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Abstract

For real-world mobile applications such as location-based
advertising and spatial crowdsourcing, a key to success is tar-
geting mobile users that can maximally cover certain locations
in a future period. To find an optimal group of users, exist-
ing methods often require information about users’ mobility
history, which may cause privacy breaches. In this paper, we
propose a method to maximize mobile crowd’s future loca-
tion coverage under a guaranteed location privacy protection
scheme. In our approach, users only need to upload one of
their frequently visited locations, and more importantly, the
uploaded location is obfuscated using a geographic differen-
tial privacy policy. We propose both analytic and practical
solutions to this problem. Experiments on real user mobility
datasets show that our method significantly outperforms the
state-of-the-art geographic differential privacy methods by
achieving a higher coverage under the same level of privacy
protection.

Introduction

Crowd coverage maximization is a classical problem in mo-
bile computing: how to select m users from a candidate
pool to maximize the probability of covering a set of tar-
get locations in a coming time period (e.g., one day or one
week). This problem and its variants have a wide spectrum of
applications in location-based advertising (Dhar and Varsh-
ney 2011), spatial crowdsoucing (Chen and Shahabi 2016;
Zhang et al. 2014), urban computing (Zheng et al. 2014),
etc. For example, it can help shop owners to offer electronic
coupons to the set of mobile app users who may physically
visit the region around the shop soon; it can also help crowd-
sourcing organizers to recruit the participants to cover the
task area with the highest probability (Xiong et al. 2016).

One of the key steps in crowd coverage maximization is
mobility profiling, i.e., predicting the probability of a user
appearing at a certain location. A common practice is first
dividing an area into fine-grained grids or sub-areas, and
then counting the frequency of a user appearing in each
grid based on trajectory history (Guo et al. 2017). One can
use more sophisticated models like Poisson process to es-
timate users’ occurrence distribution (Xiong et al. 2016).
Existing mobility profiling methods often require access to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

users’ historical mobility traces, which may seriously com-
promise user privacy. For example, users’ exposed location
data may reveal sensitive information about their identities
and social relationships (Cho, Myers, and Leskovec 2011;
Rossi et al. 2015). Despite the importance of location privacy,
as far as we know, there is little research effort combining
location privacy, mobility profiling, and crowd coverage max-
imization up to date.

To fill this gap, this paper aims to explore how to protect
the crowds’ location privacy, while still optimizing their ex-
pected coverage of a set of locations. To achieve this goal, we
propose a mobile crowd coverage maximization framework
with a rigorous privacy protection scheme — geographic
differential privacy (Andrés et al. 2013). A geographic dif-
ferential privacy policy obfuscates a user’s actual location
to another with carefully designed probabilities, such that
adversaries, regardless of their prior knowledge, can learn
little about the user’s true location after observing the obfus-
cated locations. However, with differential privacy protection,
crowd coverage maximization can only be performed based
on the obfuscated (inaccurate) locations, which leads to in-
evitable loss of the quality of the selected users. Therefore,
we propose a method to generate the optimal location obfus-
cation policy which satisfies geographic differential privacy
while minimizing such loss.

In summary, this paper has the following contributions:
(1) To the best of our knowledge, this is the first work

studying the mobile crowd coverage maximization problem
with location privacy protection.

(2) In our approach, users only need to upload one of
their frequently visited locations, and more importantly, the
uploaded location is obfuscated using the rigorous privacy
policy — geographic differential privacy. We further formu-
late an optimization problem to obtain the optimal obfus-
cation policy that can maximize the expected future crowd
coverage over a set of locations under a guaranteed level of
differential privacy protection. As the optimization problem
is non-convex, we first mathematically analyze the scenario
when only one location needs to cover and then derive an
optimal solution. Then, we extend this setting to the multi-
location coverage scenario and propose a practical algorithm
to obtain the optimal obfuscation policy.

(3) Experiments on real human mobility datasets verify
that, by selecting the same number of users under the same
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level of privacy protection, our method achieves a higher
coverage than state-of-the-art differential privacy methods.

Preliminaries

Geographic differential privacy (Andrés et al. 2013) intro-
duces the idea of database differential privacy (Dwork 2008)
into the location obfuscation context. Its key idea is: given
an observed obfuscated location l∗, any two locations l1 and
l2 have similar probabilities of being mapped to l∗. It is thus
hard for an adversary to differentiate whether the user is at l1
or l2 by observing l∗.

Definition 1 (Andrés et al. 2013). Suppose the target area
includes a set of locations L, then an obfuscation policy P
satisfies geographic ε-differential privacy, iff.

P (l∗|l1) ≤ eεd(l1,l2)P (l∗|l2) ∀l1, l2, l∗ ∈ L (1)

where P (l∗|l) is the probability of obfuscating l to l∗, d(l1, l2)
is the distance between l1 and l2, ε is the privacy budget —
the smaller ε, the better privacy protection.

Note that the set of locations are usually constructed
by dividing the target area into subregions, e.g., equal-size
grids (Bordenabe, Chatzikokolakis, and Palamidessi 2014)
or cell-tower regions (Xiong et al. 2016).

If P satisfies geographic differential privacy, it can be
proven that for adversaries with any prior knowledge about
users’ location distributions, their posterior knowledge af-
ter observing the obfuscated location can only be increased
by a small constant factor (Andrés et al. 2013). Note
that this protection is guaranteed even if the adversaries
know P . Due to this rigorous protection effect, geographic
differential privacy has seen many applications in loca-
tion based services, spatial crowdsourcing, etc. (Bordenabe,
Chatzikokolakis, and Palamidessi 2014; Wang et al. 2016;
2017b).

Mobility profiling aims to estimate the probability of a
user covering a certain location during a time period in the
future. Specifically, a user ui’s mobility profile is denoted
as Mi, and Mi(lj), lj ∈ L means the estimated probabil-
ity of ui visiting lj in a concerned future period (e.g., next
week). Commonly used mobility profiling methods include
frequency-based (Guo et al. 2017) and Poisson-based (Xiong
et al. 2016) algorithms. We use the Poisson process to model
user mobility given its better prediction performance in our
experiments. More details can be found in our complete tech-
nical report (Wang et al. 2017a).

Framework Overview

We present an overview of our privacy framework in Figure 1.
The key idea of our framework is that users should expose
their location information as little as possible, while we can
still select a proper set of users for optimizing their coverage
on certain target locations in the future.

The two main players in our framework are a server plat-
form and its mobile client users. As we want users to ex-
pose their actual location information as little as possible,
user mobility profiling runs locally on individuals’ smart
devices. That means, the clients’ mobility profiles are only
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Figure 1: Framework overview.
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Figure 2: A running example of our framework.

known to themselves. As shown in the literature, only upload-
ing frequent locations with high profiling probabilities (e.g.,
> 80%) to the server can already help achieve a good future
crowd coverage (Guo et al. 2017). To limit the potential loca-
tion leakage, our framework only requires users to upload one
of their frequent locations. Moreover, this frequent location
is obfuscated by the geographic differential privacy policy P
before being sent to the platform. The policy P is generated
by the server based on which target locations need to be cov-
ered. Finally, according to the uploaded obfuscated frequent
locations {l∗1 · · · l∗N} (suppose N users), the platform aims
to select a set of users to maximize the expected coverage of
intended locations in the coming period.

A running example is shown in Figure 2, where the table
represents a user’s mobility profile in a 2D spatial area split-
ted into uniform grids. Suppose that a location-based adver-
tising platform needs to decide whether to send a Starbucks
coupon to a user. The platform expects that a user receiving
the coupon is a frequent visitor to the regions where Star-
bucks stores are located, so that the user will probably go to
the stores. To achieve this goal, first, a user client computes
its owner’s mobility profile locally. Second, from the set of
locations whose probabilities are larger than a threshold (e.g.,
80%), the user client randomly selects one location lu to
be uploaded to the server.1 Third, according to the privacy
policy P received from the server, the user client randomly
obfuscates lu to l∗u and then sends l∗u to the server. Finally,
the server will decide whether to send the coupon to the user
or not according to the uploaded l∗u. In this case, a user’s lo-

1If there is no location with the probability larger than the thresh-
old, then the user does not upload any location.



cation privacy is preserved as the uploaded frequent location
is rigorously obfuscated with differential privacy.

Location obfuscation would inevitably introduce certain
loss of quality in selecting users for coverage optimization, as
users’ uploaded frequent locations contain deliberate noises.
Hence, how the server generates the privacy policy P is the
key challenge of our framework, which aims to minimize the
loss of quality caused by privacy protection.

Optimal Privacy Policy

In this section, we illustrate our solution that guarantees
geographic ε-differential privacy while minimizing the loss
of quality in mobile crowd coverage optimization.

Single Location Coverage Problem (SLCP)

As the first step, we analyze the scenario where only one
location needs to be covered. In location-based advertising,
this reflects the scenario that the advertising only involves
one specific site (e.g., a newly opened restaurant). In spatial
crowdsourcing, this means that the task is only associated
with one location (e.g., taking the photo of Statue of Liberty).
Suppose the target location to cover as lt and a user submits
her/his obfuscated frequent location as l∗, then the probability
of her/his frequent location being actually lt is:

prob(lt|l∗) = π(lt)P (l∗|lt)∑
l∈L π(l)P (l∗|l) (2)

where π is the overall distribution of all the users’ frequent
locations. Here we suppose that we can foreknow π, and later
we will elaborate how to estimate it. Note that the denomina-
tor can be seen as the overall probability of a user reporting
her/his frequent location as l∗.

Suppose we select a user reporting l̂∗ to cover the target
location lt in the coming time period, apparently we would
like to maximize Eq. 2 so that the future probability of the
user covering lt is maximized. With this idea, we have the
following optimization process to get the optimal privacy
policy P̂ . Particularly, given lt to cover, we aim to

max
l̂∗,P̂

π(lt)P̂ (l̂∗|lt)∑
l∈L π(l)P̂ (l̂∗|l) (3)

s.t. P̂ (l∗|l1) ≤ eεd(l1,l2)P̂ (l∗|l2) ∀l1, l2, l∗ ∈ L (4)

P̂ (l∗|l) > 0 ∀l, l∗ ∈ L (5)
∑

l∗∈L
P̂ (l∗|l) = 1 ∀l ∈ L (6)

Eq. 4 is the constraint of geographic differential privacy;
Eq. 5 and 6 are probability restrictions. By solving the above
optimization problem, we can get the optimal privacy policy
P̂ , as well as the user selection strategy, i.e., selecting the
users reporting l̂∗ for future coverage maximization.

However, even given l̂∗, Eq. 3 cannot be converted to a
convex optimization problem with existing solutions (Boyd
and Vandenberghe 2004). To overcome this difficulty, we
then analyze the relationship between the constraints and
the objective function, and then deduce an optimal solution
analytically.

An Analytic Solution to SLCP

Our analytic deduction includes three steps. First, we verify
that the selection of l̂∗ will not affect the optimal objective
value of Eq. 3. Second, we prove that Eq. 3 cannot exceed a
certain upper bound. Finally, we show that this upper bound
can be achieved by constructing a feasible solution of P̂ .

Lemma 1. For any two locations l∗1, l
∗
2 ∈ L, the optimal

objective values of Eq. 3 are the same if we set l̂∗ = l∗1 or l∗2 .
Proof. For l̂∗ = l∗1 or l∗2 , we can always find a pair of

P1, P2, where P1(l
∗
1|l) = P2(l

∗
2|l), P1(l

∗
2|l) = P2(l

∗
1|l), and

P1(l
∗|l) = P2(l

∗|l) for other l∗; P1 and P2 lead to the same
objective value. A detailed proof is in our complete technical
report (Wang et al. 2017a).

Remark. Lemma 1 demonstrates that we can use any lo-
cation l ∈ L as the obfuscated location l̂∗ for user selection
without impacting the achievable optimal coverage utility.

Lemma 2. The optimal value of Eq. 3 cannot exceed

π(lt)∑
l∈L π(l)e−εd(l,lt)

(7)

and this value can only be achieved if

P̂ (l̂∗|l) ∝ e−εd(l,lt), ∀l ∈ L (8)

Proof. With geographic differential privacy constraints,

π(lt)P̂ (l̂∗|lt)∑
l∈L π(l)P̂ (l̂∗|l) =

π(lt)
∑

l∈L π(l) P̂ (l̂∗|l)
P̂ (l̂∗|lt)

(9)

≤ π(lt)
∑

l∈L π(l) e
−εd(l,lt)P̂ (l̂∗|lt)

P̂ (l̂∗|lt)

=
π(lt)∑

l∈L π(l)e−εd(l,lt)
(10)

Remark. Lemma 2 points out an upper bound of the op-
timal objective value and the condition (Eq. 8) that P̂ must
satisfy for getting the upper bound value. However, whether
we can find a feasible P̂ satisfying Eq. 8, as well as Eq. 4-6
is still unknown. Next, we prove that this P̂ exists.

Lemma 3. If P̂ (l̂∗|l) satisfies Eq. 8, then

P̂ (l̂∗|l1) ≤ eεd(l1,l2)P̂ (l̂∗|l2) ∀l1, l2 ∈ L (11)

Proof. Considering that d is a distance metric, then

P̂ (l̂∗|l1)
P̂ (l̂∗|l2)

= eε(d(l2,lt)−d(l1,lt)) ≤ eεd(l1,l2) (12)

Remark. Lemma 3 proves that when Eq. 8 stands, Eq. 4 of
l∗ = l̂∗ must also hold for any l1, l2.

Theorem 1. Given any l̂∗, we can get a feasible P̂ ,

P̂ (l̂∗|l) = θe−εd(l,lt), ∀l ∈ L (13)

P̂ (l∗|l) = 1− θe−εd(l,lt)

|L| − 1
, ∀l∗, l ∈ L and l∗ �= l̂∗ (14)
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which can achieve the upper bound Eq. 7. Here, θ can be any
positive constant value smaller than or equal to a threshold τ ,
where

τ = min
l1,l2∈L

eεd(l1,l2) − 1

e−ε(d(l2,lt)−d(l1,l2)) − e−εd(l1,lt)
(15)

The proof is in our technical report (Wang et al. 2017a).
Note that while Theorem 1 gets an optimal solution, in

reality, there may not be enough users who report l̂∗ for se-
lection (if τ is too small and the total user number is limited).
Later we will propose a practical solution overcoming this
shortcoming, when addressing the multi-location scenario.

Multi-Location Coverage Problem (MLCP)

A more complicated setting for mobile crowd coverage prob-
lem includes a set of locations that need to be covered. Real-
life examples include delivering coupons of chain stores to
users who will probably visit any of them in the next time
period. Denote the set of locations to cover as

L = {l1t , l2t , ..., lzt } ⊂ L (16)

then the probability of a user’s actual frequent location be-
longing to L is:

∑

lt∈L

prob(lt|l∗) =
∑

lt∈L
π(lt)P (l∗|lt)∑

l∈L π(l)P (l∗|l) (17)

Then, we can maximize Eq. 17 with the constraints Eq. 4-
6 to get the optimal privacy policy P̂ , and the obfuscated
location l̂∗ for future crowd coverage maximization.

max
l̂∗,P̂

∑
lt∈L

π(lt)P̂ (l̂∗|lt)
∑

l∈L π(l)P̂ (l̂∗|l) (18)

s.t. Eq. 4− 6 (19)

Similar to the single location coverage problem, we can
prove the following lemmas.

Lemma 4. For any l∗1, l
∗
2 ∈ L, the optimal objective values

of Eq. 18 are the same if we set l̂∗ = l∗1 or l∗2 .
Lemma 4 is a straightforward extension of Lemma 1 to the

multiple location coverage scenario.
Lemma 5. The optimal value of Eq. 18 cannot exceed

(1 +
∑

l �∈L

∑

lt∈L

π(l)

π(lt)
e−εd(l,lt))−1 (20)

and this value can be achieved only if

eεd(l,lt)P (l̂∗|l) = P (l̂∗|lt), ∀lt ∈ L, ∀l �∈ L (21)

The detailed proof is in our complete technical report
(Wang et al. 2017a).

Although Lemma 5 seems to be an extension of Lemma
2 for the multi-location scenario, they have a significant dif-
ference that the optimal value Eq. 20 may not always be
feasible, i.e., Eq. 21 may not stand. Take a toy example of L
containing two locations, it means that, for any l �∈ L

eεd(l,l
1
t )P (l̂∗|l) = P (l̂∗|l1t ) (22)

eεd(l,l
2
t )P (l̂∗|l) = P (l̂∗|l2t ) (23)

l1 lt1

lt2 l2

l1 lt1

l2 lt2

(a) (b)

Figure 3: Toy examples with two locations to cover.

Then, for any two locations l1, l2 �∈ L, let l = l1 or l2, then

P (l̂∗|l1t )
P (l̂∗|l2t )

=
eεd(l1,l

1
t )

eεd(l1,l
2
t )

=
eεd(l2,l

1
t )

eεd(l2,l
2
t )

(24)

⇒ d(l1, l
1
t )− d(l1, l

2
t ) = d(l2, l

1
t )− d(l2, l

2
t ) (25)

Hence, if Eq. 20 is feasible, Eq. 25 must hold. Figure 3 shows
two examples, in one of which Eq. 25 stands (Figure 3a)
and the other does not (Figure 3b, considering the Euclidean
distance). This shows that whether Eq. 20 can be achieved
depends on the distribution of the target locations.

A Practical Solution to MLCP

While we cannot always obtain the upper bound value of
Eq. 20 for the multi-location coverage problem, here we
propose a practical solution which can work in real scenarios.

Revisiting the objective function of the multi-location cov-
erage problem, Eq. 18, we can see that the main difficulty
in solving the optimization problem is that the denominator
includes P̂ in it. To address this issue, we propose to add one
more constraint to the optimization process by setting the
denominator to a constant value,

∑

l∈L
π(l)P̂ (l̂∗|l) = β (26)

where β is a constant between 0 and 1; we will later elaborate
how to set β. With Eq. 26, the objective function is,

max
l̂∗,P̂

∑
lt∈L

π(lt)P̂ (l̂∗|lt)
β

(27)

Lemma 4 has shown that we can set l̂∗ to any l ∈ L with-
out affecting the optimal objective value. Since Eq. 4-6 are
all linear constraints, we can then use state-of-the-art linear
programming tools (e.g., Mosek and Gurobi) to solve the
optimization problem to get the optimal privacy policy P̂ .

Setting β with Binomial Distribution. We then discuss
how to set β in real-life scenarios. First, we prove that if we
want to get the objective value as high as possible, we should
set β as small as possible.

Theorem 2. Given l̂∗, suppose v1, v2 are the two optimal
objective values of Eq. 27 when we set β to b1, b2, respectively,
and b1 < b2, then v1 ≥ v2.

Proof. We denote the optimal P̂ when setting β to b1, b2
as P̂1, P̂2, respectively. Then, we construct a new solution of
P ′
1 when β = b1 as follows:

P ′
1(l̂

∗|l) = θP̂2(l̂
∗|l) ∀l ∈ L

P ′
1(l

′|l) = P̂2(l
′|l) + (1− θ)P̂2(l̂

′|l) ∀l ∈ L, l′ �= l̂∗
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Algorithm 1: Optimal policy for multi-location
coverage.

Input :π: overall user spatial distribution.
ε: differential privacy budget.
L: whole set of locations.
L: set of target locations to cover.
N : total number of users.
α: number of users to select.
ρ: probability threshold for user selection.

Output :P̂ : optimal differential privacy policy.
l̂∗: the obfuscated location to select users.

1 l̂∗ ← l1 (or any other l ∈ L) ;
2 β ← the minimum value that can ensure Pr(X ≥ α) ≥ ρ for the

Binomial distribution B(X,N, β);
3 Solve the linear program to get optimal P̂ :

max
P̂

∑
lt∈L

π(lt)P̂ (l̂∗|lt)
β

s.t. P̂ (l
∗|l1) ≤ e

εd(l1,l2)
P̂ (l

∗|l2) ∀l1, l2, l∗ ∈ L
P̂ (l

∗|l) > 0 ∀l, l∗ ∈ L
∑

l∗∈L
P̂ (l

∗|l) = 1 ∀l ∈ L
∑

l∈L
π(l)P̂ (l̂

∗|l) = β

4 return l̂∗, P̂ ;

where θ = b1/b2. All the constraints of Eq. 4-6 still stand for
P ′
1. As the optimal objective value is v1 when β = b1,

v1 ≥
∑

lt∈L
π(lt)P

′
1(l̂

∗|lt)
b1

=

∑
lt∈L

π(lt)P̂2(l̂
∗|lt)

b2
= v2

Theorem 2 is very important for our practical solution,
because it tells us that to get the optimal solution, we only
need to solve the linear program once by setting β to the
smallest value that we can accept, rather than enumerating all
the possible β. On the other hand, β can be seen as the overall
probability that a user will report her/his frequent location
as l̂∗. Since we need to select users from such users, we
cannot set β to a too small value, which will lead to very few
people reporting their locations as l̂∗. Therefore, we propose
a method to set β, with a guarantee that the platform can find
α users with a probability of ρ (e.g., 95%) as follows.

Suppose totally N users report their frequent locations,
then we can estimate the number of users who will report
their obfuscated frequent locations as l̂∗ with the Binomial
probability Pr(X = m) = B(m,N, β). Then, the probabil-
ity that we can find at least α users is that,

Pr(X ≥ α) =
N∑

m=α

B(m,N, β) (28)

And thus we would like to set β to the smallest value that
ensures Pr(X ≥ α) ≥ ρ.

We describe the pseudo-code of our practical solution for
the private multi-location coverage problem in Algorithm 1.
Note that since covering one location is a special case of

Algorithm 2: User selection with dynamic estimat-
ing π.

Input :k: number of user groups to split.
other inputs like Algorithm 1, except that π is unknown.

Output :U∗: selected users.
1 π ← uniform distribution (or other proper initial distribution);
2 U1, U2, ..., Uk ← N users are split into k groups, each with N/k

users;
3 for i = 1, 2, ..., k do

4 l̂∗, P̂ ← run Algorithm 1 with π;
5 foreach u ∈ Ui do

/* u downloads P̂ to the mobile client */

6 lu ← a randomly selected frequent location;
7 l∗u ← obfuscating lu by P̂ ;

/* u uploads l∗u to the server */

8 π′
u(l) ← π(l)P̂ (l∗u|l)

∑
l′∈L π(l′)P̂ (l∗u|l′) , ∀l ∈ L;

9 end

10 π ← the mean value of π′
u over u ∈ Ui;

11 end

12 U∗ ← ∅;
13 for j = k, k − 1, ..., 1 do

14 foreach u ∈ Uj do

15 if u’s obfuscated location is l̂∗ then

16 U∗ ← U∗ ∪ {u};
17 if |U∗| == α then

18 return U∗;
19 end

20 end

21 end

22 end

23 return U∗;

covering multiple locations, Algorithm 1 can also solve the
single location coverage problem, without the need to assume
that we will always have enough users reporting l̂∗.

Estimating Overall Location Distribution π. Previously,
we assume that we have known the overall frequent location
distribution π. This may be possible when we have other
sources to infer π, e.g., mobile call logs (Blondel et al. 2012).
However, if we do not have such data, other methods are
required to estimate π along with user selection. We thus
propose a Bayes rule based method to do user selection and
π estimation simultaneously, as shown in Algorithm 2.

Our basic idea is using users’ uploaded obfuscated loca-
tions to refine π. Note that our mechanism requires that each
user uploads the obfuscated location only once to ensure
differential privacy protection (Andrés et al. 2013). Hence,
to preserve differential privacy, we split all the users into
k groups, get users’ obfuscated locations group by group,
and iteratively refine π with the obfuscated locations from
previous user groups. The key update formula of π is the
Bayes rule in line 8. In such a way, the estimated π gradually
reaches the actual π after iterative refinements. As π gener-
ally becomes more and more accurate, the final user selection
is biased to the users in the groups who upload locations later
(line 13-22). The number of groups k balances the trade-off
between algorithm running efficiency and solution quality —
larger k updates π more frequently, but costs more time as it
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involves k iterations of running Algorithm 1.
Note that in real implementation, users who do not have

any frequent locations can still upload ‘NULL’ to the server.
Then, we can estimate the percentage of users who can report
locations from previous user groups. This can help us to set
an appropriate β used in the optimization so as to finally find
α users with a probability of ρ.

Experiments

In this section, we conduct empirical studies on three real
user mobility datasets. We use Algorithm 2 for both single
and multi-location coverage scenarios given its practicality
(no need to foreknow π).

Baselines

• Laplace. The state-of-the-art method to achieve geographic
differential privacy is based on the Laplace distribu-
tion (Andrés et al. 2013).

• NO. We use the No-Obfuscation (NO) policy, i.e., the users
upload one of their real frequent locations to the server, to
show an upper bound of the coverage.

• Random. We use the random user selection to serve as the
lower bound of the coverage that can be achieved.

Datasets

• FS dataset (Yang et al. 2016) contains 1083 Foursquare
users’ check-ins in New York, USA across near one year.
We set the time period to a weekly granularity, that is, the
selected users are expected to visit the target locations in
the next week. The studied area (Figure 4a) is split into
1km*1km grids. Among the 45 weeks of user mobility
data, we use the last five weeks as the test time period, and
first 40 weeks for mobility profiling.

• CMCC dataset contains 1315 users’ GPS trajectories in
Hangzhou, China, for one month from one mobile operator.
The time period is set to a daily granularity. The studied
area (Figure 4b) is split into 1km*1km grids. We use the
first 18 weekdays for mobility profiling and the remaining
four weekdays for testing.

• D4D dataset (Blondel et al. 2012) includes 5378 users’
two-week mobile phone call logs with cell tower locations
in Abidjan, Côte d’Ivoire. The time period is set to a daily
granularity. The studied area (Figure 4c) is split into cell-
tower-based regions (Xiong et al. 2016; Wang et al. 2017b).
We use the first nine weekdays for mobility profiling and
the last one weekday for testing.

Table 1 summarizes the experimental parameters. Note
that the default differential privacy budget ε is set to ln(4) as
suggested by the original paper (Andrés et al. 2013).

Results on FS

Single Location Coverage. We first evaluate the scenario
where only one location (grid) needs to be covered. Our
evaluation metric is the probability that a selected user will
actually appear at the target location in the next week.

Figure 5 shows the results on two target locations with
different population sizes when ε = ln(4) and δ = 0.7. In
both target locations, our proposed method can achieve a

(a) New York (b) Hangzhou (c) Abidjan

Figure 4: Experiment areas. Points in NY and Hangzhou are
user locations, and points in Abidjan are cell towers.

Table 1: Experimental parameters.

Notation Values Description

ε ln(2), ln(4), ln(6), ln(8) differential privacy level
δ 0.5, 0.6, 0.7, 0.8 threshold for frequent locations
N 1083 (FS), 1315 (CMCC) total number of users

5378 (D4D)
α 5%·N number of selected users
ρ 95% probability for user selection
k 6 number of user groups

larger coverage probability (up to 5% improvement) than
the Laplace mechanism. Compared to the no-obfuscation
method, the coverage probability of our method drops from
32.9% to 21.7% for the densely populated target location.
For the less densely populated one, the drop is bigger (from
30.5% to 14.5%). A possible explanation is that when the
target location is densely populated, even if our mechanism
mis-selects a user whose frequent location is not the target
one, s/he still may go to the target location by chance.

Figure 6a illustrates how the coverage probability changes
when we vary the privacy budget ε for the densely populated
target location. As a trade-off between privacy and coverage,
when ε increases (i.e., lower level of privacy), we can get a
higher coverage probability. More specifically, the improve-
ment of our method over Laplace is more significant for a
lower ε, i.e., higher privacy protection guarantee.

Figure 6b shows the change of coverage probability when
the threshold of frequent locations δ varies. The coverage
probabilities of all the methods rise with the increase of δ.
While a higher δ benefits coverage probability, the number of
users who can upload their (obfuscated) frequent locations
(i.e., candidates for selection) is smaller, because only users
with at least one location profiling probability larger than δ
will upload frequent locations. Based on experiment results,
setting δ to around 0.7-0.8 is appropriate for our method,
as the coverage probability is relatively satisfactory while a
large portion of users can be involved.

Multi-Location Coverage. We evaluate the scenario
where multiple target locations exist. We randomly select 2,
4, 6 and 8 locations as the targets. Figure 7 shows the actual
coverage probability that we can get, i.e., the probabilities of
selected users covering any one of the target locations in the
coming week. The results show that our proposed method
consistently outperforms Laplace under the same level of
privacy protection. Moreover, with an increasing number of
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Figure 5: Experiment of single location coverage on two
different populated locations on FS (ε = ln(4), δ = 0.7).
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Figure 6: Single location coverage results on FS.

the target locations, we find that the performance gap be-
tween our method and no-obfuscation becomes smaller. This
indicates that, when there are more locations to cover, using
our mechanism is more profitable, as the performance loss
incurred by the geographic differential privacy protection
becomes smaller.

Estimation of π. We evaluate whether our proposed Bayes
rule based method can estimate π correctly. We use KL diver-
gence (Kullback and Leibler 1951) to quantify the similarity
between the estimated π and the actual π. The smaller KL
divergence is, the more similar they are. Figure 8 shows the
change of KL divergence with k (the number of user groups),
and π is initialized to a uniform distribution. In Figure 8,
k = 0 represents the KL divergence between the uniform
and the actual distribution. When k is small, we have fewer
iterations to update π, leading to a larger KL divergence. In
our experiment, k = 6 is a good setting, as KL divergence
achieves a relatively low value, while the algorithm can com-
plete execution within a reasonable time.

Runtime Efficiency. We use Gurobi 7.5 (Gurobi 2014) as
the linear programming solver engine to run Algorithm 1 for
getting the optimal policy P̂ . It takes about 450 seconds on
a commodity laptop with i5-5200U (2.2 GHz), 8G memory.
We split all the users to six groups, meaning that Algorithm 1
is executed six times, which sums up to about 45 minutes.
As the optimal privacy policy generation can be an offline
process, such runtime efficiency is totally acceptable for real
applications. Note that this running time is not affected by the
number of users, so our method can serve mobile applications
with a large number of users.

Results on CMCC and D4D

To test the robustness of our proposed method, we also con-
duct experiments on CMCC and D4D datasets. The results are
shown in Figure 9a and 9b, where we randomly select 1, 2, 4,

0

0.2

0.4

0.6

0.8

2 4 6 8

Pr
ob

ab
ili

ty

number of locations to cover

NO Our
Laplace Random

Figure 7: Multi-location coverage results on FS.
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Figure 8: Results of estimating π on FS.

and 8 locations to cover. The results verify that our proposed
method can always outperform the Laplace mechanism in
attaining a higher coverage probability of the selected users.
Moreover, the results show that when the number of target lo-
cations to cover increases to 8, our privacy mechanism almost
achieves the same coverage probability as no-obfuscation,
especially for the D4D dataset. This further emphasizes the
practicability of our mechanism, as user privacy is gained
with a nearly negligible quality loss. Note that the achieved
coverage probability on D4D is smaller than FS or CMCC in
general, because the phone call locations on D4D are intrin-
sically more difficult to predict. Please refer to our technical
report (Wang et al. 2017a) for detailed mobility prediction
results.

Related Work

Selecting a set of users who can cover a set of locations in
the near future is a very important problem for real applica-
tions like spatial crowdsourcing (Chen and Shahabi 2016;
Zhang et al. 2014) and location-based advertising (Dhar
and Varshney 2011). In most of previous research works,
users’ moving histories are known and hence their mo-
bility patterns can be effectively modeled for predicting
their future locations (Xiong et al. 2016; Guo et al. 2017;
Yang et al. 2015).

As user privacy is becoming more and more impor-
tant nowadays, some pioneering works have started to
model users’ mobility or activity patterns based on privacy-
preserving data. Geo-indistinguishability mechanisms are
proposed for location-based query systems where users can
submit their differentially obfuscated locations (Andrés et al.
2013; Bordenabe, Chatzikokolakis, and Palamidessi 2014).
PrivCheck is designed to enable personalized location-based
advertising or recommendation with obfuscated user check-
ins, so that users’ sensitive information (e.g., age and gender)
cannot be inferred by adversaries (Yang et al. 2016). In spa-
tial crowdsourcing data acquisition, recent works also incor-
porate privacy mechanisms to protect participants’ precise
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Figure 9: Experiment results on CMCC and D4D with differ-
ent number of locations to cover (ε = ln(4), δ = 0.8).

locations (Wang et al. 2016; 2017b; To, Ghinita, and Sha-
habi 2014; Vergara-Laurens, Mendez, and Labrador 2014;
Pournajaf et al. 2014). While these studies have various ap-
plications, they usually focus on obfuscating users’ current
locations. As far as we know, little previous work has studied
the privacy-preserving future crowd coverage maximization
problem based on users’ obfuscated historical mobility pro-
files which we specifically focus on in this paper.

Conclusion

In this paper, we study the crowd coverage maximization
problem under the privacy protection on user locations. The
key idea is to select users who will probably visit certain
locations in near future with their differentially obfuscated
locations. To maximize the quality (coverage probability)
of selected users under such a privacy protection scheme,
an optimization problem is formulated to obtain the opti-
mal privacy policy. We mathematically analyze the problem,
and then propose a practical algorithm to obtain the optimal
privacy policy. Experiments on various real user mobility
datasets have verified the effectiveness of our privacy mecha-
nism. As future work, we plan to study the problem when a
user can upload multiple obfuscated frequent locations.
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