study presented in this paper serves as
a starting point from which several intriguing approaches
could be pursued. Our model performances, while near state
of the art, are not at the level of human performance6. One
promising approach is to evaluate how data augmentation in-
teracts with our findings on pre-training and multiscale input
with dilated kernels.

Another encouraging follow-up is to further investigate
the impact of multiscale inputs. While this study observed
that the multiscale input using dilated convolutions im-
proved classification performance on freshly initialized net-
works and compounded the effectiveness of transfer learn-
ing, there are potential conflations that should be carefully
studied and ruled out. In general, though, the promising re-
sults of multiscale inputs using dilated convolutions suggest
that they can be combined with other techniques and war-
rants further study.

Conclusion

In this work, we have presented a study of convolutional net-
work architectures applied to classifying the audio spectro-
grams of the UrbanSound8k and Google Speech Commands
datasets. Our contributions are an exposition into the rela-
tionship between convolutional network architectures and

6Reported as 82% on 4 second environmental sound clips (Chu,
Narayanan, and Kuo 2009).

audio spectrogram data, a novel multiscale input using di-
lated convolutions, and an examination of how well learning
can transfer from an environment sounds dataset to a speech
commands dataset.

We conclude by summarizing these contributions in five
findings. First, we find that DenseNets provide the best ac-
curacy/model size/training time tradeoff on audio spectro-
gram classification when compared to the baseline model,
and several other skip connection models, including ResNet.
Second, our novel use of dilated convolutions for multiscale
inputs resulted in increased performance on audio classifica-
tion tasks.

The next three findings are centered on the transfer learn-
ing experiments. To begin, our third finding is that convolu-
tional networks pre-trained on environmental sound classifi-
cation out-performed freshly initialized convolutional net-
works on the task of classifying speech commands. As a
consequence, our fourth finding is that this gap in perfor-
mance means we can obtain the same classification accu-
racy with less training data. Finally, our fifth finding is that
the previous two findings are even stronger when multiscale
inputs through dilated convolutions are employed. In other
words, pre-training on environmental sounds with a convo-
lutional network that utilizes multiscale inputs through di-
lated convolutions can substantially increase classification
accuracy with a fraction of the data.

Through this study, we have evaluated a series of convolu-
tional network architectures and different modeling choices
on audio spectrograms. Further, we have demonstrated a
relationship between the kinds of representations needed
for recognizing environmental sounds and for recognizing
speech commands. Moving forward, there are many promis-
ing directions which can further unify audio event identi-
fication for both human speech and ambient environmental
sounds.
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