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Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease that
usually results in multiple complications. Early identification
of individuals at risk for complications after being diagnosed
with T2DM is of significant clinical value. In this paper, we
present a new data-driven predictive approach to predict when
a patient will develop complications after the initial T2DM
diagnosis. We propose a novel survival analysis method to
model the time-to-event of T2DM complications designed
to simultaneously achieve two important metrics: 1) accurate
prediction of event times, and 2) good ranking of the relative
risks of two patients. Moreover, to better capture the correla-
tions of time-to-events of the multiple complications, we fur-
ther develop a multi-task version of the survival model. To as-
sess the performance of these approaches, we perform exten-
sive experiments on patient level data extracted from a large
electronic health record claims database. The results show
that our new proposed survival analysis approach consistently
outperforms traditional survival models and demonstrate the
effectiveness of the multi-task framework over modeling each
complication independently.

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic disease
that affects almost half a billion people around the
globe (World Health Organization 2016). It is character-
ized by hyperglycemia— abnormally elevated blood glu-
cose (blood sugar) levels, and is almost always associated
with a number of complications (Forbes and Cooper 2013).
Over time, the chronic elevation of blood glucose levels
caused by T2DM leads to blood vessel damage which in
turn leads to associated complications, including kidney
failure, blindness, stroke, heart attack, and in severe cases
even death. T2DM management requires continuous medi-
cal care with multifactorial risk-reduction strategies beyond
glycemic control (American Diabetes Association and oth-
ers 2013). Early prediction of T2DM complications is criti-
cal for healthcare professionals to appropriately adapt treat-
ment plans for patients.

The recent abundance of the electronic health records
(EHRs) has provided an unprecedented opportunity to apply
predictive analytics to improve T2DM management. In this
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paper, we study the early prediction of T2DM complications
from historical EHR records: When will a patient develop
complications after the initial T2DM diagnosis? Given the
EHR records of two patients, which patient is more likely
to develop complications? In the literature, EHRs have been
applied to disease onset prediction (Ng et al. 2016; Raza-
vian et al. 2015), patient stratification (Wang et al. 2015;
Chen et al. 2016), readmission prediction (He et al. 2014),
and mortality prediction (Tabak et al. 2013). However, there
are unique characteristics and challenges to the problem of
T2DM complications time-to-event prediction.

One of the main challenges for such time-to-event pre-
diction problems is the existence of censored data in which
events of interest are unobserved. Events of interest may not
be observed due to the limited duration of the study period
or due to losing track of patients during the observation pe-
riod. As such, predictive models based on standard machine
learning approaches, which usually optimize a loss function,
cannot be directly applied to analyze censored longitudinal
data. Survival analysis (Cox 1972; Miller Jr 2011) is a class
of widely used statistical tools to model time-to-event cen-
sored data and thus can be adapted to model T2DM compli-
cation events. However, traditional survival analysis models
suffer from several limitations. The popular Cox model (Cox
1972) does not directly model event probability; instead,
it maximizes a partial likelihood objective, which depends
only on the relative ordering of the survival time of indi-
viduals, not on their actual values. Parametric survival mod-
els (Lawless 1998; Mittal et al. 2013) provide another popu-
lar alternative. These methods assume that the baseline haz-
ard function follows some distribution, such as Exponential,
Weibull or Log-normal. However, the distribution may not
be flexible enough to capture the complex event patterns
observed in practice. A second challenge stems from the
need to effectively capture the correlations between multiple
T2DM complications. Considering that the different compli-
cations are manifestations of a common underlying condi-
tion — hyperglycemia, modeling complications as indepen-
dent of one another will lead to suboptimal models.

To address these challenges, we present a data-driven ap-
proach to predict when a patient will develop complica-
tion(s) after the initial T2DM diagnosis. Our contributions
include a novel survival analysis approach, RankSvx, to
model time-to-event of T2DM complications. RankSvx si-
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multaneously optimizes two objective functions: a regres-
sion function that models the event times of the observed
events, and a ranking function that models the relative risks
of both the observed and censored events. As a result, the
proposed survival approach has the advantage of simultane-
ously achieving two important desiderata: accurate predic-
tion of event times, as well as an accurate ranking of the
relative risks of two patients. Moreover, to better capture the
correlations of time-to-events of multiple complications, we
further develop a multi-task version of the survival model.
The multi-task model allows us to not only capture the relat-
edness between different complications but also incorporate
domain knowledge as prior information.

To assess the performance of our proposed innovations,
we perform extensive experiments on patient level data ex-
tracted from a large electronic health record claims database.
The results show that our new proposed survival analysis ap-
proach consistently outperforms traditional survival models
and demonstrate the effectiveness of the multi-task frame-
work over modeling each complication independently.

Problem Definition

Our goal is to build an effective data-driven predictive ap-
proach to predict when a patient will develop complica-
tion(s) after the initial T2DM diagnosis. Specifically, for
patient i we observe a set of D risk factors, denoted as
xi = [xi1, xi2, . . . , xiD]�, for an observation window up
until the patient was diagnosed with T2DM. Let there be M
complications in consideration indexed by k ∈ {1, · · · ,M}.
We use tki to represent the time when patient i develops
complication k. We use the indicator cki to represent the
censoring of the event tki where cki = 1 means observed
and cki = 0 means censored. We aim to build a predictive
model f(tki|Θ,xi) to predict when patient i will develop
complication k. Table 1 shows some important mathemati-
cal notations used in this paper.

Multi-task Survival Analysis to Model T2DM

Complication Events

In this section, we present our multi-task survival analysis to
model time-to-event of T2DM complications.

Modeling Single T2DM Complication Events

Before proceeding to consider all the complications, we first
look at how to model a single complication event, namely
the single-task learning paradigm.

One of the main challenges in survival modeling is the
existence of censored data in which the events of interests
are not observed due to either the time limitation of the study
period or to losing track of the patient during the observation
period. Due to the uncertainty caused by the censored data,
we decompose the objective function into two parts:

αLobs

(
ti, f(xi|Θ)

)
+ (1− α)Lcen

(
ti, f(xi|Θ)

)
+ g(Θ). (1)

The first term Lobs

(
ti, f(xi|Θ)

)
models the observed

event, and the loss function can be any used in stan-
dard generalized regression models. The second term
Lcen

(
ti, f(xi|Θ)

)
models the censored data and will be

Table 1: Mathematical Notations

Symbol Description
N, 〈i, j〉 number and indices of patients
M,k number and index of T2DM complications
tki time of event of patient i for complication k

cki
indicator of censoring for event tki with cki = 1
means observed and cki = 0 means censoring

xi xi is the explanatory covariates for patient i

wk,W
wk is the coefficients for complication k;
W = [w1, . . . ,wM ] is the matrix of coefficients

G =
(V, E)

order graph with vertices V represents patients and
edge E(i, j) indicates event time order Ti ≤ Tj .

Ω matrix of relatedness between complications
Ω0 matrix of prior knowledge about risk association

discussed in detail in the following section. The weight
term α balances the two loss functions. Finally, g(Θ) is a
regularization term that controls the model complexity.

Modeling censored data as a ranking task. We cast the
modeling of censored data as a ranking problem, where the
task is to order the event times. First, survival analysis, rep-
resented by the Cox model, can be regarded as the modeling
of the event order due to the introduction of censored data. It
answers the order question: “which one of patients i and j is
more likely to develop a disease?”. Raykar et al. (Raykar
et al. 2007) show that Cox’s partial likelihood is a lower
bound of the concordance index (CI), which is one of the
most commonly used metrics for survival models. Second,
we aim to use the ranking to compliment the modeling of ac-
tual event time since the first term of our objective function
as shown in Equation (1) already models the event times.

We construct an event order graph G = (V , E) as shown
in Fig. 1. The set of vertices V represents all the patients,
where each filled vertex indicates an observed event time,
while an empty circle denotes a censored observation. An ar-
rowed edge E(i, j) between two nodes indicates event time
order Ti ≤ Tj . Note that all nodes connected to an observed
event node i correspond to the risk set Ri for patient i in
the Cox model. We aim to correctly rank the relative risks
of two patients, which is equal to maximizing the probabil-
ity of all pairs of patients whose predicted event times are
correctly ordered among all patients that can actually be or-
dered. Then we maximize following likelihood

log
∏
Eij

Pr(Tj > Ti|Θ) = log
∏
Eij

Pr [f(xj |Θ)− f(xi|Θ)] . (2)

There are multiple choices of functions (e.g., Hinge, Sig-
moid and exponential) to model the order between event or-
der Tj > Ti. We follow (Raykar et al. 2007; Rendle et al.
2009) and choose the sigmoid function σ(x) = 1

1+e−x . Then
we have following loss function for the censored data

Lcen

(
ti, f(xi|Θ)

)
=

∑
Eij

log σ [f(xj |Θ)− f(xi|Θ)] . (3)

It can be shown that the modeling of event orders actually
approximates the concordance index (CI), one of the most
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Figure 1: Illustration of event order graph in time-to-event
modeling. Filled vertex indicates an observed event and an
empty circle denotes a censored observation. An arrowed
edge E(i, j) between two nodes indicates event time order
Ti ≤ Tj . Note that all nodes connected to an observed event
node i correspond to the risk set Ri for patient i in the Cox
model.

commonly used metrics for survival models:

CI =
1

|V|
∑
Ti∀ci=1

∑
Tj>Ti

1f(xj)>f(xi) (4)

where 1(x) is an indicator function. CI can be interpreted as
the fraction of all pairs of patients whose predicted survival
times are correctly ordered among all patients that can
actually be ordered.

Combined regression and ranking: We propose a unified
framework to combine both regression and ranking to model
time-to-event:

min − (1− α)
∑
Eij

log σ [f(xj |Θ)− f(xi|Θ)]

+ αLobs

(
ti, f(xi|Θ)

)
+ g(Θ).

(5)

The unified framework has the advantage to simultaneously
achieve two important desiderata: accurate prediction of
event times, and good ranking of the relative risks of two
patients. The semi-parametric Cox model, which maximizes
the partial likelihood, approximates the ranking of relative
risks but often does not perform well in event time predic-
tion. Parametric survival models, which make rigorous sta-
tistical assumptions about the survival time, may not be flex-
ible enough to capture the complex event patterns. We aim
to use the unified framework to complement each other.

We directly model the survival time for patient i as
f(xi|Θ) = w�xi where xi = [xi1, xi2, . . . , xiD]� is the
explanatory covariates vector for patient i. The observed
loss function can be any used in standard generalized re-
gression models. In particular, we consider Squared loss∑

i
1
2

(
ti −w�xi

)2
, Poisson loss

∑
i

(
ew

�xi − tiw
�xi

)
,

and Log-normal loss
∑

i
1
2

(
log(ti)−w�xi

)2
.

Modeling Multiple T2DM Complication Events via
Multi-task Learning

To capture and leverage the association between the risks of
the different T2DM complications, we formulate the com-
plications prediction task as a multi-task learning problem.
As shown in Fig. 2, we group the predictions of multiple

complications in consideration (e.g., retinopathy, neuropa-
thy and vascular disease) into different learning tasks. Each
task models only one complication and survival analysis is
applied to model the time-to-event of the complication. Then
we apply multi-task learning to capture the association be-
tween the different complications.

Multi-task learning (MTL) (Caruana 1997) aims to jointly
learn multiple tasks using a shared representation so that
knowledge obtained from one task can help the other
tasks. In particular, we adopt the task relation learning
based MTL approach (Zhang and Yang 2017) due to its
flexibility to incorporate prior information. Let W =
[w1,w2, . . . ,wM ]D×M denote the matrix of coefficients for
all M of the complications. We aim to explore the hidden
association between the risks of T2DM complications. We
assume that the risk association is revealed in the structure
of the coefficient matrix W. Following (Zhang and Yeung
2010; Sun, Wang, and Hu 2015), we use the covariance ma-
trix of W to characterize T2DM complication risk associa-
tion. Specifically, we assume that the coefficient matrix W
follows a Matrix Variate Normal (MVN) distribution:

W ∼ MVN (0,Γ,Ω). (6)

The the first term 0 is a D × M matrix of zeros represent-
ing the mean of W. The second term Γ is a D × D matrix
representing the row-wise covariances of W. In this paper
we assume that rows of W are independent of each other.
In other words, the coefficients of different features in the
same target are not correlated. Then Γ becomes a diagonal
matrix, and we can set Γ = I. The third term Ω is a M ×M
symmetric positive definite matrix representing the column-
wise covariance of W. It is unknown and reflects the risk
association between multiple complications. Then we have

Pr(W|0, I,Ω) =
exp

(− 1
2 tr

[
Ω−1W�W

])
(2π)MD/2|Ω|D/2

(7)

Further, domain knowledge about risk association is often
available or partially available. In order to utilize available
domain knowledge, we impose an Inverse-Wishart prior dis-
tribution on Ω, Pr(Ω) ∼ IW(δΩ0, ν). The Inverse-Wishart
distribution is a conjugate prior for the multivariate variate
distribution Ω. Ω0 is a known symmetric positive definite
matrix that contains all prior knowledge about the risk asso-
ciations. δ and ν are two tuning parameters. When domain
knowledge on risk associations is available, the prior distri-
bution can leverage the information and help improve the
estimation of Ω. When domain knowledge about risk asso-
ciations is not available, we set Ω to be I.

The posterior probability of the parameters can be written
as

M∑
k=1

1

Nk

[
α

∑
i

∀cki=1

Lobs
(
tki,w

�
k xi

) − (1 − α)
∑
Ek
ij

log σ
[
w
�
k (xj − xi)

] ]

+ tr

[(
λ1

2
W
�
W +

λ2

2
Ω0

)
Ω
−1

]
+

λ3

2
log |Ω| + η

2

M∑
k=1

||wk||2

(8)

where tr(·) and | · | denote the trace and determinant
of a matrix; λ1, λ2, λ3 and η are tuning parameters; and
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Figure 2: Proposed framework for early prediction of T2DM complications. We aim to predict when a patient will develop
complications after the initial T2DM diagnosis. We group the predictions of multiple complications in consideration (e.g.,
retinopathy, neuropathy and vascular disease) into different tasks where each task models only one complication. Multi-task
learning (MTL) is applied to capture the association between the different complications.

∑M
k=1 ||wk||2 is a regularization term to control the model

complexity. 1/Nk is added to avoid the task imbalance prob-
lem when training instances are unbalanced among tasks
where Nk is the number of instances in k-th task.

Parameter Estimation

Given time-to-event observations Y = {tki, cki} and co-
variates X, we need to estimate the model parameters
{W,Ω} via solving the optimization problem in Equation
(8). However, log determination (log |Ω|) is concave, mak-
ing the objective function non-convex. Therefore we adopt
an iterative algorithm to solve the problem. Within each it-
eration, the two blocks W and Ω are updated alternatively.

Update W given Ω:

Given Ω, minimizing Equation (8) becomes minimizing the
following function

M∑
k=1

1

Nk

[
α

∑
i

∀cki=1

Lobs
(
tki,w

�
k xi

) − (1 − α)
∑
Ek
ij

log σ
[
w
�
k (xj − xi)

] ]

+ tr

[(
λ1

2
W
�
W

)
Ω
−1

]
+

η

2

M∑
k=1

||wk||2.

(9)

We use stochastic gradient descent to update the param-
eters (Bottou 2010). The main process involves randomly
scanning training instances and iteratively updating parame-
ters. In each iteration, for complication k, we randomly sam-
ple an observed instance and its comparison set 〈k, i,Rk

i 〉,
and we maximize O(Θ) using the following update rule for
Θ: Θ = Θ− ε · ∂O(Θ)

∂Θ , where ε is a learning rate. For com-
plication k, given observed instance and its comparison set
〈k, i,Rk

i 〉, the gradient with respect to wk is

∂O
∂wk

=
1

Nk

[
(1− α)

∑
j∈Rk

i

(
e−w�k (xj−xi)

1 + e−w�
k

(xj−xi)

)
(xi − xj)

+ α
∂Lobs

(
tki,w

�
k xi

)
∂wk

]
+ λ1Ω

−1
k W + ηwk.

The gradient
∂Lobs

(
tki,w

�
k xi

)
∂wk

for different loss functions are
as follows:

∂Lobs

(
tki,w

�
k xi

)
∂wk

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
ti − w�k xi

)
xi Squared(

ew
�
k xi − tki

)
xi Poisson

−
(
log(tki) − w�k xi

)
xi Log-normal

Update Ω given W:

Given W, minimizing Equation (8) becomes

argmin
Ω

tr

[(
λ1

2
W�W +

λ2

2
Ω0

)
Ω−1

]
+

λ3

2
log |Ω| (10)

The last term log |Ω| is a penalty on the complexity of Ω,
and can be replaced with a constraint tr(Ω) = 1 (Zhang and
Yeung 2010). Then above Equation (10) can be reformulated
as:

argmin
Ω

tr

[(
λ1

2
W�W +

λ2

2
Ω0

)
Ω−1

]

s.t. Ω � 0, tr(Ω) = 1

(11)

where Ω � 0 means that the matrix Ω is positive semidefi-
nite. Equation (11) has an analytical solution

Ω =

(
λ1

2 W�W + λ2

2 Ω0

) 1
2

tr
[(

λ1

2 W�W + λ2

2 Ω0

) 1
2

] . (12)

Experiments

This section presents an empirical evaluation of our model
using patient level data extracted from a large electronic
health record claims database.

Experimental setup and data

We conducted a retrospective cohort study using the
MarketScan Commercial Claims and Encounter (CCAE)
database from Truven Health. The data on the patients are
contributed by a selection of large employers, health plans,
and government and public organizations. We used a dataset



Table 2: List of the five T2DM complications in this study.

T2DM Complication
(Abbreviation) Description Example ICD codes

Retinopathy (RET) eye disease caused by damage to the blood vessels in the
tissue at the back of the eye (retina)

25050, 25052, 24950, 24951,
36201-36207, E08311-E0839

Neuropathy (NEU) nerve damage most often affecting the legs and feet 25060, 25062, 24960, 24961
Nephrology (NEP) kidney disease characterized by hardening of the glomerulus 25040, 25042, 24940, 24941

Vascular Disease (VAS) vascular diseases including peripheral vascular disease,
cardiovascular disease, and cerebrovascular diseases

25070, 25072, 24970, 24971,
E0851, E08621-E08622, E0859

Hyperosmolar (HYPER) serious condition caused by high blood sugar levels 25020, 25022, 24920, 24921,
E0800, E0900, E1100, E1300

Table 3: Data statistics and patient characteristics.

Complication # instances # observations Female ratio Average age (SD) 19–44 pct. 45–54 pct. 55–64 pct.

RET 5604 1868 35.03% 52.50 (8.58) 17.02% 33.21% 49.50%
NEU 11874 3958 36.97% 52.53 (8.59) 16.97% 33.01% 49.82%
NEP 4074 1358 37.02% 52.52 (8.91) 17.53% 31.44% 50.86%
VAS 2517 839 39.85% 53.17 (8.31) 15.06% 31.55% 53.12%

HYPER 651 217 36.41% 52.00 (8.90) 19.35% 32.72% 47.93%

of deidentified patients between the years 2011 and 2015.
The patient cohort used in the study consisted of T2DM pa-
tients selected based on the following criteria:

I. The frequency ratio between Type 2 diabetes visits to
Type 1 diabetes visits is larger than 0.5; AND

II-a. The patient have two (2) or more Type 2 diabetes
records on different days; OR

II-b. The patient received insulin and/or antidiabetic medi-
cation.

Finally, patients who were under 19 years old or over 64
years old at first diagnosis of T2DM are removed.

We use following prediction variables:

• Patient demographics: Patient demographics include
age, gender and weight index. In addition to age as one
continuous variable, we also include three binary vari-
ables for age intervals of 19–44, 45–54 and 55–64.

• ICD codes: We use the historical medical conditions fea-
tures encoded as International Classification of Disease
(ICD) codes. We use group ICD codes according to their
first three digits, and filter out ICDs appearing in fewer
than 100 patients. As a result we have 359 ICD features.

We further removed patients with less than 20 ICD records.
Five common complications of T2DM, described in Table

2 are used in this study. Table 3 shows some basic statistics
of the patient cohort.

Evaluation protocol

We aim to answer the following two questions:
Question 1: How does the performance of our proposed
model (RankSvx) compare to traditional survival models

and regression models? To this end, we compare our pro-
posed model with the following baseline algorithms:

• Cox model (Cox 1972): Cox is the most widely used sur-
vival model and is a semi-parametric model as it does not
assume any distribution on the baseline function.

• Parametric survival models (Mittal et al. 2013) including
Weibull, Log-Logistic, and Log-normal. They make dif-
ferent assumptions about the baseline survival function.

• Regression models (i.e., squared regression, Poisson re-
gression, and Log-normal regression) that directly model
the event times but cannot leverage the censored data.

Question 2: How does the performance of the multi-task
learning approach compare to the single-task learning ap-
proach? To this end, we compare our proposed multi-task
version of the model (MTL-RankSvx) to our single-task
version (RankSvx).

We evaluate the models using the following metrics:
Concordance index (CI): CI is one of the most commonly
used metrics for survival models. It can be interpreted as the
fraction of all pairs of patients, the order of whose predicted
response matches the order of their observed response. CI is
defined as CI = 1

Ntest

∑
ti∀ci=1

∑
tj>ti

1f(xi)<f(xj) where

Ntest is the number of comparable pairs in the test dataset.
Mean Absolute Error (MAE): MAE is defined as the aver-
age of the differences between predicted time values and the
actual observed event times MAE = 1

N

∑
∀ci=1 |ti − t̂i|.

Training and testing We randomly sample 67% of the co-
hort as training data, and we use the remaining 33% hold out
for testing. All the models are implemented with gradient
descent optimization and and we apply the Adam (Kingma
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Table 4: Comparisons between proposed RankSvx model and previous approaches in single-task learning setting.

(a) concordance index (CI)
Method RET NEU NEP VAS HYPER avg

Survival

Cox 0.5552 0.6107 0.6027 0.6092 0.5524 0.5860
Weibull 0.5066 0.5207 0.5699 0.5399 0.5790 0.5432

Log-Logistic 0.5108 0.5217 0.5821 0.5483 0.5833 0.5492
Log-normal 0.5082 0.5241 0.5806 0.5497 0.5799 0.5485

Regression
Squared 0.5205 0.5217 0.5100 0.4830 0.5246 0.5120
Poisson 0.5643 0.5244 0.5424 0.4510 0.4862 0.5137

Log-normal 0.4764 0.5709 0.5332 0.5495 0.4481 0.5156

RankSvx
Squared 0.5569 0.5643 0.6164 0.5946 0.5974 0.5859
Poisson 0.5650 0.6078 0.6361 0.6220 0.5687 0.5999

Log-normal 0.5613 0.6026 0.6405 0.6111 0.6050 0.6041

(b) mean absolute error (MAE)
Method RET NEU NEP VAS HYPER avg

Survival

Cox 15.198 16.625 14.826 13.017 9.081 13.749
Weibull 6.6241 7.1144 6.9690 6.6553 6.6980 6.8122

Log-Logistic 5.8822 6.7371 6.7977 6.5462 6.8298 6.5586
Log-normal 5.5834 6.7408 6.7068 6.2985 5.8953 6.2450

Regression
Squared 6.4013 6.5058 6.4329 6.3967 7.8003 6.7074
Poisson 6.3484 6.5252 6.6112 6.5280 6.3421 6.4710

Log-normal 6.4669 6.3368 6.2769 6.1314 6.6093 6.3643

RankSvx
Squared 5.8519 6.3734 6.7831 6.5283 6.7692 6.4612
Poisson 5.9522 6.4550 6.7879 6.5900 8.0567 6.7683

Log-normal 5.5133 6.1209 6.7235 6.2654 5.9280 6.1102

and Ba 2014) method to automatically adapt the step size
during the parameter estimation procedures. We use grid
search for parameter tuning and report the best result for
each model.

Prior risk association Ω0 Note that our model can incor-
porate prior knowledge on complication association through
Ω0. We construct associations leveraging the human dis-
ease network (Goh et al. 2007) which provides the Phi-
correlations between pairs of diseases. We aggregate the
Phi-correlations between pairs of ICD codes under pairs
of T2DM complications. This results in a Ω0 that repre-
sents our prior knowledge about the correlations between the
T2DM complications in our study.

Result Comparisons

In this subsection, we present the comparisons on the two
metrics (CI and MAE) between our proposed models and
the baseline methods. Note that CI measures relative risk
ranking and MAE measures event times prediction accuracy.

Comparing RankSvx with previous approaches Table
4 show the comparisons between our RankSvx model with
previous approaches in terms of CI and MAE respectively.
From Table 4 we can see that across most complications
RankSvx (with different loss functions) outperforms the Cox
model, parametric survival models, and regression models.
Survival models perform better than regression models as
they can handle censored data. The semi-parametric Cox
model can achieve better CI performances than their para-
metric peers. However, as shown in Table 4, parametric sur-
vival models can achieve much better event time predic-

tion performance in terms of MAE. This is because the Cox
model optimizes the partial likelihood objective, which de-
pends only on the relative ordering of the survival time of in-
dividuals but not on their actual values. RankSvx model can
simultaneously achieve best performances in both metrics
on average. In particular, RankSvx model with Log-normal
loss function performs the best.

Comparing MTL-RankSvx with RankSvx We next
compare the performance of multi-task learning against
single-task learning. As the RankSvx model with Log-
normal loss function performs the best, we compare MTL-
RankSvx with RankSvx using the Log-normal loss function.
We would expect MTL perform better when there are some
tasks, whose information is not enough to learn the model,
can benefit from the correlation from the other tasks. For
this consideration, for each task we respectively use 25%,
50%, 75% and 100% of dataset while keep other tasks un-
changed. We compare the performances of MTL-RankSvx
and of RankSvx in this setting. Table 5 shows the compar-
isons between MTL-RankSvx with STL-RankSvx. We can
see that MTL-RankSvx can improve STL-RankSvx in most
cases. Further, we observe that when the number of training
samples is small, the task can better improve its performance
through multi-task learning framework. For example, we can
observe more improvement of HYPER and VAS, which are
the two complications with fewest training samples.

Discussion While we observed that MTL-RankSvx can
improve STL-RankSvx in most cases, the improvements
seem not to be significant. We found that the learned task
association matrices were close to diagonal matrices, indi-

106



Table 5: Comparisons between MTL-RankSvx and STL-
RankSvx. We compare the MTL and STL models by setting
different percentage of dataset in each task.

concordance index (CI)
25% 50% 75% 100%

STL MTL STL MTL STL MTL STL MTL
ERT 0.5468 0.5509 0.5603 0.5604 0.5623 0.5628 0.5613 0.5652
NEU 0.5798 0.5797 0.5895 0.5885 0.5968 0.5959 0.6026 0.6054
NEP 0.6069 0.6093 0.6262 0.6273 0.6343 0.6350 0.6405 0.6425
VAS 0.5821 0.5920 0.6015 0.6036 0.6104 0.6112 0.6111 0.6170

HYPER 0.5406 0.5517 0.5977 0.5993 0.6010 0.6034 0.6050 0.6098
avg 0.5712 0.5767 0.5951 0.5958 0.6010 0.6016 0.6041 0.6080

mean absolute error (MAE)
25% 50% 75% 100%

STL MTL STL MTL STL MTL STL MTL
ERT 5.5161 5.5072 5.5254 5.5245 5.5161 5.5167 5.5133 5.5273
NEU 6.1282 6.1288 6.1294 6.1351 6.1465 6.1505 6.1209 6.1338
NEP 6.7388 6.7446 6.7110 6.7075 6.7009 6.7020 6.7235 6.7290
VAS 6.2387 6.2447 6.2561 6.2586 6.2537 6.2566 6.2654 6.2723

HYPER 6.1777 6.1534 5.9211 5.9153 5.9351 5.9241 5.9280 5.9183
avg 6.1599 6.1557 6.1086 6.1082 6.1105 6.1100 6.1102 6.1161

cating that the tasks did not have high association with each
other. Since the fundamental idea of multitask learning is to
leverage association among multiple tasks, it is expected that
MTL may not have significant improvement over STL when
the associations are not strong. The finding that the tasks did
not have high association with each other is a bit counter in-
tuitive. One reason could lie in the relatively short observa-
tion window of the dataset. It is possible that some preexist-
ing complications were treated as new onsets. In this case,
associations between different T2DM complications could
be reduced.

Related Work

From an applications perspective, our work falls into the
category of research that apply predictive analytics and
use EHRs to improve the practice of healthcare manage-
ment (Yadav et al. 2015). Building predictive models from
EHR records have attracted significant attention from both
academia and industry, and have been used in disease onset
prediction (Ng et al. 2016), patient stratification (Wang et al.
2015; Chen et al. 2016), hospital readmission prediction (He
et al. 2014), and mortality prediction (Tabak et al. 2013;
Nori et al. 2015). More recently, Razavian et al. (Razavian et
al. 2015) show that EHRs can be leveraged to predict T2DM
onset. Oh et al. (Oh et al. 2016) applied EHRs to capture the
trajectories of T2DM patients and found that different trajec-
tories can lead to different risk patterns. To the best of our
knowledge, this paper presents the first study to investigate
the early prediction of T2DM complications from EHRs.

Technically, our work is related to survival analysis. Sur-
vival analysis (Cox 1972; Miller Jr 2011) is a class of widely
used statistical tools to model time-to-event. However tradi-
tional survival analysis models have several limitations. The
widely used Cox model (Cox 1972) does not directly model
the event probability; instead, it maximizes the partial like-
lihood objective, which depends only on the relative order-

ing of the survival time of individuals, not on their actual
values. It will require another cumbersome procedure to fit
a non-parametric survival function after the coefficients of
Cox model are determined for prediction purposes. There-
fore, Cox based models are limited for the task of predict-
ing the survival time for individual patients (Yu et al. 2011).
Parametric survival models (Lawless 1998) are another pop-
ular alternative. These methods assume that the baseline
hazard function follows some distribution, such as Expo-
nential, Weibull and Log-normal. However, the distribution
might not flexible enough to capture the complex event pat-
terns in real practice. As a result, there is a need for machine
learning based survival models (Wang, Li, and Reddy 2017)
which are free from rigorous statistical assumptions. An im-
portant distinction between our method and prior methods
is that our proposed approach has the advantage of simul-
taneously achieving two important desiderata: accurate pre-
diction of event times, as well as an accurate ranking of the
relative risks of two patients by simultaneously optimizing
both objective functions.

Our work is also related to multi-task learning
(MTL) (Caruana 1997), which aims to jointly learn multiple
tasks using a shared representation so that knowledge ob-
tained from one task can help other tasks. In particular, our
work falls into the category of task relation learning based
MTL approaches (Zhang and Yang 2017) due to its flexibil-
ity to incorporate prior information (Zhang and Yeung 2010;
Sun, Wang, and Hu 2015). There are some previous re-
search (Li et al. 2016) that apply multi-task learning for sur-
vival analysis, however, they are different from our work
in that they study single-task survival analysis through the
multi-task leaning framework by decomposing event time-
line into multiple time windows.

Conclusion and Future Work

In this paper, we proposed a novel survival analysis ap-
proach, in which models were learned from historical EHR
records, to predict when a patient will develop complica-
tions after being diagnosed with T2DM. The proposed sur-
vival approach has the advantage to achieve two impor-
tant metrics: accurate prediction of event times and good
ranking of the relative risks of two patients. Moreover, to
better capture the correlations of time-to-events of multi-
ple complications, we further developed a multi-task ver-
sion of the survival model. Finally, extensive experiments
on a T2DM patient dataset extracted from a large healthcare
claims database validated the performance of our new pro-
posed survival analysis and demonstrated the effectiveness
of the multi-task framework.

There are a number of interesting future research direc-
tions. First, we only used basic demographic information
and static ICD codes in our evaluation. Incorporating more
features or new feature representations can potentially im-
prove prediction performance. Second, it is important to not
only predict complication events but also to analyze and
identify the important associated risk factors. Finally, we are
also interested in adapting our models to other chronic dis-
eases and other types of electronic health record data.
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